首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 The inheritance of resistance to southern rust (caused by Puccinia polysora Underw.) was investigated in two F2:3 populations derived from crossing two temperate-adapted, 100% tropical maize (Zea mays L.) inbred lines (1416-1 and 1497-2) to a susceptible Corn Belt Dent hybrid, B73Ht×Mo17Ht. The inbred lines possess high levels of resistance to southern rust and may be unique sources of resistance genes. Heritability for resistance was estimated as 30% and 50% in the two populations from regression of F2:3 family mean scores on F2 parent scores, and as 65% and 75% from variances among F2:3 families on a single-plot basis. RFLP loci on three chromosomal regions previously known to possess genes for resistance to either southern rust or common rust (P. sorghi Schw.) were used to localize genes affecting resistance to southern rust in selected genotypes of both populations, and to estimate their genetic effects. A single locus on 10S, bnl3.04, was associated with 82–83% of the variation among field resistance scores of selected F2:3 families in the two populations. Loci on chromosomes 3 (umc26) and 4 (umc31) were significantly associated with resistance in the 1497-2 population, each accounting for 13–15% of the phenotypic variation for F2:3 field scores. Multiple-marker locus models, including loci from chromosomes 3, 4, and 10 and their epistatic interactions, accounted for 96–99% of the variation in F2:3 field scores. Similar results were obtained for resistance measured by counting pustules on juvenile plants in the greenhouse. An attempt was made to determine if the major gene for resistance from 1416-1 was allelic to Rpp9, which is also located on 10S. Testcross families from the cross (1416-1×B37Rpp9)×B14AHt were evaluated for resistance to southern rust in Mexico. Neither source of resistance was completely effective in this environment, preventing determination of allelism of the two genes; however, both sources of resistance had better partial resistance to southern rust than did B14AHt. Received: 6 May 1997/Accepted: 19 September 1997  相似文献   

2.
 The partial resistance to leaf rust in barley is a quantitative resistance that is not based on hypersensitivity. To map the quantitative trait loci (QTLs) for partial resistance to leaf rust, we obtained 103 recombinant inbred lines (RILs) by single-seed descent from a cross between the susceptible parent L94 and the partially resistant parent Vada. These RILs were evaluated at the seedling and adult plant stages in the greenhouse for the latent period (LP) of the rust fungus, and in the field for the level of infection, measured as area under the disease progress curve (AUDPC). A dense genetic map based on 561 AFLP markers had been generated previously for this set of RILs. QTLs for partial resistance to leaf rust were mapped using the “Multiple Interval Mapping” method with the putative QTL markers as cofactors. Six QTLs for partial resistance were identified in this population. Three QTLs, Rphq1, Rphq2 and Rphq3, were effective at the seedling stage and contributed approximately 55% to the phenotypic variance. Five QTLs, Rph2, Rphq3, Rphq4, Rphq5, and/or Rphq6 contributed approximtely. 60% of the phenotypic variance and were effective at the adult plant stage. Therefore, only the QTLs Rphq2 and Rhpq3 were not plant-stage dependent. The identified QTLs showed mainly additive effects and only one significant interaction was detected, i.e. between Rphq1 and Rphq2. The map positions of these QTLs did not coincide with those of the race-specific resistance genes, suggesting that genes for partial resistance and genes for hypersensitive resistance represent entirely different gene families. Also, three QTLs for days to heading, of which two were also involved in plant height, were identified in the present recombinant inbred population. These QTLs had been mapped previously on the same positions in different populations. The perspectives of these results for breeding for durable resistance to leaf rust are discussed. Received: 15 July 1997 / Accepted: 30 December 1997  相似文献   

3.
By using a high-density AFLP marker linkage map, six QTLs for partial resistance to barley leaf rust (Puccinia hordei) isolate 1.2.1. have been identified in the RIL offspring of a cross between the partially resistant cultivar ’Vada’ and the susceptible line L94. Three QTLs were effective at the seedling stage, and five QTLs were effective at the adult plant stage. To study possible isolate specificity of the resistance, seedlings and adult plants of the 103 RILs from the cross L94×’Vada’ were also inoculated with another leaf rust isolate, isolate 24. In addition to the two QTLs that were effective against isolate 1.2.1. at the seedling stage, an additional QTL for seedling resistance to isolate 24 was identified on the long arm of chromosome 7. Of the eight detected QTLs effective at the adult plant stage, three were effective in both isolates and five were effective in only one of the two isolates. Only one QTL had a substantial effect at both the seedling and the adult plant stages. The expression of the other QTLs was developmental-stage specific. The isolate specificity of the QTLs supports the hypothesis of Parlevliet and Zadoks (1977) that partial resistance may be based on a minor-gene-for-minor-gene interaction. Received: 16 February 1999 / Accepted: 20 February 1999  相似文献   

4.
The inheritance of rust resistance was studied in sugar cane seedling populations using a factorial mating design over 1 summer and 2 winter seasons. Frequency distributions for rust infection pooled over 2 winter seasons for resistant x resistant parents were highly skewed with the majority of progenies grouped towards the resistant classes, whereas crosses between susceptible x highly susceptible parents tended to be skewed with the majority of progenies grouped towards the susceptible ones. Both categories of crosses produced transgressive segregants at either extremes. Distribution of infection within progeny of the selfed resistant parent ’R 570’ and distribution in the majority of crosses tended to support the hypothesis of a major gene with a dominant effect for resistance. However, the action of other minor genes acting in a quantitative way is also suggested. The female (F) and male (M) variance components were very important, and F×M interaction indicated the existence of non-additive genetic effects. F×S, M×S and F×M×S interaction mean squares were generally low or insignificant. Broad-sense heritability for the individual season ratings and for the combined ratings was high (0.75–0.90), whereas narrow-sense heritability was generally moderate (0.40–0.52) with the additive genetic effects accounting for 44–68% of the total genetic variation. The implications of these findings in the breeding for rust resistance in the local programme are discussed. Received: 2 June 1999 / Accepted: 22 June 1999  相似文献   

5.
A major rust resistance gene has been identified in a self-progeny of the sugarcane cultivar R570. Until now, this gene was known to be linked to a marker revealed by the sugarcane probe CDSR29 but unassigned to any linkage group of the current genetic map. We used synteny relationships between sugarcane and three other grasses in an attempt to saturate the region around this rust resistance gene. Comparison of sugarcane, sorghum, maize and rice genetic maps led to the identification of homoeologous chromosome segments at the extremity of sorghum linkage group D, rice linkage group 2, maize linkage group 4 and in the centromeric region of maize linkage group 5. One hundred and eighty-four heterologous probes were selected and tested for cross-hybridization with sugarcane DNA; 106 produced a good hybridization signal and were hybridized on 88 individuals of the R570 selfed progeny. Two hundred and seventeen single-dose markers were added to the R570 genetic map, of which 66% mapped to linkage group VII, together with the rust resistance gene. This gene has now been mapped to the end of a co-segregating group consisting of 19 RFLP markers. None of the mapped loci were located closer to the gene than CDSR29. The gene thus appears to reside at the edge of a ’’synteny cluster’’ used to describe the different grass genomes. Received: 12 January 2000 / Accepted: 21 March 2000  相似文献   

6.
The Hordeum vulgare accession ’HOR 1063’ was crossed with the barley cultivar Krona, and 220 doubled haploid lines were produced based on this cross. A molecular map was constructed based on RFLP markers. Field trials were performed over 2 years and at two locations. In field trials, resistance to leaf rust by means of artificial infection, heading date, plant height and Kernel weight were assessed. For leaf rust resistance, 4 QTLs were localised, that explained 96.1% of the genetic variation. One QTL on chromosome 4H confirmed a position found in another genetic background and one mapped to the same position as Rph16 on chromosome 2H. All digenic effects decreased the effects of the respective QTLs. In addition to the denso-locus and the hex-v locus, other QTLs influencing heading date, plant length and kernel weight were found in this cross. Received: 16 July 1999 / Accepted: 7 September 1999  相似文献   

7.
 Genome-analysis tools are useful for dissecting complex phenotypes and manipulating determinants of these phenotypes in breeding programs. Quantitative trait locus (QTL)-analysis tools were used to map QTLs conferring adult plant resistance to stripe rust (caused by Puccinia striiformis f.sp. hordei) in barley. The resistance QTLs were introgressed into a genetic background unrelated to the mapping population with one cycle of marker-assisted backcrossing. Doubled-haploid lines were derived from selected backcross lines, phenotyped for stripe-rust resistance, and genotyped with an array of molecular markers. The resistance QTLs that were introgressed were significant determinants of resistance in the new genetic background. Additional resistance QTLs were also detected. The susceptible parent contributed resistance alleles at two of these new QTLs. We hypothesize that favorable alleles were fixed at these new QTLs in the original mapping population. Genetic background may, therefore, have an important role in QTL-transfer experiments. A breeding system is described that integrates single-copy and multiplex markers with confirmation of the target phenotype in doubled-haploid lines phenotyped in field tests. This approach may be useful for simultaneously producing agronomically useful germplasm and contributing to an understanding of quantitatively inherited traits. Received: 6 May 1997 / Accepted: 1 September 1997  相似文献   

8.
 A set of 150 doubled-haploid (DH) barley (Hordeum vulgare L.) lines derived from the cross of Harrington/TR306 was used to determine the number and chromosomal location of quantitative trait loci (QTLs) controlling resistance to cereal aphids. The experiments were conducted under natural infestation in the field during two growing seasons: 1994 and 1995. Aphid resistance was measured by counting the number of aphids per plot. Counts were made on a weekly basis. Each year at the time of maximum aphid density there was an obvious difference in reaction between the parental genotypes. The DH lines showed continuous variation for aphid density. Simple interval mapping and simplified composite interval mapping revealed that the principal QTL determining cereal aphid resistance is on the distal region of the short arm of chromosome 1. This aphid-resistance QTL is linked with a heading-date QTL. At the time of highest aphid infestation, this QTL accounted for 31% and 22% of the total variance of aphid density in 1994 and 1995, respectively. A QTL on chromosome 5 was also detected but only by simplified composite interval mapping. However, the largest consistent effect was due to the QTL on the short arm of chromosome 1. This QTL may be a useful target for marker-assisted selection for adult plant cereal aphid resistance in barley. Received: 10 September 1996/Accepted: 11 October 1996  相似文献   

9.
 We sequenced and genetically mapped the myo-inositol 1-phosphate synthase (MIPS) genes of maize (Zea mays L.) and barley (Hordeum vulgare L). Our objective was to determine whether the genetic map positions of these MIPS loci correspond with the location of the low phtyic acid 1 (lpa1) mutations that were previously identified in maize and barley. Seven MIPS-homologous sequences were mapped to positions on maize chromosomes 1S, 4L, 5S, 6S, 8L, 9S and 9L, and a similar number of divergent MIPS sequences were amplified from maize. To the extent that we can compare across different genetic mapping populations, the position of the MIPS gene on maize chromosome 1S is identical to the location of the maize lpa1 mutation. However, only one MIPS sequence was identified in barley and this gene was mapped to a locus on chromosome 4H that is separate from the barley lpa1 mutation on chromosome 2H. Although several RFLP markers linked to the barley MIPS gene on chromosome 4H also detect loci near barley lpa1 on chromosome 2H, our experiments failed to reveal a second MIPS gene that could be associated with the barley lpa1 mutation. Therefore, genetic mapping results from this study support the MIPS candidate-gene hypothesis for maize lpa1, but do not support the MIPS candidate-gene-hypothesis for barley lpa1. These opposing results contradict the hypothesis that maize lpa1 and barley lpa1 are mutations of orthologous genes, which is suggested by the similar biochemical phenotypes of these mutants. Yet, comparisons of RFLP mapping studies show loci that are homologous between maize chromosome 1S, barley chromosome 4H and barley chromosome 2H, including regions flanking the respective MIPS and/or lpa1 loci. This putative relationship, between the regions flanking the lpa1 mutations on maize 1S and barley 2H, also supports the assertion that these mutations are orthologous despite contradictory results between our maize and barley candidate-gene experiments. Received: 24 August 1998 / Accepted: 19 December 1998  相似文献   

10.
In many temperate areas of the world, leaf rust is becoming an important disease of barley. In the last decade, new races of Puccinia hordei G. Otth have emerged which are virulent against the so-far most-effective race-specific resistance genes, such as Rph7. Marker-assisted selection greatly facilitates the pyramidization of two or more resistance genes in a single variety in order to achieve a more comprehensive resistance. Such a strategy requires the development of efficient and reliable markers. Here, we have developed a linkage map and found RFLP markers closely linked to the Rph7.g resistance gene on chromosome 3HS of barley. The receptor-like kinase gene Hv3Lrk that maps at 3.2 cM from Rph7.g was used to develop a PCR-based marker by exploiting a single nucleotide polymorphism. This marker was detected in 11 out of 12 (92%) barley lines having Rph7 and represents a valuable tool for marker-assisted selection. In addition, the identification of markers flanking Rph7.g provides the basis for positional cloning of this gene. Received: 1 December 1999 / Accepted: 28 February 2000  相似文献   

11.
Pyrenophora graminea is the seed-borne pathogen causal agent of barley leaf stripe disease. Near-isogenic lines (NILs) carrying resistance of the cv ”Thibaut” against the highly virulent isolate Dg2 were obtained by introgressing the resistance into the genetic background of the susceptible cv ”Mirco”. The segregation of the resistance gene was followed in a F2 population of 128 plants as well as on the F3 lines derived from the F2 plants; the segregation fitted the 1:2:1 ratio for a single gene. By using NILs, a RAPD marker associated with the resistance gene was identified; sequence-specific (STS) primers were designed on the basis of the amplicon sequence and a RILs mapping population with an AFLP-based map were used to position this molecular marker to barley chromosome 1 S (7HS). STS and CAPS markers were developed from RFLPs mapped to the telomeric region of barley chromosome 7HS and three polymorphic PCR-based markers were developed. The segregation of these markers was followed in the F2 population and their map position with respect to the resistance gene was determined. Our results indicate that the Thibaut resistance gene, which we designated as Rdg2a, maps to the telomeric region of barley chromosome 7HS and is flanked by the markers OPQ-9700 and MWG 2018 at distances of 3.1 and 2.5 cM respectively. The suitability of the PCR-based marker MWG2018 in selection- assisted barley breeding programs is discussed. Received: 22 June 2000 / Accepted: 16 October 2000  相似文献   

12.
 The fungus Synchytrium endobioticum, the causal agent of potato wart disease, is subject to world-wide quarKantine regulations due to the production of persistent resting spores and lack of effective chemical control measures. The selection of Synchytrium-resistant potato cultivars may be facilitated by using markers closely linked with a resistance gene or by transferring a cloned gene for resistance into susceptible cultivars. Sen1, a gene for resistance to Synchytrium endobioticum race 1, was localized on potato chromosome XI in a genomic region which is related to the tobacco genome segment harbouring the N gene for resistance to TMV. Using N as probe, we isolated homologous cDNA clones from a Synchytrium-resistant potato line. The N-homologous sequences of potato identified by RFLP mapping a family of resistance gene-like sequences closely linked with the Sen1 locus. Sequence analysis of two full-length N-homologous cDNA clones revealed the presence of structural domains associated with resistance gene function. One clone (Nl-25) encodes a polypeptide of 61 kDa and harbours a Toll-interleukin like region (TIR) and a putative nucleotide binding site (NBS). The other clone (Nl-27) encodes a polypeptide of 95 kDa and harbours besides the TIR and NBS domains five imperfect leucine-rich repeats (LRRs). Both clones have at their amino terminus a conserved stretch of serine residues that was also found in the N gene, the RPP5 gene from Arabidopsis thaliana and several other resistance gene homologues, suggesting a function in the resistance response. Cloning of the disease resistance locus based on map position and the establishment of PCR-based marker assays to assist selection of wart resistant potato genotypes are discussed. Received: 4 August 1998 / Accepted: 14 August 1998  相似文献   

13.
QTL mapping of resistance to Sporisorium reiliana in maize   总被引:6,自引:0,他引:6  
We mapped and characterized quantitative trait loci (QTL) for resistance to Sporisorium reiliana. A population of 220 F3 families produced from the cross of two European elite inbreds (D32, D145) was evaluated with two replications at a French location with high natural incidence of S. reiliana and at a Chinese location employing artificial inoculation. The 220 F3 families were genotyped with 87 RFLP and seven SSR markers. Using composite interval mapping, we identified two different sets of 3 and 8 QTL for the French and the Chinese locations explaining 13% and 44% of respectively. Individual QTL explained up to 14% of σ^2 p. The 11 QTL mapped to eight maize chromosomes and displayed mostly additive or partial dominant gene action. Significant digenic epistatic interactions were detected for one pair of these QTL. Only a few QTL for S. reiliana were in common with QTL for resistance to Ustilago maydis and Puccinia sorghi, identified at a German location for the same population. Consequently, in our materials resistance to these three fungal pathogens of maize seems to be inherited independently. Received: 14. December 1998 / Accepted: 30 January 1999  相似文献   

14.
A major gene determining non-specific adult-plant disease resistance against stripe rust (Puccinia striiformis) designated Yrns-B1 was mapped by using a cross between ’Lgst.79–74’ (resistant) and ’Winzi’ (susceptible). Analyzing F3 lines of two consecutive experimental years contrary modes of inheritance were observed due to the intermediate character of the gene and the difference in the disease pressure during the seasons. Using the disease scoring data of both experimental years independently two maps were constructed detecting Yrns-B1 20.5 and 21.7 cM, respectively, proximal to the wheat microsatellite (WMS) marker Xgwm493 on the short arm of chromosome 3BS. The genetic relationships to other major genes or to quantitative trait loci controlling adult plant disease resistance against rusts in wheat are discussed. Received: 27 May 1999 / Accepted: 28 September 1999  相似文献   

15.
Inheritance of resistance to covered smut in the barley line Q21861 was studied using a doubled-haploid population produced by crossing Q21861 with the line SM89010. Based on 3 years of screening in the field and two seasons in the greenhouse, segregation for resistance/susceptibility fits a one-gene ratio, indicating a single major gene for resistance in Q21861. Of 440 random 10-mer primers tested using bulked segregant analysis, one primer (OPJ10) resulted in a reproducible polymorphic band. RAPD marker OPJ10450 co-segregated in repulsion with the covered smut resistance. This marker was converted to a sequence-characterized amplified region (SCAR) marker linked in coupling (5.5 cM) with the covered smut resistant gene in Q21861. The SCAR marker was amplified in the line TR640 which is also resistant to covered smut, but not in the other resistant lines. The SCAR marker will be useful for marker-assisted selection for covered smut in barley breeding programs. Received: 9 January 2001 / Accepted: 31 May 2001  相似文献   

16.
A detailed RFLP map was constructed of the distal end of the short arm of chromosome 1D of Aegilops tauschii and wheat. At least two unrelated resistance-gene analogs (RGAs) mapped close to known leaf rust resistance genes (Lr21 and Lr40) located distal to seed storage protein genes on chromosome 1DS. One of the two RGA clones, which was previously shown to be part of a candidate gene for stripe rust resistance (Yr10) located within the homoeologous region on 1BS, identified at least three gene family members on chromosome 1DS of Ae. tauschii. One of the gene members co-segregated with the leaf rust resistance genes, Lr21 and Lr40, in Ae. tauschii and wheat segregating families. Hence, a RGA clone derived from a candidate gene for stripe rust resistance located on chromosome 1BS detected candidate genes for leaf rust resistance located in the corresponding region on 1DS of wheat. Received: 10 January 2000 / Accepted: 25 March 2000  相似文献   

17.
 A dominant gene conferring resistance to all known races of Puccinia hordei Otth was identified in two accessions of Hordeum vulgare ssp. spontaneum. Using restriction fragment length polymorphism (RFLP) markers the gene was mapped on chromosome 2HS in doubled-haploid populations derived from crosses of both accessions to the susceptible cultivar L94. Until now, complete leaf rust resistance was not known to be conditioned by genetic factors on this barley chromosome. Therefore, the designation Rph16 is proposed for the gene described in this study. A series of sequence tagged site (STS) and cleaved amplified polymorphic sequence (CAPS) markers were generated by conversion of RFLP probes which originate from the chromosomal region carrying the resistance gene. Two PCR-based markers were shown to co-segregate with the Rph16 gene in both populations thus providing the basis for marker-assisted selection. Received: 20 May 1998 / Accepted: 9 June 1998  相似文献   

18.
 Arbuscular mycorrhizal fungi (AMF) and Erysiphe graminis are obligate biotrophic fungi with different outcomes in their interaction with plants, different targeted host tissues, but similar patterns of development and infection processes. These similarities raise the question of whether the two types of biotrophic fungal infections have common features in their regulation. To investigate this question, we compared a number of Ror and Rar barley mutants susceptible to E.graminis f. sp. hordei, as well as their resistant progenitors, for susceptibility to infection by the AMF Glomus mosseae. The two powdery mildew-resistant lines BC Ingrid and Sultan presented a similar reduction in G. mosseae development within roots when compared to the wildtype cultivar Ingrid, indicating a systemic effect of the altered genes in the plant. Ror and Rar mutants, in which susceptibility to powdery mildew is restored, showed increased resistance to AM fungal development in their roots when compared to their progenitors, which suggests that corresponding mutations must have affected genes which differentially modulate symbiotic and pathogenic biotrophic plant-fungus interactions. Accepted: 16 September 1999  相似文献   

19.
Barley is compatible with the rice blast pathogen (Pyricularia oryzae Cav.). Fiftyfour barley cultivars of diverse geographic origin and pedigree were inoculated with three isolates of the rice blast pathogen. All barley genotypes showed blast disease symptoms when inoculated at the seedling stage with each of the three isolates. However, one genotype showed quantitative resistance to all three isolates and three genotypes showed quantitative resistance to one or two of the isolates. By inoculating a set of doubled-haploid lines derived from the cross ’Harrington’ (susceptible) and ’TR306’ (resistant) with isolate Ken 54–20, we mapped quantitative trait loci (QTLs) determining seedling stage blast resistance. At all QTLs, TR306 contributed the resistance alleles. The four QTLs, when considered jointly, explained 43.6% of the phenotypic variation in blast symptom expression. A comparison of the blast resistance QTLs with other disease resistance QTLs reported in this population revealed a region on chromosome 4 (4H) with multiple disease resistance loci. It will be useful to capitalize on the syntenic relationship of rice and barley and to integrate information on species-specific resistance genes with information on the reaction of the two species to the same pathogen. Received: 7 January 2000 / Accepted: 22 September 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号