首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Several disorder parameters, inside the DNA molecule, lead to localization of charge carriers inside potential wells in the lowest unoccupied and highest occupied molecular orbits (LUMO and HOMO) which affects drastically the electrical conduction through the molecule, and demonstrates that the band carriers play an essential role in the conduction mechanism. So, a model is presented to shed light on the role of electrons of the LUMO in the electrical conduction through the DNA molecule. DC-, AC-conductivity and dielectric permittivity experimental data are well fitted with the presented model giving evidence that the free carriers in the LUMO and HOMO are responsible to make the DNA molecule conductor, insulator or semiconductor. The obtained results show that the localized charge carriers in the DNA molecule are characterized by four different types of relaxation phenomena which are thermally activated by corresponding four activation energies at 0.56 eV, 0.33 eV, 0.24 eV, and 0.05 eV respectively. Moreover, the calculations after the model, at room temperature, show that the time of the relaxation times of the current carriers are in the order of 5 × 10−2 s, 1.74 × 10−4 s, 5 × 10−7 s, and 1.6 × 10−10 s, respectively.  相似文献   

2.
Steady-state kinetics for the reaction of Rhodobacter capsulatus bacterial cytochrome c peroxidase (BCCP) with its substrate cytochrome c(2) were investigated. The Rb. capsulatus BCCP is dependent on calcium for activation as previously shown for the Pseudomonas aeruginosa BCCP and Paracoccus denitrificans enzymes. Furthermore, the activity shows a bell-shaped pH dependence with optimum at pH 7.0. Enzyme activity is greatest at low ionic strength and drops off steeply as ionic strength increases, resulting in an apparent interaction domain charge product of -13. All cytochromes c(2) show an asymmetric distribution of surface charge, with a concentration of 14 positive charges near the exposed heme edge of Rb. capsulatus c(2) which potentially may interact with approximately 6 negative charges, localized near the edge of the high-potential heme of the Rb. capsulatus BCCP. To test this proposal, we constructed charge reversal mutants of the 14 positively charged residues located on the front face of Rb. capsulatus cytochrome c(2) and examined their effect on steady-state kinetics with BCCP. Mutated residues in Rb. capsulatus cytochrome c(2) that showed the greatest effects on binding and enzyme activity are K12E, K14E, K54E, K84E, K93E, and K99E, which is consistent with the site of electron transfer being located at the heme edge. We conclude that a combination of long-range, nonspecific electrostatic interactions as well as localized salt bridges between, e.g., cytochrome c(2) K12, K14, K54, and K99 with BCCP D194, D241, and D6, account for the observed kinetics.  相似文献   

3.
The biological clock regulates a wide range of physiological processes in plants. Here we show circadian variation of the Clivia miniata responses to electrical stimulation. The biologically closed electrochemical circuits in the leaves of C. miniata (Kaffir lily), which regulate its physiology, were analyzed in vivo using the charge stimulation method. The electrostimulation was provided with different voltages and electrical charges. Resistance between Ag/AgCl electrodes in the leaf of C. miniata was higher at night than during the day or the following day in the darkness. The biologically closed electrical circuits with voltage gated ion channels in C. miniata are activated the next day, even in the darkness. C. miniata memorizes daytime and nighttime. At continuous light, C. miniata recognizes nighttime and increases the input resistance to the nighttime value even under light. These results show that the circadian clock can be maintained endogenously and has electrochemical oscillators, which can activate voltage gated ion channels in biologically closed electrochemical circuits. The activation of voltage gated channels depends on the applied voltage, electrical charge and speed of transmission of electrical energy from the electrostimulator to the C. miniata leaves. We present the equivalent electrical circuits in C. miniata and its circadian variation to explain the experimental data.  相似文献   

4.
The goal of the experiments described here was to explore the possible role of fixed charges in determining the conduction properties of CFTR. We focused on transmembrane segment 6 (TM6) which contains four basic residues (R334, K335, R347, and R352) that would be predicted, on the basis of their positions in the primary structure, to span TM6 from near the extracellular (R334, K335) to near the intracellular (R347, R352) end. Cysteines substituted at positions 334 and 335 were readily accessible to thiol reagents, whereas those at positions 347 and 352 were either not accessible or lacked significant functional consequences when modified. The charge at positions 334 and 335 was an important determinant of CFTR channel function. Charge changes at position 334--brought about by covalent modification of engineered cysteine residues, pH titration of cysteine and histidine residues, and amino acid substitution--produced similar effects on macroscopic conductance and the shape of the I-V plot. The effect of charge changes at position 334 on conduction properties could be described by electrodiffusion or rate-theory models in which the charge on this residue lies in an external vestibule of the pore where it functions to increase the concentration of Cl adjacent to the rate-limiting portion of the conduction path. Covalent modification of R334C CFTR increased single-channel conductance determined in detached patches, but did not alter open probability. The results are consistent with the hypothesis that in wild-type CFTR, R334 occupies a position where its charge can influence the distribution of anions near the mouth of the pore.  相似文献   

5.
Histidine pK(a) values were measured in charge-reversal (K78E, K97E, K127E, and K97E/K127E) and charge-neutralization (E10A, E101A, and R35A) mutants of staphylococcal nuclease (SNase) by (1)H-NMR spectroscopy. Energies of interaction between pairs of charges (DeltaG(ij)) were obtained from the shifts in pK(a) values relative to wild-type values. The data describe the distance dependence and salt sensitivity of pairwise coulombic interactions. Calculations with a continuum electrostatics method captured the experimental DeltaG(ij) when static structures were used and when the protein interior was treated empirically with a dielectric constant of 20. The DeltaG(ij) when r(ij) < or = 10 A were exaggerated slightly in the calculations. Coulomb's law with a dielectric constant near 80 and a Debye-Hückel term to account for screening by the ionic strength reproduced the salt sensitivity and distance dependence of DeltaG(ij) as well as the structure-based method. In their interactions with each other, surface charges behave as if immersed in water; the Debye length describes realistically the distance where interactions become negligible at a given ionic strength. On average, charges separated by distances (r(ij)) approximately 5 A interacted with DeltaG(ij) approximately 0.6 kcal/mole in 0.01 M KCl, but DeltaG(ij) decayed to < or =0.10 kcal/mole when r(ij) = 20 A. In 0.10 M KCl, DeltaG(ij) approximately 0.10 kcal/mole when r(ij) = 10 A. In 1.5 M KCl, only short-range interactions with r(ij) < or = 5 A persisted. Although at physiological ionic strengths the interactions between charges separated by more than 10 A are extremely weak, in situations where charge imbalance exists many weak interactions can cumulatively produce substantial effects.  相似文献   

6.
Voltage-dependent anion channels in the outer mitochondrial membrane are strongly regulated by electrical potential. In this work, one of the possible mechanisms of the outer membrane potential generation is proposed. We suggest that the inner membrane potential may be divided on two resistances in series, the resistance of the contact sites between the inner and outer membranes and the resistance of the voltage-dependent anion channels localized beyond the contacts in the outer membrane. The main principle of the proposed mechanism is illustrated by simplified electric and kinetic models. Computational behavior of the kinetic model shows a restriction of the steady-state metabolite flux through the mitochondrial membranes at relatively high concentration of the external ADP. The flux restriction was caused by a decrease of the voltage across the contact sites and by an increase in the outer membrane potential (up to +60 mV) leading to the closure of the voltage-dependent anion channels localized beyond the contact sites. This mechanism suggests that the outer membrane potential may arrest ATP release through the outer membrane beyond the contact sites, thus tightly coordinating mitochondrial metabolism and aerobic glycolysis in tumor and normal proliferating cells.  相似文献   

7.
Vladimir A. Shuvalov 《BBA》2007,1767(6):422-433
It has been shown [V.A. Shuvalov, Quantum dynamics of electrons in many-electron atoms of biologically important compounds, Biochemistry (Mosc.) 68 (2003) 1333-1354; V.A. Shuvalov, Quantum dynamics of electrons in atoms of biologically important molecules, Uspekhi biologicheskoi khimii, (Pushchino) 44 (2004) 79-108] that the orbit angular momentum L of each electron in many-electron atoms is L = mVr = n? and similar to L for one-electron atom suggested by N. Bohr. It has been found that for an atom with N electrons the total electron energy equation E = (Zeff)2e4m/(2n2?2N) is more appropriate for energy calculation than standard quantum mechanical expressions. It means that the value of L of each electron is independent of the presence of other electrons in an atom and correlates well to the properties of virtual photons emitted by the nucleus and creating a trap for electrons. The energies for elements of the 1st up to the 5th rows and their ions (total amount 240) of Mendeleev' Periodical table were calculated consistent with the experimental data (deviations in average were 5 × 10− 3). The obtained equations can be used for electron dynamics calculations in molecules. For H2 and H2+ the interference of electron-photon orbits between the atoms determines the distances between the nuclei which are in agreement with the experimental values. The formation of resonance electron-photon orbit in molecules with the conjugated bonds, including chlorophyll-like molecules, appears to form a resonance trap for an electron with E values close to experimental data. Two mechanisms were suggested for non-barrier primary charge separation in reaction centers (RCs) of photosynthetic bacteria and green plants by using the idea of electron-photon orbit interference between the two molecules. Both mechanisms are connected to formation of the exciplexes of chlorophyll-like molecules. The first one includes some nuclear motion before exciplex formation, the second one is related to the optical transition to a charge transfer state.  相似文献   

8.
We report the first detailed thermodynamic analysis of simplified proteins by differential scanning calorimetry (DSC). The experiments were carried out with five simplified BPTI variants, whose structures and activities have been reported, in which several residues not essential for specifying the tertiary structure were replaced by alanine. In most aspects, the thermodynamics of simplified proteins were very similar to, if not essentially identical with, those of natural proteins. In particular, they undergo a highly cooperative two-state thermal unfolding process with a large enthalpy change, which is a thermodynamic hallmark of the native state of natural globular proteins. Furthermore, the specific enthalpy and entropy changes upon unfolding at 110 degrees C were close to values invariably observed for small natural globular proteins (55 J g(-1) and ~16 J K(-1) g(-1), respectively). On the other hand, two simplified BPTI variants, BPTI-21 and BPTI-22 (containing 21 and 22 alanine residues), were enthalpically stabilized while entropically destabilized with respect to the reference BPTI-[5,55] molecule. This peculiar type of entropy-enthalpy compensation is in sharp contrast to the usual enthalpy destabilization/entropy stabilization observed in mutational studies of natural proteins. Overall, we conclude that a thermodynamic native state can be achieved by proteins encoded with extensively simplified sequences.  相似文献   

9.
10.
目的:应用基于表面等离子体共振技术的BIAcore3000系统研究国产西妥昔单克隆抗体(cetuximab)C225与可溶性重组人表皮生长因子受体(EGFR)的结合能力,并与国外已上市的西妥昔单抗Erbitux相比较。方法:在CM5传感器芯片上设置2个通道,一个氨基偶联重组人EGFR作为检测通道,另一个不固定EGFR作为空白参比通道;以HBS溶液作为工作液,流速为10μL/min;活化与封闭芯片;再以10μL/min的流速分别以梯度浓度进样C225和Erbitux,每个浓度级别检测2次;获得结合动态图谱,拟合处理后用软件模块进行参数计算。结果:C225与可溶性重组人EGFR的结合动力学常数K^为4.00×10^8L/mol,KD为2.50×10^-9mol/L;而Erbitux与可溶性重组人EGFR的结合动力学常数KA为4.25×10^8L/mol,KD为2.35×10^-9mol/L。结论:在与可溶性重组人EGFR的结合能力上,C225与Erbitux有相似的结合动力学特性。  相似文献   

11.
The role of electrostatic interactions in the assembly of a native protein structure was studied using fragment complementation. Contributions of salt, pH, or surface charges to the kinetics and equilibrium of calbindin D(9k) reconstitution was measured in the presence of Ca(2+) using surface plasmon resonance and isothermal titration calorimetry. Whereas surface charge substitutions primarily affect the dissociation rate constant, the association rates are correlated with subdomain net charge in a way expected for Coulomb interactions. The affinity is reduced in all mutants, with the largest effect (260-fold) observed for the double mutant K25E+K29E. At low net charge, detailed charge distribution is important, and charges remote from the partner EF-hand have less influence than close ones. The effects of salt and pH on the reconstitution are smaller than mutational effects. The interaction between the wild-type EF-hands occurs with high affinity (K(A) = 1.3 x 10(10) M(-1); K(D) = 80 pM). The enthalpy of association is overall favorable and there appears to be a very large favorable entropic contribution from the desolvation of hydrophobic surfaces that become buried in the complex. Electrostatic interactions contribute significantly to the affinity between the subdomains, but other factors, such as hydrophobic interactions, dominate.  相似文献   

12.
Liposome dispersions obtained from the mixture of gemini surfactants of the type alkane-α,ω-diyl-bis(alkyldimethylammonium bromide) and helper lipid DOPC create complexes with DNA showing a regular inner microstructure, identified by small angle X-ray diffraction as condensed lamellar phase (Lαc). In addition to the Lαc phase, a coexisting lamellar phase LB was also identified in the complexes formed, with periodicities in the range ~ 8.8-5.7 nm, at ionic strengths corresponding to 50-200 mM NaCl. The periodicities of LB phase did not correspond to those identified in liposome dispersion without DNA using small angle neutron scattering. The observed phase separation is shown to depend on the interplay between the surface charge density of cationic liposomes, ionic strength and method of complex preparation. The effect of ionic strength on complex formation was studied by isothermal titration calorimetry and zeta potential measurements. High ionic strength reduces the fraction of bound DNA in the complexes, and the isoelectric point is attained at a ratio of DNA/gemini surfactant which is lower than the one that can be estimated by calculation based on nominal charges of CLs and DNA.  相似文献   

13.
The west European subspecies of house mouse (Mus musculus domesticus) has gained much of its current widespread distribution through commensalism with humans. This means that the phylogeography of M. m. domesticus should reflect patterns of human movements. We studied restriction fragment length polymorphism (RFLP) and DNA sequence variations in mouse mitochondrial (mt) DNA throughout the British Isles (328 mice from 105 localities, including previously published data). There is a major mtDNA lineage revealed by both RFLP and sequence analyses, which is restricted to the northern and western peripheries of the British Isles, and also occurs in Norway. This distribution of the 'Orkney' lineage fits well with the sphere of influence of the Norwegian Vikings and was probably generated through inadvertent transport by them. To form viable populations, house mice would have required large human settlements such as the Norwegian Vikings founded. The other parts of the British Isles (essentially most of mainland Britain) are characterized by house mice with different mtDNA sequences, some of which are also found in Germany, and which probably reflect both Iron Age movements of people and mice and earlier development of large human settlements. MtDNA studies on house mice have the potential to reveal novel aspects of human history.  相似文献   

14.
Joachim Buchta 《BBA》2007,1767(6):565-574
The analysis of the time-resolved delayed fluorescence (DF) measurements represents an important tool to study quantitatively light-induced electron transfer as well as associated processes, e.g. proton movements, at the donor side of photosystem II (PSII). This method can provide, inter alia, insights in the functionally important inner-protein proton movements, which are hardly detectable by conventional spectroscopic approaches. The underlying rationale and experimental details of the method are described. The delayed emission of chlorophyll fluorescence of highly active PSII membrane particles was measured in the time domain from 10 μs to 60 ms after each flash of a train of nanosecond laser pulses. Focusing on the oxygen-formation step induced by the third flash, we find that the recently reported formation of an S4-intermediate prior to the onset of O-O bond formation [M. Haumann, P. Liebisch, C. Müller, M. Barra, M. Grabolle, H. Dau, Science 310, 1019-1021, 2006] is a multiphasic process, as anticipated for proton movements from the manganese complex of PSII to the aqueous bulk phase. The S4-formation involves three or more likely sequential steps; a tri-exponential fit yields time constants of 14, 65, and 200 μs (at 20 °C, pH 6.4). We determine that S4-formation is characterized by a sizable difference in Gibbs free energy of more than 90 meV (20 °C, pH 6.4). In the second part of the study, the temperature dependence (− 2.7 to 27.5 °C) of the rate constant of dioxygen formation (600/s at 20 °C) was investigated by analysis of DF transients. If the activation energy is assumed to be temperature-independent, a value of 230 meV is determined. There are weak indications for a biphasicity in the Arrhenius plot, but clear-cut evidence for a temperature-dependent switch between two activation energies, which would point to the existence of two distinct rate-limiting steps, is not obtained.  相似文献   

15.
One of the methods available for the measurement of surface potentials of planar lipid bilayers uses the conductance ratio between a charged and a neutral bilayer doped with ionophores to calculate the surface potential of the charged bilayer. We have devised a simplification of that method which does not require the use of an electrically neutral bilayer as control. The conductance of the charged bilayer is measured before and after the addition of divalent cations (Ba(2+)) to the bathing solution. Ba(2+) ions screen fixed surface charges, decreasing the surface potential. If the membrane is negatively charged the screening has the effect of decreasing the membrane conductance to cations. The resulting conductance ratio is used to calculate the surface potential change, which is fed into an iterative computer program. The program generates pairs of surface potential values and calculates the surface charge density for the two conditions. Since the surface charge density remains constant during this procedure, there is only one pair of surface potentials that satisfies the condition of constant charge density. Applying this method to experimental data from McLaughlin et al. [McLaughlin, S.G.A., Szabo, G. and Eisenman, G., Divalent ions and the surface potential of charged phospholipid membranes, J. Gen. Physiol., 58 (1971) 667-687.] we have found very similar results. We have also successfully used this method to determine the effect of palmitic acid on the surface potential of asolectin membranes.  相似文献   

16.
Ecm10p was initially identified as a cell wall synthesis-related gene product [Genetics 147 (1997) 435] and also reported as a mitochondrial protein which was partially capable of compensating the phenotypic defect by SSC1 gene mutation [FEBS Lett. 487 (2000) 307]. Here we report that ecm10p is localized in mitochondrial nucleoids as its major component and the targeting signal resides between amino acid residues 161 and 240. Overexpression of ecm10p induces extensive mitochondrial DNA aggregations, which might be due to aberrant mitochondrial DNA cleavages through an altered endonuclease activity in mitochondrial nucleoids.  相似文献   

17.
Many enzymes involved in bioenergetic processes contain chains of redox centers that link the protein surface, where interaction with electron donors or acceptors occurs, to a secluded catalytic site. In numerous cases these redox centers can transfer only single electrons even when they are associated to catalytic sites that perform two-electron chemistry. These chains provide no obvious contribution to enhance chemiosmotic energy conservation, and often have more redox centers than those necessary to hold sufficient electrons to sustain one catalytic turnover of the enzyme. To investigate the role of such a redox chain we analyzed the transient kinetics of fumarate reduction by two flavocytochromes c3 of Shewanella species while these enzymes were being reduced by sodium dithionite. These soluble monomeric proteins contain a chain of four hemes that interact with a flavin adenine dinucleotide (FAD) catalytic center that performs the obligatory two electron–two proton reduction of fumarate to succinate. Our results enabled us to parse the kinetic contribution of each heme towards electron uptake and conduction to the catalytic center, and to determine that the rate of fumarate reduction is modulated by the redox stage of the enzyme, which is defined by the number of reduced centers. In both enzymes the catalytically most competent redox stages are those least prevalent in a quasi-stationary condition of turnover. Furthermore, the electron distribution among the redox centers during turnover suggested how these enzymes can play a role in the switch between respiration of solid and soluble terminal electron acceptors in the anaerobic bioenergetic metabolism of Shewanella.  相似文献   

18.
Markus Grabolle 《BBA》2005,1708(2):209-218
Photon absorption by one of the roughly 200 chlorophylls of the plant Photosystem II (PSII) results in formation of an equilibrated excited state (Chl200*) and is followed by chlorophyll oxidation (formation of P680+) coupled to reduction of a specific pheophytin (Phe), then electron transfer from Phe− to a firmly bound quinone (QA), and subsequently reduction of P680+ by a redox-active tyrosine residue denoted as Z. The involved free-energy differences (ΔG) and redox potentials are of prime interest. Oxygen-evolving PSII membrane particles of spinach were studied at 5 °C. By analyzing the delayed and prompt Chl fluorescence, we determined the equilibrium constant and thus free-energy difference between Chl200* and the [Z+,QA−] radical pair to be −0.43 ± 0.025 eV, at 10 μs after the photon absorption event for PSII in its S3-state. On basis of this value and previously published results, the free-energy difference between P680* and [P680+,QA−] is calculated to be −0.50 ± 0.04 eV; the free-energy loss associated with electron transfer from Phe to QA is found to be 0.34 ± 0.04 eV. The given uncertainty ranges do not represent a standard deviation or likely error, but an estimate of the maximal error. Assuming a QA−/QA redox potential of −0.08 V [Krieger et al., 1995, Biochim. Biophys. Acta 1229, 193], the following redox-potential estimates are obtained: +1.25 V for P680/P680+; +1.21 V for Z/Z+ (at 10 μs); −0.42 V for Phe−/Phe; −0.58 V for P680*/P680+.  相似文献   

19.
An equivalent electrical circuit of DNA molecule is suggested and used to model the charge transfer dynamics in the molecule. Its switching time is shown to be in the femtosecond time range and to depend on the frequency of input electric signal. Raising the input signal frequency from 1 GHz to 4 THz and lowering the temperature decrease the current through DNA. The switching rate of DNA molecule is determined by the processes of delocalization and localization of holes, which is achieved by variation in the base sequence and length.  相似文献   

20.
Ding X  Li J  Hu J  Li Q 《Analytical biochemistry》2005,339(1):46-53
The direct electron transfer of surface-confined horse heart cytochrome c (Cyt c) was achieved using COOH-terminated alkanethiolate-modified gold electrode. Later DNA was immobilized on the two-layer modified electrode. The quantitative determination of DNA was explored and the interaction between cytochrome c and DNA was studied. The binding site sizes were determined to be 15 bp per Cyt c molecule with double-stranded (ds) DNA and 30 nucleotides binding one Cyt c molecule with single-stranded (ss) DNA. At the dsDNA/Cyt c/MUA/Au electrode, the rate constant of oxidation electron transfer k(s,ox)=1.59x10(-3)cms-1 was obtained, at the ssDNA/Cyt c/MUA/Au electrode, the value was 2.43x10(-3)ms-1 when the scan rate was 1.0V/s. The different electrodes were characterized with electrochemical quartz crystal microbalance and atomic force microscope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号