首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
White adipose tissue (WAT) has been examined to determine whether the gene encoding metallothionein (MT), a low-molecular-weight stress response protein, is expressed in the tissue and whether MT may be a secretory product of adipocytes. The MT-1 gene was expressed in epididymal WAT, with MT-1 mRNA levels being similar in lean and obese (ob/ob) mice. MT-1 mRNA was found in each of the main adipose tissue sites (epididymal, perirenal, omental, subcutaneous), and there was no major difference between depots. Separation of adipocytes from the stromal-vascular fraction of WAT indicated that the MT gene (MT-1 and MT-2) was expressed in adipocytes themselves. Treatment of mice with zinc had no effect on MT-1 mRNA levels in WAT, despite strong induction of MT-1 expression in the liver. MT-1 gene expression in WAT was also unaltered by fasting or norepinephrine. However, administration of a beta(3)-adrenoceptor agonist, BRL-35153A, led to a significant increase in MT-1 mRNA. On differentiation of fibroblastic preadipocytes to adipocytes in primary culture, MT was detected in the medium, suggesting that the protein may be secreted from WAT. It is concluded that WAT may be a significant site of MT production; within adipocytes, MT could play an antioxidant role in protecting fatty acids from damage.  相似文献   

3.
It has been shown in various systems that zinc is able to antagonize the catalytic properties of the redox-active transition metals iron and copper, although the process is still unclear. Probably, the protective effect of Zn against oxidative stress is mainly due to the induction of a scavenger metal binding protein such as metallothionein (MT), rather than a direct action. To support this hypothesis, in this study, the effects of Zn, Cu, Fe, Zn + Cu and Zn + Fe treatments were investigated in a fibroblast cell line corresponding to an SV40-transformed MT-1/-2 mutant (MT-/-), and in wild type (MT+/+), by valuing metal concentrations and apoptotic and/or necrotic processes. We also investigated the synthesis of MT and the levels of both MT-1 and MT-2 mRNAs. In MT+/+ cells, co-treatment with Zn + Fe caused a decrease in Fe content compared to treatment with Fe alone. After Zn and Zn + Cu exposure the expression of MT-1 and MT-2 isoforms increased with a concomitant increase in MT synthesis. Annexin V-FITC and propidium iodide staining revealed necrotic or apoptotic cells in terminal stages, especially after Fe treatments. Immunofluorescent staining with an anti-ssDNA Mab and annexin detected a lower signal in co-treated cells compared to the single treatments in both cell lines. The intensity and quantity of fluorescence resulting from anti-ssDNA and Annexin V staining of MT null cells was higher compared to wild type cells. These results suggest that Zn alone does not completely exert an anti-oxidant effect against Cu and Fe toxicity, but that induction of MT is necessary.  相似文献   

4.
Heme-hemopexin-mediated induction of metallothionein gene expression.   总被引:2,自引:0,他引:2  
  相似文献   

5.
6.
Primary cultured embryonic cells derived from mice with disrupted metallothionein (MT) I and II genes and from control mice were transformed with a plasmid encoding the simian virus 40 (SV40) large T antigen. The resulting MT-/- and MT+/+ cell strains showed similar cell morphology, cell cycle and no significant differences in glutathione levels or in the activities of glutathione-related enzymes and antioxidant enzymes. The MT-/- cells were more sensitive to Cd than MT+/+ cells, though no increase in the sensitivity to Zn, Cu, Hg or Ni were observed in MT-/- cells. MT+/+ cells accumulated more Cd than MT-/- cells but showed less lesion, suggesting the role of MT induced by Cd in MT+/+ cells as a scavenger of toxic Cd ion. These results suggest a dominant protective role of MT against Cd compared with other metals. SV40-transformed MT-/- cells seem to be a useful tool for the investigation of cellular function of MT.  相似文献   

7.
8.
Regulatory role of metallothionein in NF-kappaB activation.   总被引:5,自引:0,他引:5  
A Sakurai  S Hara  N Okano  Y Kondo  J Inoue  N Imura 《FEBS letters》1999,455(1-2):55-58
  相似文献   

9.
10.
Metallothionein (MT) has been assigned a role in intestinal Zn absorption and secretion. The influence of MT was investigated in isolated segments of the small intestine from mice lacking the expression of MT I and II genes (MT−/−). To measure Zn absorption, washed 10- to 12-cm segments of the proximal and distal small intestine of MT−/− and control MT+/+ mice were filled with 65Zn as ZnSO4 (10 μg/mL), and the amount of 65Zn appearing in the external buffer was measured over 4 h. To measure Zn secretion, the same procedure was followed using everted gut segments. The 65Zn absorption from the small intestine was significantly greater in MT−/− mice, but only in the absence of albumin. In the proximal small intestine, the inclusion of 2% albumin in the external buffer significantly increased Zn absorption from 6.8% (no albumin) to 13.2% (with albumin) for MT−/−, and from 4.9% (no albumin) to 14.2% (with albumin) for MT+/+. In the distal segment, the respective values, with and without albumin respectively were 9.5% and 15.1% for MT−/− mice and 4.3% and 16.1% for MT+/+ mice. Regarding 65Zn secretion, there was no difference between MT+/+ and MT−/− in either segment. However, the rate of secretion was higher in the proximal small intestine for both genotypes. Although it can be demonstrated that MT limits Zn absorption under controlled conditions in vitro, the ability of albumin to overcome this effect emphasizes the importance of circulating ligands in Zn transport.  相似文献   

11.
Metallothioneins (MTs) have an important role in zinc homeostasis and may counteract the impact of oversupply. Both intracellular zinc and MT expression have been implicated in proliferation control and resistance to cellular stress, although the interdependency is unclear. The study addresses the consequences of a steady-state overexpression of MT-1 for intracellular zinc levels, cell cycle progression, and protection from zinc toxicity using a panel of cell lines with differential expression of MT-1. The panel comprised parental Chinese hamster ovary-K1 cells with low endogenous expression of MT and transfectants with enhanced expression of mouse MT-1 on an autonomously replicating expression vector with a noninducible promoter. Cell cycle progression, determined by flow cytometry and time-lapse microscopy, revealed that enhanced cytoplasmic expression of MT-1 does not impact on normal cell cycle operation, suggesting that basal levels of MT-1 expression are not limiting for background levels of oxidative stress. MT-1 overexpression correlated with a steady-state increase in cytoplasmic free Zn(2+), assessed using the fluorescent zinc-sensor Zinquin, particularly at high levels of overexpression, further suggesting that zinc availability is normally not limiting for cell cycle progression. Enhanced MT-1 expression, over a 10-fold range, had a clear impact on resistance to Cd(2+) and Zn(2+) toxicity. In the case of Zn(2+), the degree of protection afforded was less, indicating that MT-1 has a limited range and saturable capacity for effecting resistance. The results have implications for the use of cellular stress responses to exogenously supplied zinc and zinc-based systemic therapies.  相似文献   

12.
Recombinant DNA probes complementary to Chinese hamster metallothionein (MT)-1 and MT-2 mRNAs were used to compare MT gene copy numbers, zinc-induced MT mRNA levels, and uninduced MT mRNA levels in cadmium-resistant (Cdr) Chinese hamster ovary cell lines. Quantitative hybridization analyses determined that the MT-1 and MT-2 genes are each present at approximately single-copy levels in the genome of cell line Cdr2C10 and are coordinately amplified approximately 7, 3, and 12 times over the Cdr2C10 value in the genomes of cell lines Cdr20F4, Cdr30F9, and Cdr200T1, respectively. The maximum zinc-induced MT-1 mRNA concentrations in cell lines Cdr20F4, Cdr30F9, and Cdr200T1 were equal to 1, 3, and 15 times that measured in Cdr2C10, respectively. Similarly, the maximum zinc-induced MT-2 mRNA concentrations were equal to 1, 3, and 14 times that measured in Cdr2C10, respectively, and in each instance they were 90 to 150 times greater than their respective concentrations in uninduced cells. Thus, relative MT gene numbers are closely correlated with both zinc-induced and uninduced MT mRNA levels in Cdr2C10, Cdr30F9, and Cdr200T1, but not in Cdr20F4. Each of the latter two lines possesses structurally altered chromosomes whose breakpoints are near the MT locus. Nonetheless, the ratio of the levels of MT-1 to MT-2 mRNAs was constant in each of the four cell lines, including Cdr20F4. These results demonstrate that MT-1 and MT-2 mRNAs are induced coordinately in each Cdr cell line. Therefore, the coordination of the induction of MT-1 and MT-2 mRNA is independent of MT gene amplification, MT gene rearrangement, and the relative inducibilities of amplified MT genes. However, MT mRNA and protein levels each indicate that MT-1 and MT-2 expression is non-coordinate in uninduced cells. Thus, regulation of MT expression may involve two different mechanisms which are differentially operative in induced and uninduced cells.  相似文献   

13.
14.
15.
We have demonstrated that zinc exposure induces apoptosis in human prostate cancer cells (PC-3) and benign hyperplasia cells (BPH), but not in normal prostate cells (HPR-1). However, the mechanisms underlying the effects of zinc on prostate cancer cell growth and zinc homeostasis remain unclear.To explore the zinc effect on gene expression profiles in normal (HPR-1) and malignant prostate cells (PC-3), we conducted a time course study of Zn treatment with microarray analysis. Microarray data were evaluated and profiled using computational approach for the primary and secondary data analyses. Final analyses were focused on the genes (1) highly sensitive to zinc; (2) associated with zinc homeostasis, i.e., metallothioneins (MTs), solute zinc carriers (ZIPs) and zinc exporters (ZnTs); (3) relevant to several oncogenic pathways. Zinc-mediated mRNA levels of MT isotypes were further validated by semi-quantitative RT-PCR.Results showed that zinc effect on genome-wide expression patterns was cell-type specific, and zinc appeared to have mainly down-regulatory effects on thousands of genes (1953 in HPR-1; 3534 in PC-3) with a threshold of ±2.5-fold, while fewer genes were up-regulated (872 in HPR-1; 571 in PC-3). The patterns of zinc effect on functional MT genes' expression provided evidence for the cell type-dependent zinc accumulation and zinc-induced apoptosis in prostate cells. In PC-3 cells, zinc significantly up-regulated the expression of MT-1 isotypes MT-1J and MT-1M, denoted previously as “nonfunctional” MT genes, and now a depictive molecular structure of MT-1J was proposed. Examination of genes involved in oncogenic pathways indicated that certain genes, e.g., Fos, Akt1, Jak3 and PI3K, were highly regulated by zinc with cell-type specificity.This work provided an extensive database on zinc-related prostate cancer research. The strategy of data analysis was devoted to finding genes highly sensitive to Zn, and the genes associated with zinc accumulation and zinc-induced apoptosis. The results indicate that zinc regulation of gene expression is cell-type specific, and MT genes play important roles in prostate malignancy.  相似文献   

16.
17.
Metallothionein gene regulation in the preimplantation rabbit blastocyst   总被引:4,自引:0,他引:4  
Expression of metallothionein (MT) genes in the preimplantation rabbit blastocyst was analysed by determination of the levels of MT mRNA and relative rates of MT synthesis. MT was found to be constitutively expressed at low levels in the blastocyst. Exposure of the day-6 blastocyst to zinc ions in vitro rapidly increased the level of MT gene expression in a dose-dependent manner, with a ten-fold induction in the relative rate of synthesis at 400 microM-Zn2+. Ion-exchange chromatography of pulse-labelled blastocyst protein showed that the relative rates of synthesis of both MT-I and MT-II were markedly increased following zinc treatment, with MT-I being the predominant isometallothionein. Zinc induction of MT synthesis in the blastocyst was also detected on day 4 of gestation just after the morula-to-blastocyst transition. In contrast to the zinc effects on MT, in vitro exposure to 10 microM-Cd2+ resulted in a large induction of MT mRNA but only a modest increase in the relative rate of MT synthesis. Cadmium was found to be toxic to the day-6 blastocyst, and 10 microM-Cd2+ induced an acute stress response as indicated by a dramatic induction of heat-shock protein (HSP-70) gene expression.  相似文献   

18.
Metallothionein (MT), a low molecular weight metal-binding protein, has been related to zinc and copper metabolism, the acute-phase response, and cellular proliferation. In this study, we investigated changes in zinc metabolism and MT gene expression occurring in tissue damage and repair during wound healing in mouse skin. Northern blot analysis revealed that a significant increase of MT mRNA was observed in the liver for 18 h after wounding, and serum zinc downfall and hepatic zinc uptake were observed. In situ hybridization analysis showed that no significant expression of MT mRNA was detected within the first 9 h after wounding. However, it was expressed restrictively in the proliferating epidermis of the wound margin after 12 h. Zinc began to accumulate in wounded skin after MT gene expressed. Northern blotting and immunocytochemical staining revealed that MT has been synthesized actively during the growth phase compared with the stationary phase in normal human epidermal keratinocytes in vitro. Intracellular zinc accumulation was observed in the proliferating cells. We concluded that hepatic MT plays an important role as an acute phase protein against host damage, and epidermal MT contributes in the supply of zinc to wounded tissue and activates proliferation for the regeneration of epidermis. Accepted: 2 July 1999  相似文献   

19.
An experiment was conducted to invest effects of chronic cadmium poisoning on Zn, Cu, Fe, Ca, and metallothionein gene expression and protein synthesis in liver and kidney in rats. Forty rats, 6?weeks old, were randomly allocated into two groups. A group was given CdCl(2) (1?mg/KgCd(2+)) by intraperitoneal injection once a day. The other group was treated with normal saline in the same way. Liver and kidney were collected for analysis at the end of the third week. Results showed that Cd exposure increased Cd (P?相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号