首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to elucidate the role of NO and O-2 on enzymatic components of cyclooxygenase (COX) pathway in peritoneal macrophages. Activation of murine peritoneal macrophages by lipopolysaccharides (LPS) resulted in time-dependent production of nitric oxide (NO) and prostaglandin E2 (PGE2). This stimulation was also accompanied by the production of other reactive oxygen species such as superoxide (O-2), and by increased expression of COX-2. Our results provide evidence that O-2 may be involved in the pathways that result in arachidonate release and PGE2 formation by COX-2 in murine peritoneal macrophages stimulated by LPS. However, we were not able to demonstrate that NO participates in the regulation of PG production under our experimental conditions.  相似文献   

2.
Murine macrophages (RAW 264.7) when stimulated with LPS show 90% distribution of cyclooxygenase-2 (COX-2) in the nuclear fraction and approximately 10% in the cytosolic fraction. Further analysis of this cytosolic fraction at 100,000 x g indicates that the COX-2 is distributed both in the 100,000 x g soluble fraction and membrane fraction. Stimulation of RAW 264.7 cells with LPS in the presence of inducible nitric oxide synthase inhibitor L-NMMA at concentrations that inhibit nitrite accumulation by /=85% with higher concentrations of L-NMMA shows 1) up-regulation of PGE2 production, 2) accumulation of COX-2 protein in the 100,000 x g soluble and membrane fractions of the cytosolic fraction, and 3) with no significant effects on the accumulation of COX-2 mRNA. These experiments suggest that low concentrations of nitric oxide (10-15% of the total) attenuate PGE2 production in response to LPS in RAW 264.7 cells. This inhibition is, in part, due to decreased expression of cytosolic COX-2 protein.  相似文献   

3.
Bismuth subgallate (BSG) is used widely in clinics, including Vincent's angina, syphilis, and adenotonsillectomy. This study examined the effects of BSG on nitric oxide (NO) and prostaglandin E2 (PGE2) production in activated RAW 264.7 cells. BSG suppressed production of NO and PGE2 in a dose-dependent manner. BSG could increase TGF-beta1 production, which in turn might promote degradation of iNOS mRNA, thus inhibiting NO production. Additionally, BSG inhibited mPGES protein expression and COX-2 activity in activated RAW 264.7 cells. Exogenous addition of SNP reversed the inhibition effect of PGE2 production by BSG. This behavior indicates that PGE2 inhibition by BSG exerts an indirect effect through NO inhibition.  相似文献   

4.
Concomitant production of nitric oxide and superoxide in human macrophages   总被引:2,自引:0,他引:2  
Many harmful effects of nitric oxide are caused by the reaction of NO with superoxide anion. The present study was carried out to find out the concomitant production of superoxide and to investigate a suitable inhibitor of NO, which is produced by iNOS. THP-1 cells were differentiated into macrophages by PMA and cytokine. Addition of L-NAME showed decrement in superoxide production. Addition of apocynin, aminoguanidine or ONO 1714 brought about a significant reduction in superoxide production. The expressions of p67 and p47(phox) were reduced by the addition of apocynin, aminoguanidine or ONO 1714 whereas xanthine oxidase and cyclooxygenase did not have a major role in superoxide production. The results of the present study show that iNOS and NADPH oxidase play an important role in superoxide release. It suggests that addition of iNOS inhibitor together with apocynin may be more effective in case of therapeutic application in disease conditions like atherosclerosis.  相似文献   

5.
Resident mouse peritoneal macrophages synthesized and released prostaglandins (PGs) when challenged with 12-O-tetradecanoylphorbol 13-acetate (TPA) or 1,2-dioctanoyl-sn-glycerol (DiC8). Both stimuli were found to activate Ca2+/phospholipid-dependent protein kinase C (PKC). 1-(5-Isoquinolinesulphonyl)-2-methylpiperazine ('H-7') and D-sphingosine, known to inhibit PKC by different mechanisms, were able to decrease the PKC activity of macrophages in a dose-dependent manner. Addition of either PKC inhibitor decreased PG synthesis and also the release of arachidonic acid (AA) from phospholipids induced by TPA or DiC8. Simultaneously TPA or DiC8 also decreased incorporation of free AA into membrane phospholipids of macrophages. AA incorporation could be restored, however, by pretreatment with the PKC inhibitors. Our results demonstrate an involvement of PKC in the regulation of PG synthesis in mouse peritoneal macrophages and provide further evidence that reacylation of released fatty acids may be an important regulatory step.  相似文献   

6.
Rat peritoneal macrophages stimulated with lipopolysaccharide (LPS) and Phorbol myristate acetate (PMA) generated increased levels of superoxide anions (O2ú-) by 122% as compared to those stimulated with PMA alone. However, Nitric oxide (NO) synthase inhibitors-n-monomethyl arginine (nMMA) or spermine-HCI lowered the enhanced levels of O2ú- released by LPS treated macrophages. The Superoxide dismutase (SOD) activity in LPS treated macrophages was 51% lower than that observed in resident cells. NO synthase inhibitors prevented the loss of SOD activity in LPS treated cells. Exogenously added SOD during sensitization of cells with LPS also inactivated the enzyme. This inactivation of SOD is inhibited by Nitric oxide synthase inhibitors. PMA alone did not affect SOD activity. NO synthase inhibitors also did not affect PMA activated superoxide anion generation in macrophages. These studies indicate that nitric oxide generated by LPS treated macrophages can inactivate SOD activity.  相似文献   

7.
Groups of rats were pretreated with 4-week diets containing 12.5% corn oil or linseed oil. At the end of this period peritoneal macrophages were elicited and isolated. These cells were used for binding experiments with 3H-PGE2 and for estimation of prostaglandin-stimulated cAMP production. Specific binding of 3H-PGE2 was saturable, reversible, protein-dependent, and correlated with stimulation of cAMP production, indicating that specific binding referred to receptor binding. PGE1 and PGI2 were far less effective than PGE2 in competition of binding with 3H-PGE2, indicating receptor selectivity for PGE2. Scatchard analysis of the specific binding data revealed a high affinity component (Kd 17 nM) and low affinity component. The total number of high- and low-affinity binding sites, respective Kd values, and PG stimulation of cAMP production of cells from rats fed the linseed oil diet were comparable to controls. The corn oil diet, however, resulted in a twofold increase in total number of high- and low-affinity binding sites, while respective Kd values were unchanged. This enhancement of binding capacity could be explained by an increased density of binding sites on the cells, and may itself be responsible for the increased sensitivity of the macrophages in this diet group for PG-stimulated cAMP production. The data suggest a regulatory mechanism at the receptor level and are discussed in terms of possible altered bioavailability of arachidonic acid-derived PGE2.  相似文献   

8.
Catecholamines are elaborated in stress responses to mediate vasoconstriction, and elevate systemic vascular resistance and blood pressure. They are elaborated in disorders such as sepsis, cocaine abuse, and cardiovascular disease. The aim of the study was to determine whether catecholamines affect nitric oxide (NO) production, as NO is a vasodilator and counteracts the harmful effects of catecholamines. RAW264.7 macrophage cells were cultured with lipopolysaccharide (LPS)+/-epinephrine, norepinephrine, and dopamine at 5x10(-6)M concentrations for 24h. Supernatants were harvested for measuring NO by spectrophotometry using the Greiss reagent and cells were harvested for detecting inducible NO synthase (iNOS) by Western blot. NO production in RAW 264.7 macrophages was increased significantly by addition of LPS (0.5-10ng/ml) in a dose-dependent fashion. The NO production induced by LPS was further enhanced by epinephrine and norepinephrine, and to a lesser extent by dopamine. These increases in NO correlated with expression of iNOS protein in these cells. The enhancing effect of iNOS synthesis by epinephrine and norepinephrine on LPS-induced macrophages was down regulated by beta-adrenoceptor antagonist, propranolol, and dexamethasone. The results suggest that catecholamines have a synergic effect on LPS in induction of iNOS synthesis and NO production, and this may mediate some of the vascular effects of infection. These data support a novel role for catecholamines in disorders such as septic shock and cocaine use, and indicate that beta-adrenoceptor antagonists and glucocorticoids may be used therapeutically for modulation of the catecholamine-NO axis in disease states.  相似文献   

9.
Tectorigenin and tectoridin, isolated from the rhizomes of Korean Belamcanda chinensis (Iridaceae) which are used as Chinese traditional medicine for the treatment of inflammation, suppressed prostaglandin E2 production by rat peritoneal macrophages stimulated by the protein kinase C activator, 12-O-tetradecanoylphorbol 13-acetate (TPA), or the endomembrane Ca2+-ATPase inhibitor, thapsigargin. Tectorigenin inhibited prostaglandin E2 production more potently than tectoridin. Neither compound inhibited the release of radioactivity from [3H]arachidonic acid-labeled macrophages stimulated by TPA or thapsigargin. In addition, activities of isolated cyclooxygenase (COX)-1 and COX-2 were not inhibited by the two compounds. Western blot analysis revealed that the induction of COX-2 by TPA or thapsigargin was inhibited by the two compounds in parallel with the inhibition of prostaglandin E2 production. These findings suggest that one of the mechanisms of the anti-inflammatory activities of the rhizomes of Belamcanda chinensis is the inhibition of prostaglandin E2 production by tectorigenin and tectoridin due to the inhibition of the induction of COX-2 in the inflammatory cells.  相似文献   

10.
S K Biswas  A Sodhi  S Paul 《Nitric oxide》2001,5(6):566-579
Monocyte chemoattractant protein 1 (MCP-1) is an important mediator of monocyte/macrophage recruitment and activation at the sites of chronic inflammation and neoplasia. In the current study, the role of nitrogen monoxide (NO) in the activation of murine peritoneal macrophages to the tumoricidal state in response to in vitro MCP-1 treatment and the regulatory mechanisms involved therein were investigated. Murine peritoneal macrophages upon activation with MCP-1 showed a dose- and time-dependent production of NO together with increased tumoricidal activity against P815 mastocytoma cells. N-monomethyl-l-arginine (L-NMMA), a specific inhibitor of the l-arginine pathway, inhibited the MCP-1-induced NO secretion and generation of macrophage-mediated tumoricidal activity against P815 (NO-sensitive, TNF-resistant) cells but not the L929 (TNF-sensitive, NO-resistant) cells. These results indicated l-arginine-dependent production of NO to be one of the effector mechanisms contributing to the tumoricidal activity of MCP-1-treated macrophages. Supporting this fact, expression of iNOS mRNA was also detected in the murine peritoneal macrophages upon treatment with MCP-1. Investigating the signal transduction pathway responsible for the NO production by the MCP-1-activated murine peritoneal macrophages, it was observed that the pharmacological inhibitors wortmannin, H-7 (1-(5-isoquinoline sulfonyl)-2-methyl piperazine dihydrochloride), and PD98059 blocked the MCP-1-induced NO production, suggesting the probable involvement of phosphoinositol-3-kinase, protein kinase C, and p42/44 MAPkinases in the above process. Various modulators of calcium and calmodulin (CaM) such as EGTA, nifedipine, TMB-8 (3,4,5-trimethoxybenzoic acid-8-(diethylamino)octyl ester), A23187, and W-7 (N-(6-aminohexyl)-5-chloro-1-napthalenesulfonamide) were also found to modulate the in vitro macrophage NO release in response to MCP-1. This observation indicated the regulatory role of calcium/CaM in the process of MCP-1-induced macrophage NO production. Similarly, the role of serine/threonine and protein tyrosine phosphatases in the above pathway was suggested using the specific inhibitors of these phosphatases, okadaic acid and sodium orthovanadate.  相似文献   

11.
Using mouse peritoneal macrophages, we have examined the mechanism by which, Smilacis rhizoma (SR) regulates nitric oxide (NO) production. When SR was used in combination with recombinant interferon-gamma (rIFN-gamma), there was a marked cooperative induction of NO production. However, SR had no effect on NO production by itself. The increased production of NO from rIFN-gamma plus SR-stimulated cells was almost completely inhibited by pre-treatment with pyrrolidine dithiocarbamate (PDTC), an inhibitor of nuclear factor kappa B (NF-kappaB). Furthermore, treatment of peritoneal macrophages with rIFN-gamma plus SR caused a significant increase in tumor necrosis factor-alpha (TNF-alpha) production. PDTC also decreased the effect of SR on TNF-alpha production significantly. These findings demonstrate that SR increases the production of NO and TNF-alpha by rIFN-gamma-primed macrophages and suggest that NF-kappaB plays a critical role in mediating these effects of SR.  相似文献   

12.
Yogesh Dahiya 《FEBS letters》2010,584(19):4227-4232
Many extracellular stimuli, e.g. microbial products, cytokines etc., result in the expression of inducible nitric oxide synthase (iNOS) in macrophages. However, it is not known whether expression of the iNOS gene in response to microbial products is a primary response of macrophages, or is the result of paracrine/autocrine signalling induced by endogenous biomolecules that are synthesised as a result of host cell-microbe interaction. In this paper we demonstrate that iNOS expression in mouse peritoneal macrophages in response to bacterial peptidoglycan (PGN) is a secondary effect requiring autocrine signalling of endogenously produced prostaglandin E2, and that PGN stimulation is mandatory, but not sufficient in itself, for induction of iNOS expression.  相似文献   

13.
Indomethacin (0.14-.5 mM concentration) inhibits nitric oxide production in murine peritoneal macrophages. This was evidenced by measuring both nitrite production or 14C-L-citrulline formation. The inhibition was caused by the diminution of de novo inducible nitric oxide synthase production as demonstrated by Western blotting experiment. The effect of indomethacin after 4 h treatment was irreversible. NO synthase and arginase activities and the uptake of arginine were not directly affected by the drug. Indomethacin also decreased uridine incorporation in macrophages. The effect of indomethacin on the induction of other enzymes (i.e. arginase) was weaker.  相似文献   

14.
Using mouse peritoneal macrophages, we have examined the mechanism by which Leonurus sibiricus (LS) regulates nitric oxide (NO) production. When LS was used in combination with recombinant interferon-gamma (rIFN-gamma), there was a marked cooperative induction of NO production; however, LS by itself had no effect on NO production. The increased production of NO from rIFN-gamma plus LS-stimulated cells was almost completely inhibited by pretreatment with pyrrolidine dithiocarbamate (PDTC), an inhibitor of nuclear factor kappaB. Furthermore, treatment of peritoneal macrophages with rIFN-gamma plus LS caused a significant increase in tumor necrosis factor-alpha (TNF-alpha) production. PDTC also decreased the effect of LS on TNF-alpha production significantly. Because NO and TNF-alpha play an important role in immune function and host defense, LS treatment could modulate several aspects of host defense mechanisms as a result of stimulation of the inducible nitric oxide synthase.  相似文献   

15.
Macrophages isolated from the peritoneal cavity of untreated mice and maintained in tissue culture synthesize and release prostaglandins when challenged with zymosan. These cells also selectively release lysosomal acid hydrolases under the same conditions. The major prostaglandins released into the media are found to be prostaglandins E1, E2 and 6-oxoprostaglandin F1a, whereas prostaglandin F2a is not detected. Macrophages isolated from mice that have received an intraperitoneal injection of thioglycollate broth are far less responsive to zymosan challenge. These cells require 300 microgram of zymosan to synthesize and release one-third the amount of prostaglandins released from non-stimulated macrophages exposed to 50 microgram of zymosan. In addition, thioglycollate-stimulated macrophages release less than 10% of their lysosomal acid hydrolases when exposed to 300 microgram of zymosan whereas non-stimulated cells release approximately 50% of these enzymes after treatment with 50 microgram of zymosan. The zymosan-stimulated synthesis and release of prostaglandins are completely inhibited by indomethacin, whereas the increased selective release of lysosomal acid hydrolases is not affected. Macrophages, unlike fibroblasts, do not synthesize and release prostaglandins when exposed to serum or to bradykinin.  相似文献   

16.
Smooth muscle myometrial cells isolated by an enzymatic method from estrogenized rats were used after 7-10 days of culture. They were incubated for 24 h with two distinct competitive nitric oxide (NO) inhibitors: NG-monomethyl-L-arginine (L-NMMA: 300 microM) and L-nitro-arginine methylester (L-NAME: 600 microM, 5 mM and 10 mM). Afterwards, the supernatants were separated in order to measure nitrite production and prostaglandin PGE synthesis. In the present report, we demonstrate that myometrial cells from estrogenized rats are able to produce NO, since all the inhibitors significantly decrease the production of nitrites in the culture media. Furthermore, we report that both inhibitors inhibited PGE synthesis by myometrial cells. We also used a donor of NO in the incubation medium for 24 h, sodium nitroprusside (NP), obtaining an strong (P< 0.001) increase in both nitrite and PGE production. We conclude that myometrial cells can produce NO and that one possible role of the NO synthetized by this cells may be the modulation of PGE production.  相似文献   

17.
Reactive oxygen species and nitric oxide (NO) are capable of both mediating redox-sensitive signal transduction and eliciting cell injury. The interplay between these messengers is quite complex, and intersection of their signaling pathways as well as regulation of their fluxes requires tight control. In this regard, peroxiredoxins (Prxs), a recently identified family of six thiol peroxidases, are central because they reduce H2O2, organic peroxides, and peroxynitrite. Here we provide evidence that endogenously produced NO participates in protection of murine primary macrophages against oxidative and nitrosative stress by inducing Prx I and VI expression at mRNA and protein levels. We also show that NO prevented the sulfinylation-dependent inactivation of 2-Cys Prxs, a reversible overoxidation that controls H2O2 signaling. In addition, studies using macrophages from sulfiredoxin (Srx)-deficient mice indicated that regeneration of 2-Cys Prxs to the active form was dependent on Srx. Last, we show that NO increased Srx expression and hastened Srx-dependent recovery of 2-Cys Prxs. We therefore propose that modulation by NO of Prx expression and redox state, as well as up-regulation of Srx expression, constitutes a novel pathway that contributes to antioxidant response and control of H2O2-mediated signal transduction in mammals.  相似文献   

18.
This study investigated the role of glutathione peroxidase-1 (GPX1) in protein oxidation in peritoneal macrophages. Macrophages isolated from both wild-type (WT) and GPX1 knockout (KO) mice were activated by lipopolysaccharide (LPS, 1 microg/ml) and interferon-gamma (IFN, 10 U/ml for 24 or 48 h in the presence or absence of 1 microM diquat (DQ), 250 microM aminoguanidine (AG, an inhibitor of inducible nitric oxide synthase), and (or) 100 microM diethyldithiocarbamate (DETC, an inhibitor of Cu,Zn-SOD). In the KO macrophages, there was no protein band detected by Western blot with anti-GPX1 antibody and 98% reduction in total GPX activity compared with WT cells. Nitric oxide (NO) synthesis was greatly enhanced after 24 h by GPX1 knockout and DQ, but inhibited by AG or DETC. Protein carbonyl formation in total cell extract was clearly associated with NO synthesis as higher levels of protein carbonyl were detected in activated KO than WT macrophages, and DQ enhanced slightly while AG or DETC virtually blocked its formation. A similarly marginal effect of GPX1 KO was observed on protein nitration. The LPS/IFN/DQ-induced DNA fragmentation was blocked by AG, but not by DETC. Cell viability at 48 h was decreased by the LPS/IFN activation and further reduced by the addition of DQ, but restored by AG. In conclusion, GPX1 affects the NO production in activated peritoneal macrophages and protects these cells against NO-associated protein oxidation.  相似文献   

19.
Microsomal prostaglandin E synthase (mPGES)-1, which is dramatically induced in macrophages by inflammatory stimuli such as lipopolysaccharide (LPS), catalyzes the conversion of cyclooxygenase-2 (COX-2) reaction product prostaglandin H(2) (PGH(2)) into prostaglandin E(2) (PGE(2)). The mPGES-1-derived PGE(2) is thought to help regulate inflammatory responses. On the other hand, excess PGE(2) derived from mPGES-1 contributes to the development of inflammatory diseases such as arthritis and inflammatory pain. Here, we examined the effects of liver X receptor (LXR) ligands on LPS-induced mPGES-1 expression in murine peritoneal macrophages. The LXR ligands 22(R)-hydroxycholesterol (22R-HC) and T0901317 reduced LPS-induced expression of mPGES-1 mRNA and mPGES-1 protein as well as that of COX-2 protein. However, LXR ligands did not influence the expression of microsomal PGES-2 (mPGES-2) or cytosolic PGES (cPGES) protein. Consequently, LXR ligands suppressed the production of PGE(2) in macrophages. These results suggest that LXR ligands diminish PGE(2) production by inhibiting the LPS-induced gene expression of the COX-2-mPGES-1 axis in LPS-activated macrophages.  相似文献   

20.
Prostaglandin E2 (PGE2) is the major cyclooxygenase metabolite in macrophages with complex proinflammatory and immunoregulatory properties. In the present study, we have compared the modulatory role of PGE2/cAMP-dependent signaling on induced nitric oxide (NO) production in two murine macrophages, J774 and RAW 264.7. With no effect on NO release by itself, PGE2 co-addition with lipopolysaccharide (LPS) resulted in a concentration-dependent enhancement in NO release and inducible NO synthase induction in J774, but not in RAW 264.7, macrophages. The potentiation effect of PGE2 in J774 cells was still seen when applied within 9 h after LPS treatment. Whereas RAW 264.7 macrophages release PGE2 with greater extent than J774 macrophages in response to LPS, indomethacin and NS-398, upon abolishing LPS-induced PGE2 release, caused a more obvious inhibition of NO release from J774 than RAW 264.7 cells. Thus, we suggest a higher positive modulatory role of PGE2--either endogenous or exogenous--on NO formation in J774 cells. Supporting these findings, exogenous PGE2 triggers cAMP formation in J774 cells with higher potency and efficacy. Of interest, dBcAMP also elicits higher sensitivity in potentiating NO release in J774 cells. We conclude that the opposite effect of PGE2/cAMP signaling on macrophage NO induction depends on its signaling efficacy and might be associated with the difference in endogenous PGE2 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号