首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytokinin receptor AHK4 histidine kinase, identified in Arabidopsis thaliana, presumably acts in concert with downstream components, such as histidine-containing phosphotransfer (HPt) factors (AHPs) and response regulators (ARRs). In this respect, we characterized a loss-of-function mutant of the AHK4 gene, named cre1-1, which showed a reduced cell number within the vascular tissues in roots. Among the 10 type-A ARR members, the expression of ARR15 and ARR16 in roots was specifically and markedly reduced in cre1-1, suggesting a link between these response regulators and the AHK4-mediated signal transduction in roots. The results for transgenic plants expressing promoter::GUS or promoter::LUC fusion genes showed that both the ARR15 and the ARR16 gene products are accumulated upon cytokinin treatment in roots. The results of GFP-fusion experiments with onion epidermal cells further showed that ARR15 was found in the nucleus, and ARR16 mainly in the cytoplasm. Together, it was suggested that ARR15 and ARR16 are distinctly implicated in the presumed AHK4-mediated signaling pathway in roots.  相似文献   

2.
3.
Does NO play a role in cytokinin signal transduction?   总被引:1,自引:0,他引:1  
  相似文献   

4.
We used the cytokinin-responsive Arabidopsis response regulator (ARR)5 gene promoter fused to a beta-glucuronidase (GUS) reporter gene, and cytokinin oxidase (CKX) genes from Arabidopsis thaliana (AtCKX3) and maize (ZmCKX1) to investigate the roles of cytokinins in lateral root formation and symbiosis in Lotus japonicus. ARR5 expression was undetectable in the dividing initial cells at early stages of lateral root formation, but later we observed high expression in the base of the lateral root primordium. The root tip continues to express ARR5 during subsequent development of the lateral root. These results suggest a dynamic role for cytokinin in lateral root development. We observed ARR5 expression in curled/deformed root hairs, and also in nodule primordia in response to Rhizobial inoculation. This expression declined once the nodule emerged from the parent root. Root penetration and migration of root-knot nematode (RKN) second-stage larvae (L2) did not elevate ARR5 expression, but a high level of expression was induced when L2 reached the differentiating vascular bundle and during early stages of the nematode-plant interaction. ARR5 expression was specifically absent in mature giant cells (GCs), although dividing cells around the GCs continued to express this reporter. The same pattern was observed using a green fluorescent protein (GFP) reporter driven by the ARR5 promoter in tomato. Overexpression of CKX genes rendered the transgenic hairy roots resistant to exogenous application of the cytokinin [N6-(Delta2 isopentenyl) adenine riboside] (iPR). CKX roots have significantly more lateral roots, but fewer nodules and nematode-induced root galls per plant, than control hairy roots.  相似文献   

5.
Growth and glucuronidase (GUS) activity were followed in the cotyledons and rosette leaves of Arabidopsis thaliana (L.) Heynh (ecotype Wassilewskija) plants transformed with the GUS gene under the control of the cytokinin-dependent promoter of the ARR5 gene. The presence of active cytokinins in plant tissues was assessed from GUS activity. Plants were grown for three weeks on the nitrate-or ammonium-containing nutrient medium. In plants grown on ammonium nutrition, cotyledon and leaf growth was substantially suppressed as compared with plants feeding with nitrates. In correspondence with this growth inhibition, GUS activity was markedly lower in plant leaves grown on the ammonium-containing medium. This indicated a reduction in these leaves of active cytokinin forms capable of activation of the promoter for the ARR5 gene. On both nitrogen sources, GUS activity increased during leaf growth and dropped sharply after growth ceasing. This indicated that leaf growth depended on the cytokinin content in them. High GUS activity was detected in petioles and leaf conductive system, indicating leaf providing with cytokinins along the conductive vessels. A sharp drop in the GUS activity after leaf growth stoppage coincided in time with GUS activation in the leaf positioned above this leaf. This indicated possible cytokinin redistribution in the plant; its content could be a limiting factor for leaf growth. A higher growth rate in plants on nitrate nitrogen nutrition and corresponding high GUS activity in them are discussed in terms of cytokinin signaling role in leaf growth regulation mediated by nitrate.  相似文献   

6.
Cytokinin signaling in Arabidopsis thaliana utilizes a multi-step two-component signaling (TCS) system comprised of sensor histidine kinases (AHKs), histidine phosphotransfer proteins (AHPs), and response regulators (ARRs). Recent studies have suggested that the cytokinin TCS system is involved in a variety of other signaling and metabolic pathways. To further explore a potential function of the cytokinin TCS in the Arabidopsis dehydration stress response, we investigated the expression of all type-A ARR genes and a type-C ARR, ARR22, in both wild type and ahk single, double, and triple mutants in response to dehydration compared to cytokinin as well as dehydration tolerance of ahk mutants. We found that drought significantly induced the expression of a subset of ARR genes, ARR5, ARR7, ARR15, and ARR22. The results of expression analyses in ahk single, double, and triple mutants demonstrated that the cytokinin receptors AHK2 and AHK3 are redundantly involved in dehydration-inducible expression of ARR7, but not that of ARR5, ARR15, or ARR22. Dehydration tolerance assays showed that ahk2 and ahk3 single mutants exhibited enhanced dehydration tolerance compared with that of wild-type plants and ahk4 mutants, and that ahk2 ahk3 double mutants exhibited stronger drought tolerance than that of ahk3 ahk4, which exhibited more enhanced drought tolerance than that of wild-type plants and ahk single mutants. Taken together, these results demonstrate that while the cytokinin receptors AHK2 and AHK3 are critically involved in the dehydration tolerance response, both cytokinin receptor-dependent pathway and receptor-independent pathway occur in the dehydration response regulating ARR gene expression. In addition, preincubating ahk2, ahk3, ahk4, and the wild-type plants with cytokinin induced enhanced dehydration stress tolerance in these plants, demonstrating that cytokinins are involved in regulating plant response to dehydration stress.  相似文献   

7.
Cytokinins are hormones that regulate cell division and development. As a result of a lack of specific mutants and biochemical tools, it has not been possible to study the consequences of cytokinin deficiency. Cytokinin-deficient plants are expected to yield information about processes in which cytokinins are limiting and that, therefore, they might regulate. We have engineered transgenic Arabidopsis plants that overexpress individually six different members of the cytokinin oxidase/dehydrogenase (AtCKX) gene family and have undertaken a detailed phenotypic analysis. Transgenic plants had increased cytokinin breakdown (30 to 45% of wild-type cytokinin content) and reduced expression of the cytokinin reporter gene ARR5:GUS (beta-glucuronidase). Cytokinin deficiency resulted in diminished activity of the vegetative and floral shoot apical meristems and leaf primordia, indicating an absolute requirement for the hormone. By contrast, cytokinins are negative regulators of root growth and lateral root formation. We show that the increased growth of the primary root is linked to an enhanced meristematic cell number, suggesting that cytokinins control the exit of cells from the root meristem. Different AtCKX-green fluorescent protein fusion proteins were localized to the vacuoles or the endoplasmic reticulum and possibly to the extracellular space, indicating that subcellular compartmentation plays an important role in cytokinin biology. Analyses of promoter:GUS fusion genes showed differential expression of AtCKX genes during plant development, the activity being confined predominantly to zones of active growth. Our results are consistent with the hypothesis that cytokinins have central, but opposite, regulatory functions in root and shoot meristems and indicate that a fine-tuned control of catabolism plays an important role in ensuring the proper regulation of cytokinin functions.  相似文献   

8.
以海州香薷基因组DNA为模板,通过hiTAIL-PCR和walking技术扩增得到其细胞壁转化酶基因启动子(Ehcw INVP)片段,长度为1727 bp。生物信息学分析结果表明,该启动子片段中含有多个对脱落酸、赤霉素、细胞分裂素等激素以及对干旱、低温、重金属铜等逆境胁迫响应相关的顺式作用元件。将通过克隆得到的Ehcw INVP序列替换p CAMBIA1301载体上驱动GUS报告基因表达的Ca MV35S启动子序列,构建Ehcw INVP融合GUS的植物表达载体Ehcw INVP::GUS。转基因拟南芥植株的组织化学分析结果表明,海州香薷细胞壁转化酶基因启动子序列具有驱动GUS基因表达的功能,且在10μmol/L铜胁迫下,转基因拟南芥植株叶和根中的GUS活性分别约是对照组的1.7倍和1.5倍。  相似文献   

9.
ARR5-gene expression was studied in the course of natural leaf senescence and detached leaf senescence in the dark using Arabidopsis thaliana plants transformed with the P ARR5 -GUS gene construct. GUS-activity was measured as a marker of ARR5-gene expression. Chlorophyll and total protein amounts were also estimated to evaluate leaf senescence. Natural leaf senescence was accompanied by the progressive decline in the GUS-activity in leaves of the 2nd and 3rd nodes studied, and this shift of GUS-activity was more pronounced than the loss of chlorophyll content. The ability of the ARR5-gene promoter to respond to cytokinin was not eliminated during natural leaf senescence, as was demonstrated by a cytokinin-induced increase in GUS activity in leaves after their detachment and incubation on benzyladenine (BA, 5 × 10−6 M) in the dark. Leaf senescence in the dark was associated with the further decrease in the GUS-activity. The ARR5-gene promoter response to cytokinin was enhanced with the increase of the age of plants, taken as a source of leaves for cytokinin treatments. Hence, although the expression of the ARR5 gene reduces during natural and dark/detached leaf senescence, the ARR5-gene sensitivity to cytokinin was maintained in both cases and even increased with the leaf age. This data suggest that the ARR5 gene, which belongs to the type-A negative regulators of plant response to cytokinin, could be a feedback regulator able to prevent retardation by cytokinin of leaf senescence when it is important for plant life. Growth regulators either reduced ARR5 gene response to cytokinin during senescence of mature detached leaves in the dark (SA, meJA, ABA, SP) or increased it (IAA), thus modifying the resulting rate of its expression.  相似文献   

10.
Regulation of the cytosolic acetyl-coenzyme A carboxylase (ACCase) gene promoter from common bean (Phaseolus vulgaris) was studied in transgenic Arabidopsis (Arabidopsis thaliana) plants using a beta-glucuronidase (GUS) reporter gene fusion (PvACCase::GUS). Under normal growth conditions, GUS was expressed in hydathodes, stipules, trichome bases, flowers, pollen, and embryos. In roots, expression was observed in the tip, elongation zone, hypocotyl-root transition zone, and lateral root primordia. The PvACCase promoter was induced by wounding, Pseudomonas syringae infection, hydrogen peroxide, jasmonic acid (JA), ethylene, or auxin treatment. Analysis of PvACCase::GUS expression in JA and ethylene mutants (coronatine insensitive1-1 [coi1-1], ethylene resistant1-1 [etr1-1], coi1-1/etr1-1) suggests that neither JA nor ethylene perception participates in the activation of this gene in response to wounding, although each of these independent signaling pathways is sufficient for pathogen or hydrogen peroxide-induced PvACCase gene expression. We propose a model involving different pathways of PvACCase gene activation in response to stress.  相似文献   

11.
12.
The Arabidopsis thaliana AHK4 histidine kinase (also known as CRE1 or WOL) acts as a cytokinin signal transducer, presumably, in concert with downstream components, such as histidine-containing phosphotransfer factors (AHPs) and response regulators (ARRs), through the histidine-to-aspartate (His-->Asp) phosphorelay. Among 10 members of the type-A ARR family, the cytokinin-induced expression of ARR15 in roots is selectively impaired in the cre1-1 mutant, which carries a mutation in the AHK4 gene, suggesting a link between this type-A response regulator and the AHK4-mediated cytokinin signal transduction in roots. To address this issue further, we characterized a T-DNA insertion mutant of ARR15, and also constructed transgenic lines (referred to as ARR15-ox) that overexpress the ARR15 gene in a manner independent of cytokinin. While the T-DNA insertion mutant (arr15-1) showed no apparent phenotype, the cytokinin-independent overexpression of ARR15 in ARR15-ox plants resulted in a reduced sensitivity toward exogenously applied cytokinin, not only in elongation of roots in plants, but also in green callus formation (or shoot formation) in explants. Cytokinin-induced expressions of certain type-A ARRs were also down-regulated in ARR15-ox plants. These results support the view that ARR15 acts as a repressor that mediates a negative feedback loop in the cytokinin and AHK4-mediated His-->Asp phosphorelay.  相似文献   

13.
拟南芥AtNHX2启动子的克隆及表达模式分析   总被引:2,自引:0,他引:2  
AtNHX2基因是拟南芥NHX基因家族的一员,编码了一种液泡膜中的Na+/H+反向运输体并对拟南芥的耐盐能力起着重要的作用.采用PCR扩增的方法克隆了拟南芥AtNHX2基因启始密码子上游约2.8kb的DNA片段,并将其克隆到植物表达载体pCAMBIA1301-1中,通过基因枪轰击洋葱表皮瞬时表达的方法,初步检测启动子的活性.将重组质粒pCAMBIA1301-1/AtNHX2 promoter转化拟南芥并筛选纯合子.AtNHX2 promoter-GUS分析显示AtNHX2在所有的组织中均有表达,包括根尖.在保卫细胞中检测到了强烈的GUS表达,这一结果表明,AtNHX2对特殊细胞的pH调控和K+自身稳定方面起着重要的作用.AtNHX2启动子的活性可被NaCl抑制,并且抑制的强度和NaCl的浓度成正相关.300 mmol/L KCl处理可增强启动子的活性,说明NaCl和KCl是在转录水平上调控AtNHX2的表达.在老叶中GUS活性比在新叶中GUS活性强,这说明了AtNHX2优先将有毒的离子积累在老叶中,从而有利于植物的正常发育.在根毛细胞中也观测到了强烈的GUS活性,这就暗示了AtNHX2在扩大的液泡中储存Na+.  相似文献   

14.
Recently we reported 6-(2-hydroxy-3-methylbenzylamino)purine (PI-55) as the first molecule to antagonize cytokinin activity at the receptor level. Here we report the synthesis and in vitro biological testing of eleven BAP derivatives substituted in the benzyl ring and in the C2, N7 and N9 positions of the purine moiety. The ability of the compounds to interact with Arabidopsis cytokinin receptors AHK3 and CRE1/AHK4 was tested in bacterial receptor and in live-cell binding assays, and in an Arabidopsis ARR5:GUS (Arabidopsis response regulator 5) reporter gene assay. Cytokinin activity of the compounds was determined in classical cytokinin biotests (tobacco callus, wheat leaf senescence and Amaranthus bioassays). 6-(2,5-Dihydroxybenzylamino)purine (LGR-991) was identified as a cytokinin receptor antagonist. At the molecular level LGR-991 blocks the cytokinin receptor CRE1/AHK4 with the same potency as PI-55. Moreover, LGR-991 acts as a competitive inhibitor of AHK3, and importantly shows reduced agonistic effects in comparison to PI-55 in the ARR5:GUS reporter gene assay and in cytokinin bioassays. LGR-991 causes more rapid germination of Arabidopsis seeds and increases hypocotyl length of dark-grown seedlings, which are characteristics of plants with a reduced cytokinin status. LGR-991 exhibits a structural motive that might lead to preparation of cytokinin antagonists with a broader specificity and reduced agonistic properties.  相似文献   

15.
16.
17.
ARR22 (At3g04280) is a novel Type A response regulator whose function in Arabidopsis is unknown. RT-PCR analysis has shown that expression of the gene takes place in flowers and developing pods with the tissues accumulating different proportions of splice variants. Spatial analysis of expression, using ARR22::GUS plants as a marker, has revealed that the reporter protein accumulates specifically at the junction between the funiculus and the chalazal tissue. Expression can be up-regulated at this location by wounding the developing seed. A detailed analysis has failed to detect ARR22 expression at any other sites and, to support this assertion, the only evidence for tissue ablation in ARR22::Barnase plants is during seed development, with the consequence that embryo growth is attenuated. Ectopic expression of ARR22, driven by either the CaMV 35S or the pea plastocyanin (PPC) promoters, resulted in the generation of plants exhibiting extremely stunted root and shoot growth. No viable progeny could be isolated from the PPC::ARR22 transgenic lines. An RT-PCR analysis of a recently annotated gene (ARR24-At5g26594), that exhibits 66% amino acid similarity to ARR22, has shown that expression is also predominantly in floral and silique tissues. Examination of ARR24::GUS plants has revealed that the activity of the promoter is primarily restricted to pollen grains indicating that this gene is unlikely to display an overlapping function with ARR22. Analyses of individual KO lines of either ARR22 or ARR24 have failed to identify a mutant phenotype under the growth conditions employed and the double knockout ARR22/ARR24 line is also indistinguishable from wild-type plants. These results are discussed in the light of the proposed role of response regulators in plant growth and development.  相似文献   

18.
从水稻基因组文库中筛选得到一个水稻GST基因,命名为OsGSTL1.半定量RT-PCR分析表明OsGSTL1基因的表达不受绿磺隆、乙烯利、脱落酸、水杨酸和茉莉酸甲酯的诱导,因此该基因可能与植物抗逆性无关.为了研究OsGSTL1启动子在植物体内的表达特性,将OsGSTL1起始位点5'端上游不同长度的调控序列与报告基因GUS融合,并在洋葱表皮瞬间表达和拟南芥中稳定表达.研究表明:在洋葱表皮细胞中,160bp及更长的上游调控序列均能启动GUS基因的表达;而在转基因拟南芥中,含有2155 bp的上游序列的PGZ2.1::GUS具有时空表达的特性,在转基因的早期幼苗中GUS基因在子叶中特异性表达,但在根中没有表达;而在幼苗生长的后期,根、茎、叶中都有少量的表达.但包含1 224 bp的上游序列的PGZ1.2::GUS却表现为组成型表达的特性.由此推测,OsGSTL1启动子启动的基因表达可能与幼苗的营养代谢相关;而OsGSTL1启动子的时空表达相关元件可能位于OsGSTL1翻译起始位点5'端上游-2155 bp至-1224 bp范围内.  相似文献   

19.
The single-copy PetC gene encoding the chloroplast Rieske FeS protein of Arabidopsis thaliana consists of five exons interrupted by four introns and encodes a protein of 229 amino acid residues with extensive sequence similarity to the chloroplast Rieske proteins of other higher plants. The N-terminal 50 amino acid residues constitute a presequence for targeting to the chloroplast and the remaining 179 amino acid residues make up the mature protein. Three of the introns are in identical positions in the PetC gene of Chlamydomonas reinhardtii, suggesting that they are of ancient origin. RNA-blot hybridisation showed that the gene was expressed in shoots, but not roots, and was light regulated and repressed by sucrose. The expression of chimeric genes consisting of PetC promoter fragments fused to the beta-glucuronidase (GUS) reporter gene was examined in A. thaliana and tobacco. In A. thaliana, GUS activity was detected in leaves, stems, flowers and siliques, but not in roots, and showed a strong correlation with the presence of chloroplasts. In transgenic tobacco, low levels of GUS activity were also detected in light-exposed roots. GUS activity in transgenic tobacco seedlings was light regulated and was decreased by norflurazon in the light suggesting regulation of PetC expression by plastid signals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号