首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene targeting in most of human somatic cell lines has been labor-intensive because of low homologous recombination efficiency. The development of an experimental system that permits a facile evaluation of gene targeting efficiency in human somatic cell lines is the first step towards the improvement of this technology and its application to a broad range of cell lines. In this study, we utilized phosphatidylinositol glycan anchor biosynthesis class A (PIGA), a gene essential for the synthesis of glycosylphosphatidyl inositol (GPI) anchors, as a reporter of gene targeting events in human somatic cell lines. Targeted disruption of PIGA was quantitatively detected with FLAER, a reagent that specifically binds to GPI anchors. Using this PIGA-based reporter system, we successfully detected adeno-associated virus (AAV)-mediated gene targeting events both with and without promoter-trap enrichment of gene-targeted cell population. The PIGA-based reporter system was also capable of reproducing previous findings that an AAV-mediated gene targeting achieves a remarkably higher ratio of homologous versus random integration (H/R ratio) of targeting vectors than a plasmid-mediated gene targeting. The PIGA-based system also detected an approximately 2-fold increase in the H/R ratio achieved by a small negative selection cassette introduced at the end of the AAV-based targeting vector with a promoter-trap system. Thus, our PIGA-based system is useful for monitoring AAV-mediated gene targeting and will assist in improving gene targeting technology in human somatic cell lines.  相似文献   

2.
The adeno-associated virus (AAV)-based targeting vector has been one of the tools commonly used for genome modification in human cell lines. It allows for relatively efficient gene targeting associated with 1–4-log higher ratios of homologous-to-random integration of targeting vectors (H/R ratios) than plasmid-based targeting vectors, without actively introducing DNA double-strand breaks. In this study, we sought to improve the efficiency of AAV-mediated gene targeting by introducing a 2A-based promoter-trap system into targeting constructs. We generated three distinct AAV-based targeting vectors carrying 2A for promoter trapping, each targeting a GFP-based reporter module incorporated into the genome, PIGA exon 6 or PIGA intron 5. The absolute gene targeting efficiencies and H/R ratios attained using these vectors were assessed in multiple human cell lines and compared with those attained using targeting vectors carrying internal ribosome entry site (IRES) for promoter trapping. We found that the use of 2A for promoter trapping increased absolute gene targeting efficiencies by 3.4–28-fold and H/R ratios by 2–5-fold compared to values obtained with IRES. In CRISPR-Cas9-assisted gene targeting using plasmid-based targeting vectors, the use of 2A did not enhance the H/R ratios but did upregulate the absolute gene targeting efficiencies compared to the use of IRES.  相似文献   

3.
体细胞基因打靶比较常见的ES细胞打靶是一项新发展的技术。本就如何设计选择打靶载体以及打靶适用的细胞系进行了较为详细的介绍。设计打靶的其他一些相关问题譬如顺序打靶、是否需要纯合DNA、高效的同源重组亦有讨论,从而对体细胞基因打靶特别是ES细胞基因打靶有一比较全面的了解。  相似文献   

4.
Somatic cell-mediated transgenesis is routinely used to transfer exogenous genes to livestock genomes. However, transgene insertion events are essentially random which may lead to transgene silencing or alter animal phenotype because of insertional mutagenesis. To overcome these problems, we established a gene manipulation system in goat somatic cells based on homologous recombination and flp recombinase-mediated site-specific integration. First, we performed gene targeting to introduce an frt-docking site into the α1 (I) procollagen (ColA1) locus in goat somatic cells. Second, the targeted cell clones were rejuvenated by embryo cloning, and the vigorous cells with targeted frt were reestablished. Third, a gene-replacement system was used to introduce an EGFP reporter gene into the targeted ColA1 locus via flp mediated recombination. As a result, the transgenic somatic cell exhibited faithful expression of EGFP gene under control of the CMV promoter. Similarly, other expression vectors can be introduced into the defined site to evaluate gene functions or express valuable proteins. The gene manipulation system described here will be applicable in other livestock somatic cells, and would allow for the rapid generation of livestock with transgene targeted to the defined site.  相似文献   

5.
Among the different approaches used to define the function of a protein of interest, alteration and/or deletion of its encoding gene is the most direct strategy. Homologous recombination between the chromosomal gene locus and an appropriately designed targeting vector results in an alteration or knockout of the gene of interest. Homologous recombination is easily performed in yeast or in murine embryonic stem cells, but is cumbersome in more differentiated and diploid somatic cell lines. Here we describe an efficient method for targeting both alleles of a complex human gene locus in DG75 cells, a cell line of lymphoid origin. The experimental approach included a conditional knockout strategy with three genotypic markers, which greatly facilitated the generation and phenotypic identification of targeted recombinant cells. The vector was designed such that it could be reused for two consecutive rounds of recombination to target both alleles. The human DG75 cell line appears similar to the chicken DT40 pre B-cell line, which supports efficient homologous recombination. Therefore, the DG75 cell line is a favorable addition to the limited number of cell lines amenable to gene targeting and should prove useful for studying gene function through targeted gene alteration or deletion in human somatic cells.  相似文献   

6.
An accurate visual reporter system to assess homology-directed repair (HDR) is a key prerequisite for evaluating the efficiency of Cas9-mediated precise gene editing. Herein, we tested the utility of the widespread promoterless EGFP reporter to assess the efficiency of CRISPR/Cas9-mediated homologous recombination by fluorescence expression. We firstly established a promoterless EGFP reporter donor targeting the porcine GAPDH locus to study CRISPR/Cas9-mediated homologous recombination in porcine cells. Curiously, EGFP was expressed at unexpectedly high levels from the promoterless donor in porcine cells, with or without Cas9/sgRNA. Even higher EGFP expression was detected in human cells and those of other species when the porcine donor was transfected alone. Therefore, EGFP could be expressed at certain level in various cells transfected with the promoterless EGFP reporter alone, making it a low-resolution reporter for measuring Cas9-mediated HDR events. In summary, the widespread promoterless EGFP reporter could not be an ideal measurement for HDR screening and there is an urgent need to develop a more reliable, high-resolution HDR screening system to better explore strategies of increasing the efficiency of Cas9-mediated HDR in mammalian cells.  相似文献   

7.
逆转录病毒表达系统是基因治疗研究和RNA干扰技术广泛采用的外源基因表达系统。文中以增强型绿色荧光蛋白 (EGFP) 基因的表达水平和稳定性为指标,比较逆转录病毒表达载体pQCXIN和pcDNA3.1(+) 表达质粒介导的外源基因在HEK293细胞和CHO-K1细胞的表达效率。病毒感染HEK293细胞和CHO-K1细胞的相对荧光强度 (Relative fluorescence intensity,RFI) 均约为对应的质粒转染细胞的2倍。多轮反复感染逆转录病毒表达载体能有效提高HEK293细胞表达EGFP的效率。HEK293细胞经4轮病毒感染后的RFI值较1次病毒感染HEK293细胞的RFI值约提高2倍。此外,逆转录病毒表达载体介导的外源基因表达的稳定性优于质粒转染的外源基因表达。采用携带人重组活性蛋白C (Recombinant human activated protein C,rhAPC) 基因的pQCXIN和HEK293细胞进一步验证了逆转录病毒载体介导的外源基因表达效率,构建了rhAPC表达水平为10~15 mg/(106 cells·d) 的HEK293细胞系。研究结果表明,逆转录病毒表达系统是有应用价值的介导外源基因在哺乳动物细胞高效表达的技术途径。  相似文献   

8.
9.
小干扰RNAs(siRNAs)能够有效降解具有互补序列的RNA.在SARS-CoV的基因组RNA和所有亚基因组RNA的5′端均有一段共同的leader序列,而且该leader序列在不同的病毒分离物中高度保守,因此leader序列可作为一个用于抑制SARS-CoV复制的有效靶点.研究表明,针对leader序列化学合成的siRNA和DNA载体表达的shRNA都可以有效抑制SARS-CoV mRNA的表达.Leader序列特异的siRNA或shRNA不仅可以有效抑制leader与报告基因EGFP融合基因的表达,而且还可以有效抑制leader与刺突蛋白(spikeprotein)、膜蛋白(membrane protein)和核衣壳蛋白(nucleocapsid protein)基因的融合转录产物的表达.结果表明,针对leader序列的RNA干扰可以发展成为一种抗SARS-CoV治疗的有效策略.  相似文献   

10.
Analysis of biological selections for high-efficiency gene targeting.   总被引:14,自引:2,他引:12       下载免费PDF全文
A two-marker selection system that allows the efficient isolation of diploid gene knockouts by two sequential rounds of targeted homologous recombination has been developed. A systematic evaluation of the biological parameters that govern the selection process showed that a successful strategy must match the expression level of the target gene, the efficacy of the marker, and the selection stringency. An enrichment ratio of 5,000- to 10,000-fold, which resulted in a 30% targeting efficiency of the c-myc gene in a fibroblast cell line, has been achieved. Such efficiency brings the difficulty of gene targeting effectively down to the level of simple transfections, since only 10 to 20 drug-resistant clones need to be screened to recover several homologous hits. The general utility of the targeting strategy is of interest to investigators studying gene function in a large variety of mammalian tissue culture systems.  相似文献   

11.
Mata JF  Lopes T  Gardner R  Jansen LE 《PloS one》2012,7(2):e32646
Gene targeting protocols for mammalian cells remain inefficient and labor intensive. Here we describe FASTarget, a rapid, fluorescent cell sorting based strategy to isolate rare gene targeting events in human somatic cells. A fluorescent protein is used as a means for direct selection of targeted clones obviating the need for selection and outgrowth of drug resistant clones. Importantly, the use of a promoter-less, ATG-less construct greatly facilitates the recovery of correctly targeted cells. Using this method we report successful gene targeting in up to 94% of recovered human somatic cell clones. We create functional EYFP-tagged knockin clones in both transformed and non-transformed human somatic cell lines providing a valuable tool for mammalian cell biology. We further demonstrate the use of this technology to create gene knockouts. Using this generally applicable strategy we can recover gene targeted clones within approximately one month from DNA construct delivery to obtaining targeted monoclonal cell lines.  相似文献   

12.
Mao Z  Bozzella M  Seluanov A  Gorbunova V 《DNA Repair》2008,7(10):1765-1771
The two major pathways for repair of DNA double-strand breaks (DSBs) are homologous recombination (HR) and nonhomologous end joining (NHEJ). HR leads to accurate repair, while NHEJ is intrinsically mutagenic. To understand human somatic mutation it is essential to know the relationship between these pathways in human cells. Here we provide a comparison of the kinetics and relative contributions of HR and NHEJ in normal human cells. We used chromosomally integrated fluorescent reporter substrates for real-time in vivo monitoring of the NHEJ and HR. By examining multiple integrated clones we show that the efficiency of NHEJ and HR is strongly influenced by chromosomal location. Furthermore, we show that NHEJ of compatible ends (NHEJ-C) and NHEJ of incompatible ends (NHEJ-I) are fast processes, which can be completed in approximately 30 min, while HR is much slower and takes 7h or longer to complete. In actively cycling cells NHEJ-C is twice as efficient as NHEJ-I, and NHEJ-I is three times more efficient than HR. Our results suggest that NHEJ is a faster and more efficient DSB repair pathway than HR.  相似文献   

13.
14.
吕利群  徐鸿绪  王浩 《微生物学报》2009,49(9):1253-1258
摘要:【目的】构建携带有受杆状病毒多角体启动子控制的疱疹性口腔炎病毒糖蛋白(vesicular stomatitis virus glycoprotein, VSV G)和受白斑综合症病毒极早期基因(immediately-early gene 1,ie1)启动子控制的绿色荧光蛋白(enhanced green fluorescent protein, EGFP)两个表达阅读框的新型重组病毒vAc-G-EGFP,分析其在无脊椎动物和脊椎动物细胞系中表达报道基因的能力。【方法】 利用Bac-To-Bac 系统构建重组杆状病毒,利用病毒感染或转导实验介导报道基因在待测细胞系中的表达,用荧光显微镜和免疫印迹技术分析报道基因在待测细胞系中的实时表达情况。 【结果】成功构建了分别含VSV G 和 ie1启动子两个阅读框的重组杆状病毒vAc-G-EGFP,发现vAc-G-EGFP可以在无脊椎和脊椎动物细胞系中有效表达报道基因EGFP,免疫印迹实验显示,在不同时间点EGFP于这两类细胞中的表达存在差异。【结论】 基于白斑综合症病毒ie1启动子并携带有VSV G表达框的单一杆状病毒载体可以实现同时在不同种类细胞系中有效表达外源基因。本文构建的新型杆状病毒表达载体有希望普遍应用于基础和应用生物学研究。  相似文献   

15.
The rat interleukin-5 (IL-5) gene was isolated from a genomic lambda phage library and a fragment containing all four exons was inserted into the retroviral vector pXT1, resulting in pXTRIL5. Upon retroviral gene transfer into two IL-5-dependent mouse cell lines, B13 and T88M, autonomously growing cells were established and B-cell growth factor activity was detected in the supernatants of the infected cells. "cDNA" versions of the rat IL-5 gene were rescued by the polymerase chain reaction (PCR) with primers specific for the flanking regions of the cloning site in pXT1. Restriction or DNA sequence analysis of five different clones revealed precise splicing in two cases, while three of the clones had retained the first intron. In addition, in two of these about 400 bp of rat IL-5 5' flanking regions were deleted. The sequence comparison of rat, mouse, and human IL-5 genes revealed a high degree of conservation (e.g., mouse and rat were 92% homologous at the amino acid level). The combination of retroviral gene transfer and PCR may offer an alternative, efficient method for the cloning of cDNAs.  相似文献   

16.
ht-Pam基因在山羊β-酪蛋白基因座定位整合的研究   总被引:6,自引:0,他引:6  
利用体细胞基因打靶与核移植技术制备动物乳腺生物反应器是当今转基因定位整合表达的一种新技术。分别克隆山羊的β-酪蛋白基因5′调控区的6.3kb片段,外显子7、外显子8和9三个基因片段,并与克隆的人tPA突变体cDNA一起构建了含有neo和tk正负筛选标记基因的β-酪蛋白基因打靶载体PGBC4tPA,并验证了neo基因、tk基因以及Cre-LoxP系统的有效性。将线性化的PGBC4tPA通过电转染整合到山羊胎儿成纤维细胞基因组中,利用G418和GANC进行抗性细胞克隆的药物筛选,初步获得抗性细胞克隆244个,PCR检测后获得阳性细胞克隆31个,其中初步验证2个细胞克隆转植基因整合位点重组后的基因序列正确,并且该细胞克隆能够有效扩增。这为下一步基因打靶体细胞核移植制备山羊乳腺生物反应器奠定了基础。  相似文献   

17.
[目的]明确基于电穿孔的基因功能分析方法在家蚕Bombyx mori活体内的应用实效.[方法]针对调控家蚕幼虫体表斑纹黑色素合成的靶基因Wnt1(Wingless),人工合成特异性siRNA,向4龄第3天家蚕幼虫注射Wnt1 siRNA并进行电穿孔作为处理组(ERFA-RNAi),以注射Wnt1 siRNA但未进行电穿...  相似文献   

18.
Site-specific integration of targeted DNA into animal cell genomes   总被引:2,自引:0,他引:2  
Koch KS  Aoki T  Wang Y  Atkinson AE  Gleiberman AS  Glebov OK  Leffert HL 《Gene》2000,249(1-2):135-144
  相似文献   

19.
20.
Mouse Nkx2-5 gene is essential for early heart development and it is regulated by a complex array of regulatory modules. In order to establish an efficient in vivo system for mapping the Nkx2-5 genomic locus for regulatory regions, we developed improved homologous recombination technology for use in Escherichia coli and then knocked an IRES-hrGFP reporter gene into Nkx2-5 gene in a 120 kb Nkx2-5 bacterial artificial chromosome (BAC) clone. We employed the recombination genes redalpha and redbeta under the pBAD promoter, which was specifically induced by the addition of L-arabinose. Recombination was selected for by our universal targeting cassette which conferred kanamycin resistance in bacterial cells and neomycin resistance in mammalian cells. Transgenic mouse lines generated from this modified BAC clone closely resembled the endogenous Nkx2-5 expression in the heart, pylorus sphincter, and spleen, but expression was not detected in the tongue. Nkx2-5 BAC-GFP expression was copy number-dependent and locus site-independent. BAC transgenics using the GFP reporter offers an efficient model system to study gene expression and regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号