首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In response to environmental stress (low water, low oxygen) snails sharply suppress their metabolic rate, a process that is coordinated at the molecular level by reversible protein phosphorylation of key enzymes and functional proteins. Factors affecting protein kinase activity are, therefore, critical to metabolic suppression. Changes in the concentration of protein kinase second messenger compounds were followed over the first 24 h of aestivation and anoxia exposure in the terrestrial snail Otala lactea (Muller) (Pulmonata, Helicidae). The results showed declining concentrations of cyclic AMP over the first 24 h of anoxia exposure and aestivation in foot. Cyclic AMP concentrations in hepatopancreas transiently decreased with the lowest concentration observed at 4 h in both anoxic and aestivating animals. A transient increase in foot muscle cyclic GMP concentrations was apparent 4 h after the start of aestivation whereas a slow, steady increase was seen in anoxic foot muscle. Foot muscle 1,4,5-inositol triphosphate (IP3) concentrations decreased transiently during anoxia exposure and aestivation. Hepatopancreas IP3 concentrations were significantly lower in 24 h anoxic snails and foot IP3 concentrations were significantly lower in 24 h aestivating snails. Kinetic characterization of purified PKA catalytic subunit was also performed. Snail PKA catalytic subunit had an absolute requirement for Mg2+ ion but was inhibited at Mg2+ concentrations above 0.5 mM. Increasing concentrations of neutral salts and phosphate also inhibited activity although the inhibition by phosphate appeared to be specific since the inhibition constant (I50 = 39 mM) was much lower than that of the neutral salts (I50 240 mM). The enzyme exhibited a broad pH optimum between pH 6.5–8.5. Arrhenius plots gave an activation energy of 13.3 kcal/mol corresponding to a Q10 value of 2.3. The relationship between these results and temporal control of enzyme phosphorylation is discussed.Abbreviations CAMP adenosine 3:5-cyclic monophosphate - cGMP-guanosine 3:5-cyclic monophosphate - H-89N [2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide·2HCI - IP3 d-myo-inositol 1,4,5-triphosphate - I50 the concentration of inhibitor required to reduce the velocity to one half its original value - PKA cAMP dependent protein kinase - PKAc PKA catalytic subunit - PKA-I PKA inhibitor protein - PKC calcium and phospholipid-dependent protein kinase - PKC-I PKC inhibitor protein - PKG cGMP dependent protein kinase - mU nmol of phosphate transferred per minute  相似文献   

2.
The effects of whole body dehydration (up to 40% of total body water lost) or anoxia exposure (up to 2 days under N2 gas) at 5 °C on tissue levels of adenosine 3′–5′ cyclic monophosphate (cAMP) and the percentage of cAMP-dependent protein kinase present as the free catalytic subunit (PKAc), as well as the levels of the protein kinase C (PKC) second messenger, inositol 1,4,5-trisphosphate (IP3), were assessed in two anurans, the freeze-tolerant wood frog, Rana sylvatica, and the freeze-intolerant leopard frog, Rana pipiens. Dehydration of wood frogs resulted in a rapid elevation of liver cAMP and PKAc; cAMP was 3.4-fold greater than control values in animals that had lost 5% of total body water, whereas PKAc was elevated threefold in 20% dehydrated frogs. These results indicate protein kinase A mediation of the liver glycogenolysis and hyperglycemia that is induced by dehydration in this species. Skeletal muscle PKAc content also rose with dehydration but neither cAMP nor PKAc was affected by dehydration in leopard frog tissues. Anoxia exposure had different effects on signal transduction systems. PKAc was elevated after 1 h anoxia in R. sylvatica brain and was sustained over time but the enzyme was unaffected in other organs; by contrast, R. pipiens showed variable responses by PKAc to anoxia in three organs. Both species showed rapid (within 30 min) and large (3 to 7.8-fold) increases in IP3 in liver of anoxic frogs that decreased slowly with continued anoxia. IP3 also increased quickly in heart of anoxia-exposed wood frogs. This suggests that PKC may mediate various metabolic adjustments that promote hypoxia/anoxia resistance such as coordinating metabolic rate depression. A progressive rise in liver IP3 during dehydration in wood frogs (reaching fourfold higher than controls in 40% dehydrated animals) may also mediate similar hypoxia resistance adaptations under this stress since anurans experience progressive hypoxia due to increased blood viscosity when water loss reaches high values. The patterns of second messenger and PKAc changes in wood frog liver during dehydration closely parallel the changes seen in these same parameters during natural freezing suggesting that the freeze tolerance of selected terrestrially hibernating anurans may have evolved out of various anuran mechanisms of dehydration resistance. Accepted: 2 January 1997  相似文献   

3.
Arousal from hibernation requires thermogenesis in brown adipose tissue, a process that is stimulated by β-adrenergic signals, leading to a rise in intracellular 3′,5′-cyclic adenosine monophosphate AMP (cAMP) and activating cAMP-dependent protein kinase A (PKA) to phosphorylate a suite of target proteins and activate lipolysis and uncoupled respiration. To determine whether specific adaptations (perhaps temperature-dependent) facilitate PKA kinetic properties or protein-phosphorylating ability, the catalytic subunit of PKA (PKAc) from interscapular brown adipose of the ground squirrel Spermophilus richardsonii, was purified (final specific activity = 279 nmol phosphate transferred per min per mg protein) and characterized. Physical properties of PKAc included a molecular weight of 41 kDa and an isoelectric point of 7.8 ± 0.08. A change in assay temperature from a euthermic value (37 °C) to one typical of hibernating body temperature (5 °C) had numerous significant effects on ground squirrel PKAc including: (a) pH optimum rose from 6.8 at 37 °C to 8.7 at 5 °C, (b) Km values at 37 °C for Mg.ATP (49.2±3.4 M) and for two phosphate acceptors, Kemptide (50.0±5.5 M) and Histone IIA (0.41 ± 0.05 mg/ml) decreased by 53%, 80% and 51%, respectively, at 5 °C, and (c) inhibition by KCl, NaCl and NH4Cl was reduced. However, temperature change had little or no effect on Km values of rabbit PKAc, suggesting a specific positive thermal modulation of the hibernator enzyme. Arrhenius plots also differed for the two enzymes; ground squirrel PKAc showed a break in the Arrhenius relationship at 9 °C and activation energies that were 29.1 ± 1.0 kJ/mol for temperatures >9 °C and 2.3-fold higher at 68.1 ± 2.1 kJ/mol for temperatures <9 °C, whereas the rabbit enzyme showed a breakpoint at 17 °C with a 13-fold higher activation energy over the lower temperature range. However, fluorescence analysis of PKAc in the absence of substrates, showed a linear change in fluorescence intensity and wavelength of maximal fluorescence over the entire temperature range; this suggested that the protein conformational change indicated by the break in the Arrhenius plot was substrate-related. Temperature change also affected the Hill coefficient for cAMP dissociation of the ground squirrel PKA holoenzyme which rose from 1.12 ± 0.18 at 37 °C to 2.19 ± 0.07 at 5 °C, making the release of catalytic subunits at low temperature much more responsive to small changes in cAMP levels. Analysis of PKAc function via in vitro incubations of extracts of ground squirrel brown adipose with 32P-ATP + cAMP in the presence versus absence of a PKA inhibitor, also revealed major differences in the patterns of phosphoproteins, both between euthermic and hibernating animals as well as between 37 and 5 °C incubation temperatures; this suggests that there are both different targets of PKAc phosphorylation in the hibernating animal and that temperature affects the capacity of PKAc to phosphorylate different targets. Both of these observations, plus the species-specific and temperature-dependent changes in ground squirrel PKAc kinetic properties, suggest differential control of the enzyme in vivo at euthermic versus hibernating body temperatures in a manner that would facilitate a rapid and large activation of the enzyme during arousal from torpor. Accepted: 10 July 1998  相似文献   

4.
Holden CP  Storey KB 《Cryobiology》2000,40(4):323-331
Freeze tolerance by various amphibians includes cryoprotectant production in the form of glucose. Activation of the catalytic subunit of liver cAMP-dependent protein kinase (PKAc) facilitates activation of glycogenolysis, a critical biochemical process necessary for production of glucose. Here, we purified PKAc from Rana sylvatica liver to determine the extent to which cold temperature, which stimulates cryoprotectant production, affected PKAc activity and function. PKAc was purified to greater than 95% homogeneity, with a final specific activity of 71 nmol phosphate transferred/min/mg protein. The molecular weight of frog liver PKAc was 47.6 +/- 1.1 kDa and K(m) values for the phosphate acceptor kemptide and Mg-ATP were 9.0 +/- 0.1 and 51.8 +/- 1.0 microM at 22 degrees C, respectively. K(m) values for both substrates dropped significantly at 5 degrees C. The enzyme was sensitive to specific inhibitors of mammalian PKAc (PKA(i), H89) but was only moderately inhibited by high salt concentrations. Furthermore, salt inhibition was reduced at low temperature. The effect of temperature on enzyme activity indicated a conformational change in PKAc at 10 +/- 2 degrees C, with calculated activation energies of 51 +/- 4 kJ/mol at temperatures above 10 degrees C and 110 +/- 9 kJ/mol below 10 degrees C. PKAc in wood frog liver plays a crucial role in mediating the freeze-induced glycogenolysis that is responsible for the production of 200-300 mM levels of glucose as a cryoprotectant. Differential effects of low temperature on enzyme function, increased substrate affinity and reduced ion inhibition, appear to be central to this role.  相似文献   

5.
The freshwater crayfish, Orconectes virilis, shows good anoxia tolerance, enduring 20 h in N2-bubbled water at 15°C. Metabolic responses to anoxia by tolerant species often include reversible phosphorylation control over selected enzymes. To analyze the role of serine/threonine kinases and phosphatases in signal transduction during anoxia in O. virilis, changes in the activities of cAMP-dependent protein kinase (PKA) and protein phosphatases 1, 2A, and 2C were measured in tail muscle and hepatopancreas over a time course of exposure to N2-bubbled water. A strong increase in the percentage of PKA present as the free catalytic subunit (% PKAc) occurred between 1 and 2 h of anoxia exposure whereas phosphatase activities were strongly reduced. This suggests that PKA-mediated events are important in the initial response by tissues to declining oxygen availability. As oxygen deprivation became severe and prolonged (5–20 h) these changes reversed; the % PKAc fell to below control values and activities of phosphatases returned to or rose above control values. Subcellular fractionation also showed a decrease in PKA associated with the plasma membrane after 20 h anoxia whereas cytosolic PKA content increased. PKAc purified from tail muscle showed a molecular weight of 43.8±0.4 kDa, a pH optimum of 6.8, a high affinity for Mg ATP (Km=131.0±14.4 μM) and Kemptide (Km=31.6±5.2 μM). Crayfish PKAc was sensitive to temperature change; a break in the Arrhenius plot occurred at approximately 15°C with a 2.5-fold rise in activation energy at temperatures <15°C. These studies demonstrate a role for serine/threonine protein kinases and phosphatases in the metabolic adjustments to oxygen depletion by crayfish organs.  相似文献   

6.
7.
Selected tissues (skeletal muscle, heart ventrical, and liver), sampled from turtles (Chrysemys picta bellii) at 3°C either under normoxic conditions or after 12 weeks of anoxic submergence were quantiaatively analysed for intracellular pH and phosphorus metabolites using 31P-NMR. Plasma was tested for osmolality and for the concentrations of lactate, calcium, and magnesium to confirm anoxic stress. We hypothesized that, in the anoxic animals, tissue ATP levels would be maintained and that the increased osmolality of the body fluids of anoxic turtles would be accounted for by a corresponding increase in the concentrations of phosphodiesters. The responses observed differed among the three tissues. In muscle, ATP was unchanged by anoxia but phosphocreatine was reduced by 80%; in heart, both ATP and phosphocreatine fell by 35–40%. The reduction in phosphocreatine in heart tissue at 3°C was similar to that observed in isolated, perfused working hearts from turtles maintained at 20°C but no decrease in ATP occurred in the latter tissues. In liver, although analyses of several specimens were confounded by line-broadening, neither ATP nor phosphocreatine was detectable in anoxic samples. Phosphosdiesters were detected in amounts sufficient to account for 30% of normoxic cell osmotic concentration in heart and 11% and 12% in liver and muscle, respectively. The phosphodiester levels did not change in anoxia. Heart ventricular phosphodiester levels in turtles at 3°C were significantly higher than those determined for whole hearts from turtles at 20°C. 1H, 13C and 31P NMR analyses of perchloric acid extracts of heart and skeletal muscle from 20°C turtles con firmed that the major phosphodiester observed by NMR in these tissues is serine ethanolamine phosphate. We conclude that the three types of tissues studied differ substantially in their ability to maintain levels of ATP during anoxia, and that liver may continue to function despite NMR-undetectable levels of this metabolite. In addition, we conclude that phosphodiesters do not serve as regulated osmolytes during anoxia, and that the functional significance of their high concentrations in turtle tissues remains uncertain.  相似文献   

8.
9.
In this study, the applicability of fluorescently labeled adenosine analogue-oligoarginine conjugates (ARC-Photo probes) for monitoring of protein kinase A (PKA) activity in living cells was demonstrated. ARC-Photo probes possessing subnanomolar affinity towards the catalytic subunit of PKA (PKAc) and competitive with the regulatory subunit (PKAr), penetrate cell plasma membrane and associate with PKAc fused with yellow fluorescent protein (PKAc-YFP). Detection of inter-molecular Förster resonance energy transfer (FRET) efficiency between the fluorophores of the fusion protein and ARC-Photo probe can be used for both the evaluation of non-labeled inhibitors of PKAc and for monitoring of cAMP signaling via detection of changes in the activity of PKA as a cAMP downstream effector.  相似文献   

10.
The Western painted turtle survives months without oxygen. A key adaptation is a coordinated reduction of cellular ATP production and utilization that may be signaled by changes in the concentrations of reactive oxygen species (ROS) and cyclic nucleotides (cAMP and cGMP). Little is known about the involvement of cyclic nucleotides in the turtle’s metabolic arrest and ROS have not been previously measured in any facultative anaerobes. The present study was designed to measure changes in these second messengers in the anoxic turtle. ROS were measured in isolated turtle brain sheets during a 40-min normoxic to anoxic transition. Changes in cAMP and cGMP were determined in turtle brain, pectoralis muscle, heart and liver throughout 4 h of forced submergence at 20–22°C. Turtle brain ROS production decreased 25% within 10 min of cyanide or N2-induced anoxia and returned to control levels upon reoxygenation. Inhibition of electron transfer from ubiquinol to complex III caused a smaller decrease in [ROS]. Conversely, inhibition of complex I increased [ROS] 15% above controls. In brain [cAMP] decreased 63%. In liver [cAMP] doubled after 2 h of anoxia before returning to control levels with prolonged anoxia. Conversely, skeletal muscle and heart [cAMP] remained unchanged; however, skeletal muscle [cGMP] became elevated sixfold after 4 h of submergence. In liver and heart [cGMP] rose 41 and 127%, respectively, after 2 h of anoxia. Brain [cGMP] did not change significantly during 4 h of submergence. We conclude that turtle brain ROS production occurs primarily between mitochondrial complexes I and III and decreases during anoxia. Also, cyclic nucleotide concentrations change in a manner suggestive of a role in metabolic suppression in the brain and a role in increasing liver glycogenolysis.  相似文献   

11.
The crucian carp (Carassius carassius) can tolerate anoxia for days to months, depending on the temperature. In this study, we applied 1H-NMR-based metabolomics to polar extracts of crucian carp brain, heart, muscle and liver samples obtained from fish exposed to either control normoxic conditions, acute anoxia (24 h), chronic anoxia (1 week) or reoxygenation (for 1 week following chronic anoxia) at 5 °C. Spectra of the examined tissues revealed changes in several energy-related compounds. In particular, anoxic stress resulted in decreased concentrations of phosphocreatine (muscle, liver) and glycogen (liver) and ATP/ADP (liver, heart and muscle) and increased concentrations of lactate (brain, heart, muscle) and beta-hydroxybutyric acid (all tissues). Likewise, increased concentrations of inhibitory compounds (glycine, gamma-amino butyric acid or GABA) and decreased concentrations of excitatory metabolites (glutamate, glutamine) were confirmed in the anoxic brain extracts. Additionally, a decrease of N-acetylaspartate (NAA), an important neuronal marker, was also observed in anoxic brains. The branched-chain amino acids (BCAA) valine/isoleucine/leucine increased in all anoxic tissues. Possibly, this general tissue increase can be due to an inhibited mitochondrial function or due to protein degradation/protein synthesis inhibition. In this study, the potential and strength of the 1H-NMR is highlighted by the detection of previously unrecognized changes in metabolites. Specifically, myo-inositol substantially decreased in the heart of anoxic crucian carp and anoxic muscle tissue displayed a decreased concentration of taurine, providing novel insights into the anoxia responses of the crucian carp.  相似文献   

12.
13.
14.
The wood frog (Rana sylvatica) can survive the winter in a frozen state, in which the frog’s tissues are also exposed to dehydration, ischemia, and anoxia. Critical to wood frog survival under these conditions is a global metabolic rate depression, the accumulation of glucose as a cryoprotectant, and a reliance on anaerobic glycolysis for energy production. Pyruvate kinase (PK) catalyzes the final reaction of aerobic glycolysis, generating pyruvate and ATP from phosphoenolpyruvate (PEP) and ADP. This study investigated the effect of each stress condition experienced by R. sylvatica during freezing, including dehydration and anoxia, on PK regulation. PK from muscle of frozen and dehydrated frogs exhibited a lower affinity for PEP (Km = 0.098 ± 0.003 and Km = 0.092 ± 0.008) than PK from control and anoxic conditions (Km = 0.065 ± 0.003 and Km = 0.073 ± 0.002). Immunoblotting showed greater serine phosphorylation on muscle PK from frozen and dehydrated frogs relative to control and anoxic states, suggesting a reversible phosphorylation regulatory mechanism for PK activity during freezing stress. Furthermore, PK from frozen animals exhibited greater stability under thermal and urea-induced denaturing conditions than PK from control animals. Phosphorylation of PK during freezing may contribute to mediating energy conservation and maintaining intracellular cryoprotectant levels, as well as increase enzyme stability during stress.  相似文献   

15.
Effect of modulators on protein kinase A (PKA) activity, promastigote growth and their ability to infect peritoneal macrophages was monitored. PKA inhibitors reduced [Protein Kinase Inhibitor (PKI) - 56%; H89 - 54.5%] kemptide phosphorylation by Leishmania major promastigote lysates, while activators increased phosphorylation (8-CPT-cAMP - 88%; Sp-cAMPS-AM - 152%). Activation was specifically inhibited by PKI. Phosphodiesterase inhibitors also increased kemptide phosphorylation (dipyridamole - 171%; rolipram - 106%; and 3-isobutyl-1-methyl-xanthine - 154%). Parasite proliferation was significantly retarded (200 nM H89; 100 μM myristoylated-PKI) or completely inhibited (500 nM H89) by culturing with PKA inhibitors. Incubation with dipyridamole or Sp-cAMPS-AM also inhibited proliferation. Brief treatment (2 h) with either H89, myristoylated-PKI, dipyridamole or Sp-cAMPS-AM reduced initial macrophage infection at days 1 and 2 (>40%) and on day 3 (>78% only for 100 μM myr-PKI). Characterization of leishmanial cAMP mediated signal transduction pathways will serve as the basis for the new drug design.  相似文献   

16.
The activity of the Na-H antiporter is inhibited by cyclic AMP-dependent protein kinase A (cAMP.PKA). The inhibitory effect of PKA on the Na-H antiporter is mediated through a regulatory protein that can be dissociated from the antiporter by limited protein digestion. PKA also inhibits the activity of the Na+/ HCO 3 ? cotransporter. We investigated whether the activity of Na+/HCO 3 ? cotransporter and the effect of PKA on this transporter may also be regulated by limited protein digestion. In rabbit renal cortical basolateral membranes (BLM) and in solubilized BLM reconstituted in liposomes (proteoliposomes), trypsin (100 μg) increased 22Na uptake in the presence of HCO3 but not in the presence of gluconate, indicating that trypsin does not alter diffusive 22Na uptake but directly stimulates the Na+/HCO 3 ? cotransporter activity. In proteoliposomes phosphorylated with ATP, the catalytic subunit (CSU) of cAMP-PKA decreased the activity of the Na+/HCO 3 ? cotransporter (expressed as nanomoles/mg protein/3s) from 23 ± 10 to 14 ± 6 (P < 0.01). In the presence of trypsin, the inhibitory effect of CSU of cAMP-PKA on the activity of Na+/HCO 3 ? cotransporter was blunted. To identify a fraction that was responsible for the inhibitory effect of the CSU on the Na+/HCO 3 ? cotransporter activity, solubilized proteins were separated by size exclusion chromatography. The effect of CSU of cAMP-PKA on the Na+/HCO 3 ? cotransporter activity was assayed in proteoliposomes digested with trypsin with the addition of a fraction containing the 42 kDa protein (fraction S+) or without the 42 kDa protein (fraction S?). With the addition of fraction S?, the CSU of cAMP-PKA failed to inhibit the Na+/HCO 3 ? cotransporter activity (control 27 ± 6, CSU 27 ± 3) while the addition of fraction S+ restored the inhibitory effect of CSU (27 ± 6 to 3 ± 0.3 P < 0.01). The CSU of cAMP-PKA phosphorylated several proteins in solubilized protein including a 42 kDa protein. Fluorescein isothiocyanate (FITC) labels components of the Na+/HCO 3 ? cotransporter including the 56 kDa and 42 kDa proteins. In trypsin-treated solubilized protein the 42 kDa protein was not identified with FITC labeling. The results demonstrate that the activity of the Na+/HCO 3 ? cotransporter is regulated by protein(s) which mediates the inhibitory effect of PKA. Limited protein digestion can dissociate this protein from the cotransporter.  相似文献   

17.
18.
19.
20.
We show that the antibody, clone mAb(D38C6), of the α isoform of the catalytic subunit of PKA (PKAcα) inhibits the kinase-catalyzed phosphorylation with low-nanomolar inhibitory potency (Ki = 2.4 nM). This property of the antibody was established by its capacity to displace a synthetic small-molecule active site-binding (orthosteric) photoluminescent ARC-Lum(Fluo) probe from the complex with PKAcα. Likely, the competitiveness of association of the two binders with the protein is coming from two excluding conformations of PKAcα to which the binders bind. mAb(D38C6) possesses a linear peptide epitope and it binds to the disordered C-tail of unliganded inactive conformer of PKAcα. ARC-Lum(Fluo) probes bind to the ordered and active conformation of PKAcα with Phe327 residue from the C-tail taking part in the formation of the active core.Consecutive application of these competitive PKAcα binders was used to develop an immunoassay allowing the determination of PKAcα concentration in complex biological solutions. At first, PKAcα was captured from the solution by the isoform-specific antibody and thereafter a high-affinity ARC-Lum(Fluo) probe was used to displace PKAcα from the binary complex. The developed immunoassay could be used for quantification of small amounts (starting from 93 pg, 2.3 fmol) of PKAcα in cell lysates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号