共查询到20条相似文献,搜索用时 36 毫秒
1.
F Blanco-Vaca J C Escolà-Gil J M Martín-Campos J Julve 《Journal of lipid research》2001,42(11):1727-1739
Our understanding of apolipoprotein A-II (apoA-II) physiology is much more limited than that of apoA-I. However, important and rather surprising advances have been produced, mainly through analysis of genetically modified mice. These results reveal a positive association of apoA-II with FFA and VLDL triglyceride plasma concentrations; however, whether this is due to increased VLDL synthesis or to decreased VLDL catabolism remains a matter of controversy. As apoA-II-deficient mice present a phenotype of insulin hypersensitivity, a function of apoA-II in regulating FFA metabolism seems likely. Studies of human beings have shown the apoA-II locus to be a determinant of FFA plasma levels, and several genome-wide searches of different populations with type 2 diabetes have found linkage to an apoA-II intragenic marker, making apoA-II an attractive candidate gene for this disease. The increased concentration of apoB-containing lipoproteins present in apoA-II transgenic mice explains, in part, why these animals present increased atherosclerosis susceptibility. In addition, apoA-II transgenic mice also present impairment of two major HDL antiatherogenic functions: reverse cholesterol transport and protection of LDL oxidative modification. The apoA-II locus has also been suggested as an important genetic determinant of HDL cholesterol concentration, even though there is a major species-specific difference between the effects of mouse and human apoA-II. As antagonizing apoA-I antiatherogenic actions can hardly be considered the apoA-II function in HDL, this remains a topic for future investigations. We suggest that the existence of apoA-II or apoA-I in HDL could be an important signal for specific interaction with HDL receptors such as cubilin or heat shock protein 60. 相似文献
2.
This paper describes a ProteinChip technology for the identification and quantification of apolipoprotein profiles in crude biological samples. Expression levels of apoA-I and apoA-II and their glycosylated products were accomplished using single 1 microL plasma samples. In the present studies, strong anionic and weak cationic exchanger ProteinChips (SAX2 and WCX2 chip surfaces) were tested, and the WCX2 chip was found to be selective for specific apolipoproteins. Using the WCX2 chip and analysis via surface-enhanced laser desorption ionization mass spectrometry (SELDI-MS), apoA-I and apoA-II were separated as sharp peaks at 28 and 17 kD and did not overlap with other serum protein peaks. Since these assays can be completed on a large number of clinical samples in approximately 1 h, further development of this technique will facilitate both epidemiological studies and therapeutic trials in assessing the role of the apolipoproteins and their glycosylated products in atherosclerosis. 相似文献
3.
Intracellular role of exchangeable apolipoproteins in energy homeostasis,obesity and non‐alcoholic fatty liver disease 下载免费PDF全文
Chen‐Lu Wu Shui‐Ping Zhao Bi‐Lian Yu 《Biological reviews of the Cambridge Philosophical Society》2015,90(2):367-376
Exchangeable apolipoproteins play an important role in systemic lipid metabolism, especially for lipoproteins with which they are associated. Recently, emerging evidence has suggested that exchangeable apolipoproteins, such as apolipoprotein A4 (apoA4), apolipoprotein A5 (apoA5), apolipoprotein C3 (apoC3) and apolipoprotein E (apoE), also exert important effects on intracellular lipid homeostasis. There is a close link between lipid metabolism in adipose tissue and liver because the latter behaves as the metabolic sensor of dysfunctional adipose tissue and is a main target of lipotoxicity. Given that the energy balance between these two major lipogenic organs is intimately involved in the pathogenesis of obesity and non‐alcoholic fatty liver disease (NAFLD), we here review recent findings concerning the intracellular function of exchangeable apolipoproteins in triglyceride metabolism in adipocytes and hepatocytes. These apolipoproteins may act as mediators of crosstalk between adipose tissue and liver, thus influencing development of obesity and hepatosteatosis. This review provides new insights into the physiological role of exchangeable apolipoproteins and identifies latent targets for therapeutic intervention of obesity and its related disorders. 相似文献
4.
A structural and functional role for 11-mer repeats in alpha-synuclein and other exchangeable lipid binding proteins 总被引:6,自引:0,他引:6
We have used NMR spectroscopy and limited proteolysis to characterize the structural properties of the Parkinson's disease-related protein alpha-synuclein in lipid and detergent micelle environments. We show that the lipid or micelle surface-bound portion of the molecule adopts a continuously helical structure with a single break. Modeling alphaS as an ideal alpha-helix reveals a hydrophobic surface that winds around the helix axis in a right-handed fashion. This feature is typical of 11-mer repeat containing sequences that adopt right-handed coiled coil conformations. In order to bind a flat or convex lipid surface, however, an unbroken helical alphaS structure would need to adopt an unusual, slightly unwound, alpha11/3 helix conformation (three complete turns per 11 residues). The break we observe in the alphaS helix may allow the protein to avoid this unusual conformation by adopting two shorter stretches of typical alpha-helical structure. However, a quantitative analysis suggests the possibility that the alpha11/3 conformation may in fact exist in lipid-bound alphaS. We discuss how structural features of helical 11-mer repeats could play a role in the reversible lipid binding function of alpha-synuclein and generalize this argument to include the 11-mer repeat-containing apolipoproteins, which also require the ability to release readily from lipid surfaces. A search of protein sequence databases confirms that synuclein-like 11-mer repeats are present in other proteins that bind lipids reversibly and predicts such a role for a number of hypothetical proteins of unknown function. 相似文献
5.
Pollination between maize and teosinte: an important determinant of gene flow in Mexico 总被引:5,自引:0,他引:5
Baltazar BM de Jesús Sánchez-Gonzalez J de la Cruz-Larios L Schoper JB 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2005,110(3):519-526
Gene flow between maize [Zea mays (L.)] and its wild relatives does occur, but at very low frequencies. Experiments were undertaken in Tapachula, Nayarit, Mexico to investigate gene flow between a hybrid maize, landraces of maize and teosinte (Z. mays ssp. mexicana, races Chalco and Central Plateau). Hybridization, flowering synchrony, pollen size and longevity, silk elongation rates, silk and trichome lengths and tassel diameter and morphology were measured. Hybrid and open-pollinated maize ears produced a mean of 8 and 11 seeds per ear, respectively, when hand-pollinated with teosinte pollen, which is approximately 1–2% of the ovules normally produced on a hybrid maize ear. Teosinte ears produced a mean of 0.2–0.3 seeds per ear when pollinated with maize pollen, which is more than one-fold fewer seeds than produced on a maize ear pollinated with teosinte pollen. The pollination rate on a per plant basis was similar in the context of a maize plant with 400–500 seeds and a teosinte plant with 30–40 inflorescences and 9–12 fruitcases per inflorescence. A number of other factors also influenced gene-flow direction: (1) between 90% and 95% of the fruitcases produced on teosinte that was fertilized by maize pollen were sterile; (2) teosinte collections were made in an area where incompatibility systems that limit fertilization are present; (3) silk longevity was much shorter for teosinte than for maize (approx. 4 days vs. approx. 11 days); (4) teosinte produced more pollen on a per plant basis than the landraces and commercial hybrid maize; (5) teosinte frequently produced lateral branches with silks close to a terminal tassel producing pollen. Collectively these factors tend to favor crossing in the direction of teosinte to maize. Our results support the hypothesis that gene flow and the subsequent introgression of maize genes into teosinte populations most probably results from crosses where teosinte first pollinates maize. The resultant hybrids then backcross with teosinte to introgress the maize genes into the teosinte genome. This approach would slow introgression and may help explain why teosinte continues to co-exist as a separate entity even though it normally grows in the vicinity of much larger populations of maize. 相似文献
6.
Caroline Michot Asmaa Mamoune Joseph Vamecq Mai Thao Viou Lu-Sheng Hsieh Eric Testet Jeanne Lainé Laurence Hubert Anne-Frédérique Dessein Monique Fontaine Chris Ottolenghi Laetitia Fouillen Karim Nadra Etienne Blanc Jean Bastin Sophie Candon Mario Pende Arnold Munnich Pascale de Lonlay 《生物化学与生物物理学报:疾病的分子基础》2013,1832(12):2103-2114
7.
The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. 总被引:7,自引:0,他引:7
J P Segrest M K Jones H De Loof C G Brouillette Y V Venkatachalapathi G M Anantharamaiah 《Journal of lipid research》1992,33(2):141-166
Site-directed mutagenesis and other molecular biology-based techniques are now available for probing the amphipathic alpha helix structural motif in the exchangeable apolipoproteins. Here we survey the published literature on lipid-binding and functional domains in apolipoproteins A-I, A-II, A-IV, C-I, C-II, C-III, and E and compare these results with recently developed computer methods for analysis of the location and properties of amphipathic helixes. This comparison suggests that there are at least three distinct classes of amphipathic helixes (classes A, Y, and G*) in the exchangeable apolipoproteins whose distribution varies within and between the seven apolipoproteins. This comparison further suggests that lipid affinity resides largely in class A amphipathic helixes (Segrest, J. P., et al. 1990. Proteins. 8: 103) and that variations in structure and/or numbers of class A domains in individual apolipoproteins allow a range of lipid affinities from high to low. The positions of the four alpha helixes recently shown to form a 4-helix bundle globular structure in apoE (Wilson, C., et al. 1991. Science. 252: 1817) correspond closely to the four amino-terminal class G* amphipathic helixes of apoE identified by our computer analysis. It is of particular interest, therefore, that all of the exchangeable apolipoproteins except apoA-II and C-I, contain amphipathic helixes of class G*. Additional implications of amphipathic helix heterogeneity for the structure and function of the exchangeable apolipoproteins will be discussed. 相似文献
8.
Over the past two decades a number of endogenous compounds that act as ligands for the cannabinoid receptors has been discovered. In analogy with the "endorphins" these compounds have been called "endocannabinoids". Endocannabinoids have been demonstrated in many mammalian tissues including humans and are widely distributed in the CNS, peripheral nerves, uterus, leukocytes, spleen and testicles. The uterus contains the highest levels of anandamide, the first discovered endocannabinoid, suggesting an important role for this substance in reproduction. Several studies have shown anandamide to be involved in the regulation of implantation and reduced activity of the enzyme that degrades anandamide has been associated with early pregnancy loss in humans. The bulk of the literature concerning endocannabinoids is based upon anandamide related studies; therefore, in this review we focus on the metabolism of anandamide and its role in reproduction. 相似文献
9.
Cystathionine gamma-synthase (CGS) is a key enzyme of Met biosynthesis in bacteria and plants. Aligning the amino acid sequences revealed that the plant enzyme has an extended N-terminal region that is not found in the bacterial enzyme. However, this region is not essential for the catalytic activity of this enzyme, as deduced from the complementation test of an Escherichia coli CGS mutant. To determine the function of this N-terminal region, we overexpressed full-length Arabidopsis CGS and its truncated version that lacks the N-terminal region in transgenic tobacco (Nicotiana tabacum) plants. Transgenic plants expressing both types of CGS had a significant higher level of Met, S-methyl-Met, and Met content in their proteins. However, although plants expressing full-length CGS showed the same phenotype and developmental pattern as wild-type plants, those expressing the truncated CGS showed a severely abnormal phenotype. These abnormal plants also emitted high levels of Met catabolic products, dimethyl sulfide and carbon disulfide. The level of ethylene, the Met-derived hormone, was 40 times higher than in wild-type plants. Since the alien CGS was expressed at comparable levels in both types of transgenic plants, we further suggest that post-translational modification(s) occurs in this N-terminal region, which regulate CGS and/or Met metabolism. More specifically, since the absence of the N-terminal region leads to an impaired Met metabolism, the results further suggest that this region plays a role in protecting plants from a high level of Met catabolic products such as ethylene. 相似文献
10.
The properties, regularities of biosynthesis and biochemical functions are considered of GTP-cyclohydrolases of microorganisms. The existence of two groups of these enzymes is established. The first group enzymes convert GTP into 7,8-dihydroneopterin-triphosphate and formiate. They participate in biosynthesis of tetrahydrofolic acid, tetrahydrobiopterin, molybdenic cofactor, pyrrolopyrimidine antibiotics and in a series of pigments. Representatives of the second group of cyclohydrolases convert GTP into 2,5-diamino-4-oxy-6-ribosylaminopyrimidine-5'-phosphate, formiate and pyrophosphate. They catalyze the first stages of formation of 6,7-dimethyl-8-ribityllumazine, flavins and their derivatives, toxoflavin (azapteridine antibiotics). The regulation of biosynthesis and activity of GTP-cyclohydrolases is studied only for individual enzymes of this group. 相似文献
11.
Naranjan S. Dhalla Vijayan Elimban Heinz Rupp 《Molecular and cellular biochemistry》1992,111(1-2):3-9
The naturally occurring flavonoid, quercetin, in the presence of Cu(II) and molecular oxygen caused breakage of calf thymus DNA, supercoiled pBR322 plasmid DNA and single stranded M13 phage DNA. In the case of the plasmid, the product(s) were relaxed circles or a mixture of these and linear molecules depending upon the conditions. For the breakage reaction, Cu(II) could be replaced by Fe(III) but not by other ions tested [Fe(II), Co(II), Ni(II), Mn(II) and Ca(II)]. Structurally related flavonoids, rutin, galangin, apigenin and fisetin were effective or less effecive than quercetin in causing DNA breakage. In the case of the quercetin-Cu(II) reaction, Cu(I) was shown to be essential intermediate by using the Cu(1)-sequestering reagent, bathocuproine. By using Job plots we established that, in the absence of DNA, five Cu(II) ions were reduced by one quercetin molecule; in contrast two ions were reduced per quercetin molecule in the DNA breakage reaction. Equally neocuproine inhibited the DNA breakage reaction. The involvement of active oxygen in the reaction was established by the inhibition of DNA breakage by superoxide dismutase, iodide, mannitol, formate and catalase (the inhibition was complete in the last case). The strand scission reaction was shown to account for the biological activity of quercetin as assayed by bacteriophage inactivation. From these data we propose a mechanism for the DNA strand scission reaction of quercetin and related flavonoids. 相似文献
12.
We applied metabolic control analysis to the Kennedy pathway for triacylglycerol formation in tissue cultures from the important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). When microsomal fractions were incubated at 30 degrees C rather than 20 degrees C, there was an increase in triacylglycerol labelling. This increase was accompanied by a build up of diacylglycerol (DAG) radioactivity in olive but not in oil palm, suggesting that the activity of DAG acyltransferase (DAGAT) was becoming limiting in olive. We used 2-bromooctanoate as a specific inhibitor of DAGAT and showed that the enzyme had a flux control coefficient under the experimental conditions of 0.74 in olive but only 0.12 in oil palm. These data revealed important differences in the regulation of lipid biosynthesis in cultures from different plants and suggest that changes in the endogenous activity of DAGAT is unlikely to affect oil accumulation in oil palm crops. 相似文献
13.
14.
Only sparse information is available from the literature on the peroxisomal compartment and its enzyme composition in mouse and human lungs. Therefore, in the present investigation we have characterized peroxisomes in different cell types of adult mouse (C57BL/6J) and human lungs in a comprehensive study using a variety of light-, fluorescence- and electron microscopic as well as biochemical techniques and by the use of various peroxisomal marker proteins (Pex13p, Pex14p, ABCD3, beta-oxidation enzymes and catalase). In contrast to previous reports, we have found that peroxisomes are present in all cell types in human and mouse lungs. However, they differ significantly and in a cell-type-specific manner in their structure, numerical abundance and enzyme composition. Whereas catalase showed significant differences between distinct cell types, Pex14p proved to be the marker of choice for labeling all lung peroxisomes. In alveolar type II cells and alveolar macrophages peroxisomes contained significant amounts of the lipid transporter ABCD3 and beta-oxidation enzymes, suggesting their involvement in the modification and recycling of surfactant lipids and in the control of lipid mediators and ligands for nuclear receptors of the PPAR family. Possible connections between ROS and lipid metabolism of lung peroxisomes are discussed. 相似文献
15.
16.
Saccharomyces cerevisiae contains four fatty acid activation (FAA) genes: an assessment of their role in regulating protein N- myristoylation and cellular lipid metabolism 总被引:2,自引:0,他引:2 下载免费PDF全文
《The Journal of cell biology》1994,127(3):751-762
Saccharomyces cerevisiae has been used as a model for studying the regulation of protein N-myristoylation. MyristoylCoA:protein N- myristoyl-transferase (Nmt1p), is essential for vegetative growth and uses myristoylCoA as its substrate. MyristoylCoA is produced by the fatty acid synthetase (Fas) complex and by cellular acylCoA synthetases. We have recently isolated three unlinked Fatty Acid Activation (FAA) genes encoding long chain acylCoA synthetases and have now recovered a fourth by genetic complementation. When Fas is active and NMT1 cells are grown on media containing a fermentable carbon source, none of the FAA genes is required for vegetative growth. When Fas is inactivated by a specific inhibitor (cerulenin), NMT1 cells are not viable unless the media is supplemented with long chain fatty acids. Supplementation of cellular myristoylCoA pools through activation of imported myristate (C14:0) is predominantly a function of Faa1p, although Faa4p contributes to this process. Cells with nmt181p need larger pools of myristoylCoA because of the mutant enzyme's reduced affinity for this substrate. Faa1p and Faa4p are required for maintaining the viability of nmt1-181 strains even when Fas is active. Overexpression of Faa2p can rescue nmt1-181 cells due to activation of an endogenous pool of C14:0. This pool appears to be derived in part from membrane phospholipids since overexpression of Plb1p, a nonessential lysophospholipase/phospholipase B, suppresses the temperature-sensitive growth arrest and C14:0 auxotrophy produced by nmt1-181. None of the four known FAAs is exclusively responsible for targeting imported fatty acids to peroxisomal beta-oxidation pathways. Introduction of a peroxisomal assembly mutation, pas1 delta, into isogenic NMT1 and nmt1-181 strains with wild type FAA alleles revealed that when Fas is inhibited, peroxisomes contribute to myristoylCoA pools used by Nmt1p. When Fas is active, a fraction of cellular myristoylCoA is targeted to peroxisomes. A NMT1 strain with deletions of all four FAAs is still viable at 30 degrees C on media containing myristate, palmitate, or oleate as the sole carbon source--indicating that S. cerevisiae contains at least one other FAA which directs fatty acids to beta-oxidation pathways. 相似文献
17.
G Perry C Lambert 《Comparative biochemistry and physiology. B, Comparative biochemistry》1988,90(4):785-789
1. Addition of arachidonic acid (AA) to Ascidia ceratodes oocyte homogenates results in its rapid oxidation to several polar products. 2. AA oxidation in homogenates has both calcium independent and calcium stimulated components. 3. Calcium or AA addition to an oocyte homogenate stimulates O2-consumption. 4. Stimulation of homogenate O2-consumption by AA and calcium is additive. 5. Intact eggs oxidize AA to products similar to those detected in vitro. 6. Quantitatively total AA oxidation was similar for unfertilized and fertilizing eggs and dividing embryos, while qualitative differences were detected for the three stages. 7. These results demonstrate the presence of lipoxygenase-like, peroxidizing activity, in Ascidia eggs that is capable of producing products potentially important to the control of early metabolic events during development. 相似文献
18.
Ayaka Ichikawa Nagasato Hiroshi Yamashita Michinori Matsuo Kazumitsu Ueda 《Bioscience, biotechnology, and biochemistry》2017,81(6):1136-1147
Extracellular matrix (ECM) stiffness regulates cell differentiation, survival, and migration. Our previous study has shown that the interaction of the focal adhesion protein vinculin with vinexin α plays a critical role in sensing ECM stiffness and regulating stiffness-dependent cell migration. However, the mechanism how vinculin–vinexin α interaction affects stiffness-dependent cell migration is unclear. Lipid rafts are membrane microdomains that are known to affect ECM-induced signals and cell behaviors. Here, we show that vinculin and vinexin α can localize to lipid rafts. Cell-ECM adhesion, intracellular tension, and a rigid ECM promote vinculin distribution to lipid rafts. The disruption of lipid rafts with Methyl-β-cyclodextrin impaired the ECM stiffness-mediated regulation of vinculin behavior and rapid cell migration on rigid ECM. These results indicate that lipid rafts play an important role in ECM-stiffness regulation of cell migration via vinculin. 相似文献
19.
CTP:Phosphocholine cytidylyltransferase (CT) catalyzes the key step in phosphatidylcholine (PC) synthesis. CT is activated by binding to certain lipid membranes. The membrane binding affinity of CT can vary from micromolar to millimolar K(d), depending on the lipid composition of the target membrane. Class II CT activators like diacylglycerols and unsaturated phosphatidylethanolamines (PE) favor inverted lipid phase formation. The mechanism(s) governing CT's association with class II lipid membranes and subsequent activation are relatively unknown. We measured CT activation by vesicles composed of PC and one of three unsaturated PEs, dioleoylglycerol (DOG), or cholesterol. For each lipid system, we estimated the stored curvature strain energy of the monolayer when confined to a relatively flat bilayer. CT binding and activation correlate very well with the curvature strain energy of several chemically distinct class II lipid systems, with the exception of those containing cholesterol, in which CT activation was less than the increase in curvature strain. CT activation by membranes containing DOG was reversed by inclusion of specific lysolipids, which reduce curvature strain energy. LysoPC, which has a larger positive curvature than lysoPE, produced greater inhibition of CT activation. Stored curvature strain energy is thus an important determinant of CT activation. Membrane interfacial polarity was investigated using a membrane-anchored fluorescent probe. Decreases in quenching of this interfacial probe by doxyl-PCs in class II membranes suggest the probe adopts a more superficial membrane location. This may reflect an increased surface hydrophobicity of class II lipid membranes, implying a role for surface dehydration in CT's interactions with membranes containing class II lipids. Cholesterol, a poor activator of CT, did not affect the positioning of the polarity-sensitive probe, suggesting that one reason for its ineffectiveness is an inability to enhance surface hydrophobicity. 相似文献
20.
The energy metabolism of the failing heart is characterised by a 30% decrease of the total adenine nucleotides content and what may be more important by a 60% loss of creatine and creatine phosphate [J.S. Ingwall, R.G. Weiss, Is the failing heart energy starved? On using chemical energy to support cardiac function, Circ. Res. 95 (2004) 35-145]. Besides the effect of these changes on the energy supply, failing heart is known to be more vulnerable to Ca2+ overload and apoptosis-inducing processes. Recent studies have pointed to the critical role of mitochondrial contact sites in controlling both the mitochondrial energy metabolism and Ca2+ homeostasis. This review focuses on the structure and function of protein complexes in mitochondrial contact sites and their regulatory role in the cellular bioenergetics, intra- and extra-mitochondrial Ca2+ levels, and release of apoptosis-inducing factors. Firstly, we review the compositions of different contact sites following by the discussion of experimental data obtained with isolated and reconstituted voltage-dependent anion channel-adenine nucleotide translocase complexes and consequences of the complex disassembling. Furthermore, we describe experiments involving the complex-stabilizing conditions in vitro and in intact cells. At the end, we discuss unsolved problems and opportunities for clinical application of the complex-stabilizing factors. 相似文献