首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In chronically decentralized in situ middle cervical ganglia of 10 dogs, 279 spontaneously active neurons were identified. One hundred and ten (39%) of these were spontaneously active during specific phases of the cardiac cycle, primarily during systole, and the activity of nearly half of these cardiovascular-related neurons was modified by gentle mechanical distortion of the vena cavae, heart, or thoracic aorta. Another 60 (22%) of the identified neurons had respiratory--related activity, but the activity of only 2 of them was modified by gentle mechanical distortion of pulmonary tissue. Twenty-nine of the other 109 identified neurons were activated by gentle mechanical distortion of localized regions of the neck, ventral thoracic wall, or ventral abdominal wall. Because of the presence of activity in the chronically decentralized middle cervical ganglion, these data infer that some afferent neurons are located in the thoracic autonomic nervous system. Some middle cervical ganglion neurons were activated by single 1-4 ms stimuli delivered to a nerve connected to the ganglion. During repetitive stimuli delivered at 0.5 Hz none were activated after a fixed latency following the stimuli. Many more neurons were activated by 10- to 200-ms trains of 1-4 ms stimuli delivered with interstimulus intervals of 1-10 ms. The majority of these neurons could still be activated electrically after the administration of cholinergic and adrenergic pharmacological blocking agents.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Groups of neurons synchronize their activities during a variety of conditions, but whether this synchronization is functionally relevant has remained a matter of debate. Here, we survey recent findings showing that synchronization is dynamically modulated during cognitive processes. Based on this evidence, synchronization appears to reflect a general mechanism that renders interactions among selective subsets of neurons effective. We show that neuronal synchronization predicts which sensory input is processed and how efficient it is transmitted to postsynaptic target neurons during sensory-motor integration. Four lines of evidence are presented supporting the hypothesis that rhythmic neuronal synchronization, also called neuronal coherence, underlies effective and selective neuronal communication. (1) Findings from intracellular recordings strongly suggest that postsynaptic neurons are particularly sensitive to synaptic input that is synchronized in the gamma-frequency (30-90 Hz) range. (2) Neurophysiological studies in awake animals revealed enhanced rhythmic synchronization among neurons encoding task-relevant information. (3) The trial-by-trial variation in the precision of neuronal synchronization predicts part of the trial-by-trial variation in the speed of visuo-motor integration. (4) The planning and selection of specific movements can be predicted by the strength of coherent oscillations among local neuronal groups in frontal and parietal cortex. Thus, neuronal coherence appears as a neuronal substrate of an effective neuronal communication structure that dynamically links neurons into functional groups processing task-relevant information and selecting appropriate actions during attention and effective sensory-motor integration.  相似文献   

3.
The rod photoreceptor phosphodiesterase (PDE) is unique among all known vertebrate PDE families for several reasons. It is a catalytic heterodimer (alphabeta); it is directly activated by a G-protein, transducin; and its active sites are regulated by inhibitory gamma subunits. Rod PDE binds cGMP at two noncatalytic sites on the alphabeta dimer, but their function is unclear. We show that transducin activation of frog rod PDE introduces functional heterogeneity to both the noncatalytic and catalytic sites. Upon PDE activation, one noncatalytic site is converted from a high affinity to low affinity state, whereas the second binding site undergoes modest decreases in binding. Addition of gamma to transducin-activated PDE can restore high affinity binding as well as reducing cGMP exchange kinetics at both sites. A strong correlation exists between cGMP binding and gamma binding to activated PDE; dissociation of bound cGMP accompanies gamma dissociation from PDE, whereas addition of either cGMP or gamma to alphabeta dimers can restore high affinity binding of the other molecule. At the active site, transducin can activate PDE to about one-half the turnover number for catalytic alphabeta dimers completely lacking bound gamma subunit. These results suggest a mechanism in which transducin interacts primarily with one PDE catalytic subunit, releasing its full catalytic activity as well as inducing rapid cGMP dissociation from one noncatalytic site. The state of occupancy of the noncatalytic sites on PDE determines whether gamma remains bound to activated PDE or dissociates from the holoenzyme, and may be relevant to light adaptation in photoreceptor cells.  相似文献   

4.
Spontaneous activity of 226 neurons was recorded from in situ mediastinal ganglia in 10 dogs. Forty-two percent of these were active during specific phases of the cardiac cycle, primarily during systole. Cardiovascular-related activity occurred when systolic pressure was between approximately 70 and 185 mmHg (1 mmHg = 133.3 Pa) whether the pressure was altered by positive inotropic pharmacological agents or cross clamping of the aorta. Twenty percent of the identified neurons displayed respiratory-related activity which occurred during positive pressure inflation or deflation. Thirty-eight percent of the identified neurons displayed bursts of activity or sporadic activity. The activity of 17% of the identified neurons was altered by gentle mechanical distortion of localized regions of the neck, left elbow, ventral thoracic wall, ventral abdominal wall, superior vena cava, right ventricle, or aorta. In the majority of instances cardiovascular- or respiratory-related activity persisted following acute decentralization, indicating that neurons in mediastinal ganglia can function in the absence of influences of central nervous system neurons. Five percent of the identified neurons were activated by single 1-4 ms, 10-20 V stimuli delivered at 0.5 Hz to the nerves connected with either the cranial or the caudal poles of the mediastinal ganglion or the ansae. These neurons were activated after a fixed latency when 0.5 Hz was used and in most instances when 10 Hz was used. These data indicate that 5% or less of the neurons identified projected axons out of the mediastinal ganglia investigated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The binding of cGMP to the noncatalytic sites on two isoforms of the phosphodiesterase (PDE) from mammalian rod outer segments has been characterized to evaluate their role in regulating PDE during phototransduction. Nonactivated, membrane-associated PDE (PDE-M, alpha beta gamma2) has one exchangeable site for cGMP binding; endogenous cGMP remains nonexchangeable at the second site. Non-activated, soluble PDE (PDE-S, alpha beta gamma2 delta) can release and bind cGMP at both noncatalytic sites; the delta subunit is likely responsible for this difference in cGMP exchange rates. Removal of the delta and/or gamma subunits yields a catalytic alphabeta dimer with identical catalytic and binding properties for both PDE-M and PDE-S as follows: high affinity cGMP binding is abolished at one site (KD >1 microM); cGMP binding affinity at the second site (KD approximately 60 nM) is reduced 3-4-fold compared with the nonactivated enzyme; the kinetics of cGMP exchange to activated PDE-M and PDE-S are accelerated to similar extents. The properties of nonactivated PDE can be restored upon addition of gamma subunit. Occupancy of the noncatalytic sites by cGMP may modulate the interaction of the gamma subunit with the alphabeta dimer and thereby regulate cytoplasmic cGMP concentration and the lifetime of activated PDE during visual transduction in photoreceptor cells.  相似文献   

6.
Spinal motoneurones receive thousands of presynaptic excitatory and inhibitory synaptic contacts distributed throughout their dendritic trees. Despite this extensive convergence, there have been very few studies of how synaptic inputs interact in mammalian motoneurones when they are activated concurrently. In the experiments reported here, we measured the effective synaptic currents and the changes in firing rate evoked in cat spinal motoneurones by concurrent repetitive activation of two separate sets of presynaptic neurons. We compared these effects to those predicted by a linear sum of the effects produced by activating each set of presynaptic neurons separately. We generally found that when two inputs were activated concurrently, both the effective synaptic currents and the synaptically-evoked changes in firing rate they produced in motoneurones were generally linear, or slightly less than the linear sum of the effects produced by activating each input alone. The results suggest that the spatial distribution synaptic terminals on the dendritic trees of motoneurones may help isolate synapses from one another, minimizing non-linear interactions.  相似文献   

7.
Synaptic responses (postsynaptic potentials and action potentials) were evoked in mesencephalic decerebellated cats by stimulating pontine bulbar locomotor and inhibitory sites (LS and IS, respectively) with a current of not more than 20 µA in "medial" and "lateral" neurons of the medulla. Some neurons even produced a response to presentation of single (actually low — 2–5 Hz — frequency) stimuli. The remaining cells responded to stimulation at a steady rate of 30–60 Hz only. Both groups of medial neurons were more receptive to input from LS. Lateral neurons responding to even single stimuli reacted more commonly to input from LS and those responding to steady stimulation only to input from IS. Many neurons with background activity (whether lateral or medial) produced no stimulus-bound response, but rhythmic stimulation either intensified or inhibited such activity. This response occurs most commonly with LS stimulation. Partial redistribution of target neurons in step with increasing rate of presynaptic input may play a major part in control of motor activity.Institute for Research into Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 2, pp. 257–266, March–April, 1990.  相似文献   

8.
Yu J  Ferster D 《Neuron》2010,68(6):1187-1201
When the primary visual cortex (V1) is activated by sensory stimulation, what is the temporal correlation between the synaptic inputs to nearby neurons? This question underlies the origin of correlated activity, the mechanism of how visually evoked activity emerges and propagates in cortical circuits, and the relationship between spontaneous and evoked activity. Here, we have recorded membrane potential from pairs of V1 neurons in anesthetized cats and found that visual stimulation suppressed low-frequency membrane potential synchrony (0-10 Hz), and often increased synchrony at high frequencies (20-80 Hz). The increase in high-frequency synchrony occurred for neurons with similar orientation preferences and for neurons with different orientation preferences and occurred for a wide range of stimulus orientations. Thus, while only a subset of neurons spike in response to visual stimulation, a far larger proportion of the circuit is correlated with spiking activity through subthreshold, high-frequency synchronous activity that crosses functional domains.  相似文献   

9.
The mouse is emerging as an important model for understanding how sensory neocortex extracts cues to guide behavior, yet little is known about how these cues are processed beyond primary cortical areas. Here, we used two-photon calcium imaging in awake mice to compare visual responses in primary visual cortex (V1) and in two downstream target areas, AL and PM. Neighboring V1 neurons had diverse stimulus preferences spanning five octaves in spatial and temporal frequency. By contrast, AL and PM neurons responded best to distinct ranges of stimulus parameters. Most strikingly, AL neurons preferred fast-moving stimuli while PM neurons preferred slow-moving stimuli. By contrast, neurons in V1, AL, and PM demonstrated similar selectivity for stimulus orientation but not for stimulus direction. Based on these findings, we predict that area AL helps guide behaviors involving fast-moving stimuli (e.g., optic flow), while area PM?helps guide behaviors involving slow-moving objects.  相似文献   

10.
11.
Bulbar locomotor and inhibitory sites were located in the pons of mesencephalic decerebellate cats. Rhythmic stimulation of locomotor sites through microelectrodes at the rate of 60 Hz elicited stepping movements in the forelimbs which were halted when the inhibitory sites were rhythmically stimulated. Neuronal response was elicited by single or paired stimulation of locomotor sites at the rate of 1.5 Hz or by applying a series of 2–4 stimuli spaced 2 msec apart to the inhibitory site. Medial neurons generated synaptic responses (postsynaptic potentials or action potentials) to stimulation of the inhibitory site twice as frequently as when the locomotor site was stimulated. Responses in lateral neurons, however, occurred twice as frequently to stimulation of the locomotor site, while IPSP were only observed half as often as EPSP in neurons of both groups. In neurons excited by stimulation of the locomotor site, stimulation of the inhibitory site did not normally produce IPSP. Possible mechanisms underlying the halt of locomotion occurring in response to stimulation of the inhibitory site are discussed.Information Transmission Institute, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 525–533, July–August, 1986.  相似文献   

12.
Changes in visual receptive fields with microstimulation of frontal cortex   总被引:7,自引:0,他引:7  
The influence of attention on visual cortical neurons has been described in terms of its effect on the structure of receptive fields (RFs), where multiple stimuli compete to drive neural responses and ultimately behavior. We stimulated the frontal eye field (FEF) of passively fixating monkeys and produced changes in V4 responses similar to known effects of voluntary attention. Subthreshold FEF stimulation enhanced visual responses at particular locations within the RF and altered the interaction between pairs of RF stimuli to favor those aligned with the activated FEF site. Thus, we could influence which stimulus drove the responses of individual V4 neurons. These results suggest that spatial signals involved in saccade preparation are used to covertly select among multiple stimuli appearing within the RFs of visual cortical neurons.  相似文献   

13.
The cockroach Periplaneta americana is an evolutionary basal neopteran insect, equipped with one of the largest and most elaborate mushroom bodies among insects. Using intracellular recording and staining in the protocerebrum, we discovered two new types of neurons that receive direct input from the optic lobe in addition to the neuron previously reported. These neurons have dendritic processes in the optic lobe, projection sites in the optic tracts, and send axonal terminals almost exclusively to the innermost layer of the MB calyces (input site of MB). Their responses were excitatory to visual but inhibitory to olfactory stimuli, and weak excitation occurred in response to mechanosensory stimuli to cerci. In contrast, interneurons with dendrites mainly in the antennal lobe projection sites send axon terminals to the middle to outer layers of the calyces. These were excited by various olfactory stimuli and mechanosensory stimuli to the antenna. These results suggest that there is general modality-specific terminal segregation in the MB calyces and that this is an early event in insect evolution. Possible postsynaptic and presynaptic elements of these neurons are discussed.  相似文献   

14.
Gain modulation by nicotine in macaque v1   总被引:4,自引:0,他引:4  
Disney AA  Aoki C  Hawken MJ 《Neuron》2007,56(4):701-713
Acetylcholine is a ubiquitous cortical neuromodulator implicated in cognition. In order to understand the potential for acetylcholine to play a role in visual attention, we studied nicotinic acetylcholine receptor (nAChR) localization and function in area V1 of the macaque. We found nAChRs presynaptically at thalamic synapses onto excitatory, but not inhibitory, neurons in the primary thalamorecipient layer 4c. Furthermore, consistent with the release enhancement suggested by this localization, we discovered that nicotine increases responsiveness and lowers contrast threshold in layer 4c neurons. We also found that nAChRs are expressed by GABAergic interneurons in V1 but rarely by pyramidal neurons, and that nicotine suppresses visual responses outside layer 4c. All sensory systems incorporate gain control mechanisms, or processes which dynamically alter input/output relationships. We demonstrate that at the site of thalamic input to visual cortex, the effect of this nAChR-mediated gain is an enhancement of the detection of visual stimuli.  相似文献   

15.
We describe here the vanadate-dependent photocleavage of the gamma heavy chain from the Chlamydomonas outer arm dynein and the pathways by which this molecule is degraded by endoproteases. UV irradiation in the presence of ATP, Mg2+, and vanadate cleaves the gamma chain at a single site (termed V1) to yield fragments of Mr 235,000 and 180,000. Irradiation in the presence of vanadate and Mn2+ results in cleavage of the gamma chain at two other sites (termed V2a and V2b) to yield fragment pairs of Mr 215,000/200,000 and 250,000/165,000. The mass of the intact chain is therefore estimated to be 415,000 D. We have located the major tryptic and staphylococcal protease cleavage sites in the gamma chain, determined the origins of the resulting fragments, and identified the regions which contain the epitopes recognized by two different monoclonal antibodies. Both antibodies react with the smaller V1 fragment; the epitope recognized by antibody 25-8 is within 9,000-52,000 D of the original gamma-chain terminus contained in that fragment, whereas that recognized by antibody 12 gamma B is within 16,000 D of the V1 site. The data permit the construction of a linear map showing the structural organization of the polypeptide. The substructure of the gamma chain is similar to that of the alpha and beta chains of the outer arm dynein with regard to polarity as defined by the sites of vanadate-dependent photocleavage, and to that of the beta chain with regard to a highly sensitive protease site located approximately 10,000 D from the original terminus contained in the smaller V1 fragment.  相似文献   

16.
Our previous studies (Boscan P, Kasparov S, and Paton JF. Eur J Neurosci 16: 907-920, 2002) showed that activation of somatic afferents attenuated the baroreceptor reflex via neurokinin type 1 (NK(1)) and GABA(A) receptors within the nucleus of the solitary tract (NTS). The periaqueductal gray matter (PAG) can also depress baroreceptor reflex function and project to the NTS. In the present study, we have tested the possibility that the dorsolateral (dl)-PAG projects to the NTS neurons that also respond to somatic afferent input. In an in situ, arterially perfused, unanesthetized decerebrate rat preparation, somatic afferents (brachial plexus), cervical spinal cord, and dl-PAG were stimulated electrically, whereas NTS neurons were recorded extracellularly. From 45 NTS neurons excited by either brachial plexus or dl-PAG stimulation, 41 received convergence excitatory inputs from both afferents. Onset latency and evoked peak discharge frequency from brachial plexus afferents were 39.4 +/- 4.7 ms and 10.7 +/- 1.1 Hz, whereas this was 43.9 +/- 6.4 ms and 7.9 +/- 1 Hz, respectively, following dl-PAG stimulation. As revealed by using a paired pulse stimulation protocol, monosynaptic connections were found in 9 of 36 neurons tested from both spinal cord and dl-PAG. We tested NK(1)-receptor sensitivity in 38 neurons that received convergent inputs from brachial plexus/PAG. Fifteen neurons were sensitive to selective antagonism of NK(1) receptors. CP-99994, the NK(1) antagonist, failed to alter ongoing firing activity but reduced the evoked peak discharge frequency following stimulation of both brachial plexus (from 12.3 +/- 1.8 to 7.2 +/- 1.3 Hz; P < 0.01) and PAG (from 7.8 +/- 1.5 to 4.5 +/- 1 Hz; P < 0.01). We conclude that 1) somatic brachial and PAG afferents can converge onto single NTS neurons; 2) this convergence occurs via either direct or indirect pathways; and 3) NK(1) receptors are activated by some of these inputs.  相似文献   

17.
Habituation of the siphon withdrawal reflex (SWR) can be evoked by iterative tactile stimuli presented to one of several sites, including the siphon and gill. The SWR evoked at an arbitrary "test" site did not habituate when stimuli were presented at 20-min intervals. However, there was a large decrease in the reflex evoked at the test site when the trial was preceded by 10 repetitive stimuli (interstimuli interval = 30 s) presented to the opposite "habituation" site. Transfer of habituation occurred from gill to siphon stimulation sites, and vice versa. There was a concomitant decrease in the excitatory input evoked in the central siphon motor neurons LDS1 and LDS3. Moreover, transfer of habituation occurred after the abdominal ganglion (central nervous system) was removed. There was little change in the magnitude of the control responses or transfer of habituation after deganglionation. Since transfer of habituation between stimulation sites of the SWR was similar to that reported previously for the gill withdrawal reflex, it was suggested that a common mechanism may underlie the two behaviors.  相似文献   

18.
A population of uncoupled neurons can often be brought close to synchrony by a single strong inhibitory input pulse affecting all neurons equally. This mechanism is thought to underlie some brain rhythms, in particular gamma frequency (30–80 Hz) oscillations in the hippocampus and neocortex. Here we show that synchronization by an inhibitory input pulse often fails for populations of classical Hodgkin–Huxley neurons. Our reasoning suggests that in general, synchronization by inhibitory input pulses can fail when the transition of the target neurons from rest to spiking involves a Hopf bifurcation, especially when inhibition is shunting, not hyperpolarizing. Surprisingly, synchronization is more likely to fail when the inhibitory pulse is stronger or longer-lasting. These findings have potential implications for the question which neurons participate in brain rhythms, in particular in gamma oscillations.  相似文献   

19.
In the motor system, the periodic stimulation of one Ia-afferent input produces reflex muscle contractions at the input frequency. However, we observed that when two Ia monosynaptic reflex-afferent inputs are involved the periodic muscle contractions may occur at a frequency physically not present in the afferent inputs even when these inputs are sub-threshold. How can the muscles respond with such phantom reflex contractions at a frequency physically absent in the sub-threshold Ia-afferent input stimuli? Here we provide an explanation for this phenomenon in the cat spinal cord, that we termed “ghost motor response”. We recorded monosynaptic reflexes in the L7 ventral root, intracellular potentials in the motoneurons, and the associated muscular contractions elicited by stimulation of the lateral and medial gastrocnemius nerves. By stimulating with periodic pulses of sub-threshold intensities and distinct frequencies of 2 and 3 Hz the lateral and medial gastrocnemius nerves, respectively, we observed monosynaptic responses and phantom reflex muscle contractions occurring at the fundamental frequency (1 Hz), which was absent in the input stimuli. Thus we observed a reflex ghost motor response at a frequency not physically present in the inputs. We additionally studied the inharmonic case for sub-threshold stimuli and observed muscular contractions occurring at much lower frequencies, which were also conspicuously absent in the inputs. This is the first experimental evidence of a phantom reflex response in the nervous system. The observed behavior was modeled by numerical simulations of a pool of neurons subjected to two different input pulses.  相似文献   

20.
Summary Motor neurons innervating the dorsal longitudinal muscles of a noctuid moth receive synaptic input activated by auditory stimuli. Each ear of a noctuid moth contains two auditory neurons that are sensitive to ultrasound (Fig. 1). The ears function as bat detectors. Five pairs of large motor neurons and three pairs of small motor neurons found in the pterothoracic ganglia innervate the dorsal longitudinal (depressor) muscles of the mesothorax (Figs. 2 to 5). In non-flying preparations the motor neurons receive no oscillatory synaptic input. Synaptic input to a cell resulting from ultrasonic stimulation is consistent and can be either depolarizing or hyperpolarizing (Figs. 6 to 9). Quiescent neurons only rarely fire a spike in response to auditory inputs. Motor neurons in flying preparations receive oscillatory synaptic drive from the flight pattern generator and usually fire a spike for each wingbeat cycle (Figs. 10 to 12). Ultrasonic stimulation can provide augmented synaptic drive causing a neuron to fire two spikes per wingbeat cycle thus increasing flight vigor (Fig. 11). The same stimulus presented on another occasion can also inhibit spiking in the same motor neuron, but the rhythmic drive remains (Fig. 12). Thus, when the flight oscillator is running auditory stimuli can modulate neuronal responses in different ways depending on some unknown state of the nervous system. Sound intensity is the only stimulus parameter essential for activating the auditory pathway to these motor neurons. The intensity must be sufficient to excite two or three auditory neurons. The significance of these responses in relation to avoidance behavior to bats is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号