首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background aimsMobilization of stem cells and progenitor cells from the bone marrow (BM) into the peripheral blood (PB) by granulocyte–colony-stimulating factor (G-CSF) is being investigated for cardiac regeneration in ischemic heart disease. However, hematopoietic (HPC), mesenchymal (MPC) and endothelial (EPC) progenitor mobilization have not been optimized and the effect of G-CSF on myocardial perfusion and cardiac function in a normal heart has never been studied.MethodsNormal mice were injected daily for 1–10 days with subcutaneous recombinant human G-CSF. PB and BM were evaluated for HPC and EPC by flow cytometry and HPC and MPC by hematopoietic (CFU-GM) and mesenchymal (CFU-F) colony assays. Echocardiography, microSPECT imaging, cardiac catheterization and immunohistochemistry were performed in mice treated for 10 days.ResultsHPC and CFU-GM in PB peaked after 2 days, CFU-F after 4 days and EPC after 3 days. Thereafter, while HPC temporally decreased before showing a second peak, EPC remained detectable only at low levels. In BM, hematopoietic stem cells (HSC) and CFU-GM did not increase much overall but peaked twice on days 2 and 7. EPC (peak on day 7) production increased in the BM, but CFU-F formation declined considerably after day 2. G-CSF enhanced myocardial perfusion and vascularization but impaired hemodynamic performance of the heart through apparently increased ventricular wall rigidity.ConclusionsG-CSF induces the mobilization of HPC, EPC and CFU-F progenitors in PB according to very different patterns, and has a significant impact on perfusion and function of the normal heart.  相似文献   

2.
Migration is an innate and fundamental cellular function that enables hematopoietic stem cells (HSCs) and endothelial progenitors (EPCs) to leave the bone marrow, relocate to distant tissue, and to return to the bone marrow. An increasing number of studies demonstrate the widening scope of the therapeutic potential of both HSCs and endothelial cells. Therapeutic success however not only relies upon their ability to repair damaged tissue, but is also fundamentally dependent on the migration to these areas. Extensive in vivo and in vitro research efforts have shown that the most significant effects seen on HSC migration are initiated by the chemokine SDF-1alpha. In this review we will elucidate the many cellular and systemic factors of HSC and EPC cell migration and their modi operandi.  相似文献   

3.

Rationale

Exogenous stem cell delivery is under investigation to prevent and treat cardiac dysfunction. It is less studied as to the extent endogenous bone marrow derived stem cells contribute to cardiac homeostais in response to stress and the affects of aging on this stress response.

Objective

To determine the role of bone marrow (BM) derived stem cells on cardiac homeostasis in response to pressure overload (PO) and how this response is altered by aging.

Methods and Results

Young (8 weeks) and old (>40 weeks) C57/b6 mice underwent homo- and heterochronic BM transplantation prior to transverse aortic constriction (TAC). We found that older BM is associated with decreased cardiac function following TAC. This decreased function is associated with decrease in BM cell engraftment, increased myocyte apoptosis, decreased myocyte hypertrophy, increased myocardial fibrosis and decreased cardiac function. Additionally, there is a decrease in activation of resident cells within the heart in response to PO in old mice. Interestingly, these effects are not due to alterations in vascular density or inflammation in response to PO or differences in ex vivo stem cell migration between young and old mice.

Conclusions

BM derived stem cells are activated in response to cardiac PO, and the recruitment of BM derived cells are involved in cardiac myocyte hypertrophy and maintenance of function in response to PO which is lost with aging.  相似文献   

4.
Sublethal irradiation of donors leads to a change in some properties of bone marrow haemopoietic stem cells (HSC) during the exponential growth (days 1-8) of the syngeneic recipients in the spleen. They are: an increase in the rate of proliferation, a slight reduction in time of the population doubling, and a tendency toward an increase in the percentage of cells settled in the spleen after transplantation. These changes in the properties of HSC provide a more rapid repopulation thereof as compared to HSC of intact mice. In all appearance, a pretreatment of donors with AET and 2ADT does not influence the HSC changes induced by radiation, and, at the same time, retains the number of HSC at a high level.  相似文献   

5.
In bone marrow, haematopoietic stem cells (HSC) rely on close contact with stromal cells for proliferation and differentiation. Stromal cell-derived factor (SDF-1) is a chemokine produced by bone marrow stromal cells and has been reported to be a chemoattractant for CD34(+)cells. SDF-1 was evaluated for effects on proliferation of both mature and immature human progenitor cells in vitro. Neither proliferation nor maturation of peripheral blood cells was stimulated by SDF-1 alone. Moreover, we have previously demonstrated that 5-fluorouracile (5-FU) resistant HSC require a combination of interleukin 12 (IL-12), IL-6 and SCF for the production of morphologically recognizable clonogenic elements at day 14 in semisolid medium. Our data reported a strong enhancement of the IL-6, IL-12, SCF-induced synergism (172%) by SDF-1 (296.5%). Furthermore, our data suggest that this chemokine alone had no effect on triggering quiescent cells and may preserve these cells from 5-FU cell damage or upregulate early-acting cytokine receptors. Thus, SDF-1 might play a key role in early human haematopoiesis through its potent synergistic effects in combination with early-acting cytokines. These results suggest that a programmed response to sequential cytokine stimulation may be part of a control mechanism required for maintenance of proliferation of primitive HSC.  相似文献   

6.
Osteoblasts expressing the homophilic adhesion molecule N-cadherin form a hematopoietic stem cell (HSC) niche. Therefore, we examined how N-cadherin expression in HSCs relates to their function. We found that bone marrow (BM) cells highly expressing N-cadherin (N-cadherin(hi)) are not stem cells, being largely devoid of a Lineage(-)Sca1(+)cKit(+) population and unable to reconstitute hematopoietic lineages in irradiated recipient mice. Instead, long-term HSCs form distinct populations expressing N-cadherin at intermediate (N-cadherin(int)) or low (N-cadherin(lo)) levels. The minority N-cadherin(lo) population can robustly reconstitute the hematopoietic system, express genes that may prime them to mobilize, and predominate among HSCs mobilized from BM to spleen. The larger N-cadherin(int) population performs poorly in reconstitution assays when freshly isolated but improves in response to overnight in vitro culture. Their expression profile and lower cell-cycle entry rate suggest N-cadherin(int) cells are being held in reserve. Thus, differential N-cadherin expression reflects functional distinctions between two HSC subpopulations.  相似文献   

7.
Suspensions of mouse bone marrow cells, spleen cells, and blood leucocytes were cultured in diffusion chambers in dilution series in order to establish the minimum concentrations of haematopoietic stem cells (HSC). The observed frequencies of empty chambers after seven days of culture conformed to the expected frequencies of a null response in a Poisson distribution. The proportions of empty chambers could therefore be used to estimate the concentrations of HSC in the cell suspensions. The following numbers of HSC per 105 cells were found (with 95% confidence limits): Bone marrow: 50 (44–56). Spleen: 3.5 (2.8–4.3). Blood leucocytes: 1.4 (1.2–1.8). The mean (± standard error) HSC-content per femur, spleen, and milliliter blood when pooling cells from three to six donor mice was 8240 ± 600, 7660 ± 490, and 56 ± 6.5 respectively. For comparison, the HSC concentrations were also determined with the spleen colony technique; the ratio between the HSC-concentrations of bone marrow, spleen, and blood determined with the diffusion chamber technique was similar to that determined with the spleen colony technique.  相似文献   

8.
9.
10.
11.
12.

Rationale

Stage specific embryonic antigen 1+ (SSEA1+) cells have been described as the most primitive mesenchymal progenitor cell in the bone marrow. Cardiac injury mobilizes SSEA1+ cells into the peripheral blood but their in vivo function has not been characterized.

Objective

We generated animals with chimeric bone marrow to determine the fate and function of bone marrow SSEA1+ cells in response to acute cardiac pressure overload.

Methods and Results

Lethally irradiated mice were transplanted with normal bone marrow where the wild-type SSEA1+ cells were replaced with green fluorescent protein (GFP) SSEA1+ cells. Cardiac injury was induced by trans-aortic constriction (TAC). We identified significant GFP+ cell engraftment into the myocardium after TAC. Bone marrow GFP+ SSEA1 derived cells acquired markers of endothelial lineage, but did not express markers of c-kit+ cardiac progenitor cells. The function of bone marrow SSEA1+ cells after TAC was determined by transplanting lethally irradiated mice with bone marrow depleted of SSEA1+ cells (SSEA1-BM). The cardiac function of SSEA1-BM mice declined at a greater rate after TAC compared to their complete bone marrow transplant counterparts and was associated with decreased bone marrow cell engraftment and greater vessel rarefication in the myocardium.

Conclusions

These results provide evidence for the recruitment of endogenous bone marrow SSEA1+ cells to the myocardium after TAC. We demonstrate that, in vivo, bone marrow SSEA1+ cells have the differentiation potential to acquire endothelial lineage markers. We also show that bone marrow SSEA1+ deficiency is associated with a reduced compensatory capacity to cardiac pressure overload, suggesting their importance in cardiac homeostasis. These data demonstrate that bone marrow SSEA1+ cells are critical for sustaining vascular density and cardiac repair to pressure overload.  相似文献   

13.
Circulation and chemotaxis of fetal hematopoietic stem cells   总被引:7,自引:0,他引:7  
The major site of hematopoiesis transitions from the fetal liver to the spleen and bone marrow late in fetal development. To date, experiments have not been performed to evaluate functionally the migration and seeding of hematopoietic stem cells (HSCs) during this period in ontogeny. It has been proposed that developmentally timed waves of HSCs enter the bloodstream only during distinct windows to seed the newly forming hematopoietic organs. Using competitive reconstitution assays to measure HSC activity, we determined the localization of HSCs in the mid-to-late gestation fetus. We found that multilineage reconstituting HSCs are present at low numbers in the blood at all timepoints measured. Seeding of fetal bone marrow and spleen occurred over several days, possibly while stem cell niches formed. In addition, using dual-chamber migration assays, we determined that like bone marrow HSCs, fetal liver HSCs migrate in response to stromal cell-derived factor-1α (SDF-1α); however, unlike bone marrow HSCs, the migratory response of fetal liver HSCs to SDF-1α is greatly increased in the presence of Steel factor (SLF), suggesting an important role for SLF in HSC homing to and seeding of the fetal hematopoietic tissues. Together, these data demonstrate that seeding of fetal organs by fetal liver HSCs does not require large fluxes of HSCs entering the fetal bloodstream, and that HSCs constitutively circulate at low levels during the gestational period from 12 to 17 days postconception. Newly forming hematopoietic tissues are seeded gradually by HSCs, suggesting initial seeding is occurring as hematopoietic niches in the spleen and bone marrow form and become capable of supporting HSC self-renewal. We demonstrate that fetal and adult HSCs exhibit specific differences in chemotactic behavior. While both migrate in response to SDF-1α, fetal HSCs also respond significantly to the cytokine SLF. In addition, the combination of SDF-1α and SLF results in substantially enhanced migration of fetal HSCs, leading to migration of nearly all fetal HSCs in this assay. This finding indicates the importance of the combined effects of SLF and SDF-1α in the migration of fetal HSCs, and is, to our knowledge, the first demonstration of a synergistic effect of two chemoattractive agents on HSCs.  相似文献   

14.
Stem cell antigen-1 (Sca-1) has been used to identify cardiac stem cells in the mouse heart. To investigate the function of Sca-1 in aging and during the cardiac adaptation to stress, we used Sca-1-deficient mice. These mice developed dilated cardiomyopathy [end-diastolic left ventricular diameter at 18 wk of age: wild-type (WT) mice, 4.2 mm ± 0.3; Sca-1-knockout (Sca-1-KO) mice, 4.6 mm ± 0.1; ejection fraction: WT mice, 51.1 ± 2.7%; Sca-1-KO mice, 42.9 ± 2.7%]. Furthermore, the hearts of mice lacking Sca-1 demonstrated exacerbated susceptibility to pressure overload [ejection fraction after transaortic constriction (TAC): WT mice, 43.5 ± 3.2%; Sca-1-KO mice, 30.8% ± 4.0] and increased apoptosis, as shown by the 2.5-fold increase in TUNEL(+) cells in Sca-1-deficient hearts under stress. Sca-1 deficiency affected primarily the nonmyocyte cell fraction. Indeed, the number of Nkx2.5(+) nonmyocyte cells, which represent a population of cardiac precursor cells (CPCs), was 2-fold smaller in Sca-1 deficient neonatal hearts. In vitro, the ability of CPCs to differentiate into cardiomyocytes was not affected by Sca-1 deletion. In contrast, these cells demonstrated unrestricted differentiation into cardiomyocytes. Interestingly, proliferation of cardiac nonmyocyte cells in response to stress, as judged by BrdU incorporation, was higher in mice lacking Sca-1 (percentages of BrdU(+) cells in the heart after TAC: WT mice, 4.4 ± 2.1%; Sca-1-KO mice, 19.3 ± 4.2%). These data demonstrate the crucial role of Sca-1 in the maintenance of cardiac integrity and suggest that Sca-1 restrains spontaneous differentiation in the precursor population. The absence of Sca-1 results in uncontrolled precursor recruitment, exhaustion of the precursor pool, and cardiac dysfunction.  相似文献   

15.
Bone marrow is the main site for hematopoiesis in adults. It acts as a niche for hematopoietic stem cells (HSCs) and contains non‐hematopoietic cells that contribute to stem cell dormancy, quiescence, self‐renewal, and differentiation. HSC also exist in resting spleen of several species, although their contribution to hematopoiesis under steady‐state conditions is unknown. The spleen can however undergo extramedullary hematopoiesis (EMH) triggered by physiological stress or disease. With the loss of bone marrow niches in aging and disease, the spleen as an alternative tissue site for hematopoiesis is an important consideration for future therapy, particularly during HSC transplantation. In terms of harnessing the spleen as a site for hematopoiesis, here the remarkable regenerative capacity of the spleen is considered with a view to forming additional or ectopic spleen tissue through cell engraftment. Studies in mice indicate the potential for such grafts to support the influx of hematopoietic cells leading to the development of normal spleen architecture. An important goal will be the formation of functional ectopic spleen tissue as an aid to hematopoietic recovery following clinical treatments that impact bone marrow. For example, expansion or replacement of niches could be considered where myeloablation ahead of HSC transplantation compromises treatment outcomes.  相似文献   

16.
The response and subsequent recovery of mouse haemopoietic progenitor cells (spleen colony forming cells and agar colony forming cells) has been studied following two cytotoxic agents. Busulphan was administered to normal mice and vinblastine to mice where the progenitor cell proliferation rate had been increased by a period of continuous γ-irradiation. With both these agents there is a difference between the response of the spleen colony forming cells and the agar colony forming cells during the first five days. They then recover together, but much more slowly after busulphan than after vinblastine even though their proliferation rate is increased. The rate of progenitor cell recovery after busulphan is increased if the progenitor cells are depleted further by vinblastine. However, methotrexate, which severely depletes the peripheral blood count and bone marrow cellularity but not the progenitor cells, has no effect on the recovery following busulphan. These results suggest that following cytotoxic agents the agar colony forming cells (“committed” stem cells) are not self-maintaining but are dependent on a supply of cells from the pluripotential spleen colony forming cells. In addition it appears that the depletion of the progenitor cells of the bone marrow and not the depletion of the maturing cells, provides a stimulus for stem cell recovery.  相似文献   

17.
We have previously shown that targeting human CD34(+) hematopoietic stem cells (HSC) with a bispecific antibody (BiAb) directed against myosin light chain (MLC) increases delivery of cells to the injured hearts and improves cardiac performance in the nude rat. In this study, we have sought to validate our previous observations and to perform more detailed determination of ventricular function in immunocompetent mice with myocardial infarction (MI) that were treated with armed CD34(+) HSC. We examined whether armed CD34(+) HSC would target the injured heart following MI and restore ventricular function in vitro. MI was created by ligation of the left anterior descending artery. After 48 h, adult ICR mice received either 0.5 x 10(6) human CD34(+) HSC armed with anti-CD45 x anti-MLC BiAb or an equal volume of medium through a single tail vein injection. Two weeks after stem cell administration, ventricular function of hearts from mice receiving armed CD34(+) HSC was significantly greater compared with the same parameters from control mice. Immunohistochemistry confirmed the accumulation of CD34(+) HSC in MI hearts infused with stem cells. Angiogenesis was significantly enhanced in CD34(+) HSC-treated heart as determined by vascular density per area. Furthermore, histopathological examination revealed that the retained cardiac function observed in CD34(+) HSC-treated mice was associated with decreased ventricular fibrosis. These results suggest that peripheral administration of armed CD34(+) HSC results in localization of CD34(+) HSC to injured myocardium and restores myocardial function.  相似文献   

18.
Hematopoietic stem cells (HSCs) are self-renewing bone marrow cells that give rise to all blood lineages and retain a remarkable capacity to proliferate in response to insult. Although some controls on HSC activation are known, little is understood about how this process is linked to natural signals. We report that the interferon-inducible GTPase Lrg-47 (Irgm1), previously shown to play a critical role in host defense, inhibits baseline HSC proliferation and is required for a normal HSC response to chemical and infectious stimuli. Overproliferating Lrg-47(-/-) HSCs are severely impaired in functional repopulation assays, and when challenged with hematopoietic ablation by 5-fluorouracil or infection with Mycobacterium avium, Lrg-47(-/-) mice fail to achieve the expected expansion response in stem and progenitor cell populations. Our results establish a link between the response to infection and HSC activation and demonstrate a novel function for a member of the p47 GTPase family.  相似文献   

19.
Haematopoiesis is the term used to describe the production of blood cells. This is a tightly regulated hierarchical system in which mature circulating blood cells develop from a small population of haematopoietic stem (HSC) and progenitor cells within the microenvironment of the bone marrow. Molecular and genetic abnormalities arising in these stem cells lead to a block in the normal programme of proliferation and differentiation and result in the development of the blood cancers known as the leukaemias and lymphomas. Recently the regulatory role of the bone marrow microenvironment or niche has also become increasingly recognised. The interface between the bone and bone marrow (endosteum) and the region surrounding the blood vessels (perivascular) provide distinct niches harbouring quiescent HSC or proliferative HSC respectively. Current chemotherapeutic regimes can often successfully target the proliferative HSC but disease relapse occurs due to residual quiescent HSC. Understanding these developmental and regulatory processes and the associated cell communication mechanisms are thus crucial to the development of new treatment strategies. The CCN family of proteins have been recognised to play a key role in all aspects of haematopoiesis.  相似文献   

20.
Trichinella spiralis infections provoke a variety of responses in the host, some of which involve stem cell proliferation and myeloid cell maturation, increases in the mast cell precursor cell populations, and maturation and eosinopoiesis. Very little is known about the influence of T. spiralis upon bone marrow stem cells and splenic colony formation. In the present communication we report that T. spiralis infection in mice stimulates the generation of colony-forming units in the spleen (CFU-S). Passive transfer of bone marrow cells from uninfected BALB/c mice to X-irradiated (650 R) T. spiralis-infected recipients resulted in a significant increase of CFU-S at 14 and 24 days postinfection. Passive transfer of bone marrow cells from T. spiralis-infected mice to X-irradiated uninfected mice also resulted in increased numbers of CFU-S in the donor mice at 24 days postinfection. These findings strongly suggest that T. spiralis infection conditions the microenvironment in the spleen which stimulates CFU-S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号