首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TheRpg1 gene in barley has provided satisfactory levels of stem rust resistance for the last 50 years. The appearance of a new race of stem rust that is virulent toRpg1 has resulted in efforts to incorporate new stem rust resistance genes into barley. Marker-assisted selection may provide the only means of combining this useful gene with resistance genes for which no virulent races have been identified. Several RFLP markers have been identified as linked to theRpg1 locus. One of these, ABG704 was converted into a post-amplification restriction polymorphism. To generate a specific PCR-amplifiable polymorphism the sequence of the ABG704 locus from four barley cultivars was determined. Primers were developed that can detect a single-base difference between resistant and susceptible cultivars. The successful conversion of an RFLP marker to an allele-specific PCR-based marker not only demonstrates that this type of conversion is possible for cereals, but also results in an immediately useful marker for application to plant breeding programmes.  相似文献   

2.
Many characterized plant disease resistance genes encode proteins which have conserved motifs such as the nucleotide binding site. Conservation extends across different species, therefore resistance genes from one species can be used to isolate homologous regions from another by employing DNA sequences encoding conserved protein motifs as probes. Here we report the isolation and characterization of a barley (Hordeum vulgare L.) resistance gene analog family consisting of nine members homologous to the maize rust resistance gene Rp1-D. Five barley Rp1-D homologues are clustered within approximately 400 kb on chromosome 1(7H), near, but not co-segregating with, the barley stem rust resistance gene Rpg1; while others are localized on chromosomes 3(3H), 5(1H), 6(6H) and 7(5H). Analyses of predicted amino-acid sequences of the barley Rp1-D homologues and comparison with known plant disease resistance genes are presented.  相似文献   

3.
The barley (Hordeum vulgare L.) stem rust (Puccinia graminis f. sp. tritici) resistance gene Rpg1 encodes a serine/threonine protein kinase with two tandem kinase domains. The Rpg1 gene family was identified from the cv. Morex and consists of five additional members with divergent homology to Rpg1. All family members encode serine/threonine kinase-like proteins with at least one predicted catalytically active kinase domain. The five family members were sequenced from cDNA and genomic DNA and genetically mapped. The family member most closely related to Rpg1, ABC1037, is located on chromosome 1(7H) bin 01, very near (∼50 kb) but not co-segregating with Rpg1. Two others, ABC1036 and ABC1040, are closely related to each other and tightly linked on chromosome 7(5H) bin 07. ABC1041 mapped to chromosome 7(5H) bin 13, tightly linked to the rust resistance genes rpg4 and Rpg5 providing resistance to barley stem rust pathotype QCC and rye stem rust pathotype 92-MN-90, respectively, but segregated away in a high-resolution population. ABC1063 was localized to chromosome 4(4H) bin 6. An interesting Rpg1 allele that appears to be the result of unequal recombination between Rpg1 and ABC1037 was characterized. No known resistance loci cosegregated with any family members, however characterization of the Rpg1 family has provided insight into the evolution of this novel gene family and may present tools for understanding the functional domains of Rpg1. The genetic mapping, gene structures, and analysis of amino-acid sequences of the Rpg1 gene family members are presented.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

4.
 The deduced peptide sequences of 25 gene fragments of NBS-LRR resistance (R) gene homologues from rice and barley and of characterized R genes were compared, revealing a string of six conserved motifs. Mapping of the R-gene candidates in rice showed linkage to genes conferring race-specific resistance to rice blast (Pi-k, Pi-f and Pi-1) and bacterial blight disease (Xa-1, Xa-3 and Xa-4), in barley to powdery mildew (Mla) and the rust fungus (Rpg1). In rice four mixed clusters were detected, each harboring at least two highly dissimilar NBS-LRR genes. A YAC-contig was established for one of these mixed clusters. YAC fragmentation experiments revealed the presence of at least five NBS-LRR genes within 200 kb in head-to-tail orientation. Received: 24 July 1998 / Accepted: 14 August 1998  相似文献   

5.
Homoeologous group 1 chromosomes of wheat contain important genes that confer resistance to leaf, stem and stripe rusts, powdery mildew and Russian wheat aphid. A disease resistance gene analog encoding nucleotide binding site-leucine rich repeat (NBS-LRR), designated RgaYr10, was previously identified at the stripe rust resistant locus, Yr10, located on chromosome 1BS distal to the storage protein, Gli-B1 locus. RgaYr10 identified gene members in the homoeologous region of chromosome 1DS cosegregating with the leaf rust resistance gene, Lr21, which originally was transferred from a diploid D genome progenitor. Four RgaYr10 gene members were isolated from chromosome 1DS and compared to two gene members previously isolated from the chromosome 1BS homeologue. NBS-LRR genes tightly linked to stripe rust resistance gene Yr10 on chromosome 1BS were closely related in sequence and structure to NBS-LRR genes tightly linked to leaf rust resistance gene Lr21 located within the homoeologous region on chromosome 1DS. The level of sequence homology was similar between NBS-LRR genes that were isolated from different genomes as compared to genes from the same genome. Electronic Publication  相似文献   

6.
In maize, the Rp3 gene confers resistance to common rust caused by Puccinia sorghi. Flanking marker analysis of rust-susceptible rp3 variants suggested that most of them arose via unequal crossing over, indicating that rp3 is a complex locus like rp1. The PIC13 probe identifies a nucleotide binding site-leucine-rich repeat (NBS-LRR) gene family that maps to the complex. Rp3 variants show losses of PIC13 family members relative to the resistant parents when probed with PIC13, indicating that the Rp3 gene is a member of this family. Gel blots and sequence analysis suggest that at least 9 family members are at the locus in most Rp3-carrying lines and that at least 5 of these are transcribed in the Rp3-A haplotype. The coding regions of 14 family members, isolated from three different Rp3-carrying haplotypes, had DNA sequence identities from 93 to 99%. Partial sequencing of clones of a BAC contig spanning the rp3 locus in the maize inbred line B73 identified five different PIC13 paralogues in a region of approximately 140 kb.  相似文献   

7.
Rpg1 is a stem rust resistance gene that has protected barley from severe losses for over 60 years in the US and Canada. It confers resistance to many, but not all, pathotypes of the stem rust fungus Puccinia graminis f. sp. tritici. A fast neutron induced deletion mutant, showing susceptibility to stem rust pathotype Pgt-MCC, was identified in barley cv. Morex, which carries Rpg1. Genetic and Rpg1 mRNA and protein expression level analyses showed that the mutation was a suppressor of Rpg1 and was designated Rpr1 (Required for P. graminis resistance). Genome-wide expression profiling, using the Affymetrix Barley1 GeneChip containing ∼22,840 probe sets, was conducted with Morex and the rpr1 mutant. Of the genes represented on the Barley1 microarray, 20 were up-regulated and 33 were down-regulated by greater than twofold in the mutant, while the Rpg1 mRNA level remained constant. Among the highly down-regulated genes (greater than fourfold), genomic PCR, RT-PCR and Southern analyses identified that three genes (Contig4901_s_at, HU03D17U_s_at, and Contig7061_s_at), were deleted in the rpr1 mutant. These three genes mapped to chromosome 4(4H) bin 5 and co-segregated with the rpr1-mediated susceptible phenotype. The loss of resistance was presumed to be due to a mutation in one or more of these genes. However, the possibility exists that there are other genes within the deletions, which are not represented on the Barley1 GeneChip. The Rpr1 gene was not required for Rpg5- and rpg4-mediated stem rust resistance, indicating that it shows specificity to the Rpg1-mediated resistance pathway.  相似文献   

8.
9.
Genes at the Rp1 rust resistance locus of maize confer race-specific resistance to the common rust fungus Puccinia sorghi. Three variant genes with nonspecific effects (HRp1 -Kr1N, -D*21 and -MD*19) were found to be generated by intragenic crossing over within the LRR region. The LRR region of most NBS-LRR encoding genes is quite variable and codes for one of the regions in resistance gene proteins that controls specificity. Sequence comparisons demonstrated that the Rp1-Kr1N recombinant gene was identical to the N-terminus of the rp1-kp2 gene and C-terminus of another gene from its HRp1-K grandparent. The Rp1-D*21 recombinant gene consists of the N-terminus of the rp1-dp2 gene and C-terminus of the Rp1-D gene from the parental haplotype. Similarly, a recombinant gene from the Rp1-MD*19 haplotype has the N-terminus of an rp1 gene from the HRp1-M parent and C-terminus of the rp1-D19 gene from the HRp1-D parent. The recombinant Rp1 -Kr1N, -D*21 and -MD*19 genes activated defense responses in the absence of their AVR proteins triggering HR (hypersensitive response) in the absence of the pathogen. The results indicate that the frequent intragenic recombination events that occur in the Rp1 gene cluster not only recombine the genes into novel haplotypes, but also create genes with nonspecific effects. Some of these may contribute to nonspecific quantitative resistance but others have severe consequences for the fitness of the plant.  相似文献   

10.
11.
In many temperate areas of the world, leaf rust is becoming an important disease of barley. In the last decade, new races of Puccinia hordei G. Otth have emerged which are virulent against the so-far most-effective race-specific resistance genes, such as Rph7. Marker-assisted selection greatly facilitates the pyramidization of two or more resistance genes in a single variety in order to achieve a more comprehensive resistance. Such a strategy requires the development of efficient and reliable markers. Here, we have developed a linkage map and found RFLP markers closely linked to the Rph7.g resistance gene on chromosome 3HS of barley. The receptor-like kinase gene Hv3Lrk that maps at 3.2 cM from Rph7.g was used to develop a PCR-based marker by exploiting a single nucleotide polymorphism. This marker was detected in 11 out of 12 (92%) barley lines having Rph7 and represents a valuable tool for marker-assisted selection. In addition, the identification of markers flanking Rph7.g provides the basis for positional cloning of this gene. Received: 1 December 1999 / Accepted: 28 February 2000  相似文献   

12.
Grain mold and rust are diseases that can significantly reduce sorghum grain yield. Breeding for resistance to these diseases is hindered by inefficient disease screening. A viable option to greatly improve breeding efficiency is to identify molecular markers or genes linked to the host resistance. In this study, we applied 14,739 single nucleotide polymorphism markers to the sorghum mini core of 242 accessions that had been evaluated for rust resistance in both greenhouse and field and for grain mold in the field for 2 years. Through association mapping we have identified two loci linked to grain mold resistance and five loci linked to rust resistance. Among the two loci linked to grain mold resistance, one contained a homolog of the maize nonhost resistance gene Rxo1. Two of rust-linked loci each contained the rust resistance gene homologous to the maize rust resistance gene Rp1-D which is the B locus (the A locus containing Pu was not linked in this study) and to the wheat rust resistance gene Lr1. The remaining loci contained genes important in other steps of the defense response, such as cyclophilins that mediate resistance response preceding hypersensitive response (HR) and Hin1 directly involved in producing HR. The results from this study will facilitate marker-assisted selection of host resistance to grain mold and rust in sorghum.  相似文献   

13.
Three quantitative trait loci (QTL) conferring broad spectrum resistance to powdery mildew, caused by the fungus Blumeria graminis f. sp. hordei, were previously identified on chromosomes 7HS, 7HL and 6HL in the Spanish barley landrace-derived lines SBCC097 and SBCC145. In the present work, a genome-wide putative linear gene index of barley (Genome Zipper) and the first draft of the physical, genetic and functional sequence of the barley genome were used to go one step further in the shortening and explicit demarcation on the barley genome of these regions conferring resistance to powdery mildew as well as in the identification of candidate genes. First, a comparative analysis of the target regions to the barley Genome Zippers of chromosomes 7H and 6H allowed the development of 25 new gene-based molecular markers, which slightly better delimit the QTL intervals. These new markers provided the framework for anchoring of genetic and physical maps, figuring out the outline of the barley genome at the target regions in SBCC097 and SBCC145. The outermost flanking markers of QTLs on 7HS, 7HL and 6HL defined a physical area of 4 Mb, 3.7 Mb and 3.2 Mb, respectively. In total, 21, 10 and 16 genes on 7HS, 7HL and 6HL, respectively, could be interpreted as potential candidates to explain the resistance to powdery mildew, as they encode proteins of related functions with respect to the known pathogen defense-related processes. The majority of these were annotated as belonging to the NBS-LRR class or protein kinase family.  相似文献   

14.
 We sequenced and genetically mapped the myo-inositol 1-phosphate synthase (MIPS) genes of maize (Zea mays L.) and barley (Hordeum vulgare L). Our objective was to determine whether the genetic map positions of these MIPS loci correspond with the location of the low phtyic acid 1 (lpa1) mutations that were previously identified in maize and barley. Seven MIPS-homologous sequences were mapped to positions on maize chromosomes 1S, 4L, 5S, 6S, 8L, 9S and 9L, and a similar number of divergent MIPS sequences were amplified from maize. To the extent that we can compare across different genetic mapping populations, the position of the MIPS gene on maize chromosome 1S is identical to the location of the maize lpa1 mutation. However, only one MIPS sequence was identified in barley and this gene was mapped to a locus on chromosome 4H that is separate from the barley lpa1 mutation on chromosome 2H. Although several RFLP markers linked to the barley MIPS gene on chromosome 4H also detect loci near barley lpa1 on chromosome 2H, our experiments failed to reveal a second MIPS gene that could be associated with the barley lpa1 mutation. Therefore, genetic mapping results from this study support the MIPS candidate-gene hypothesis for maize lpa1, but do not support the MIPS candidate-gene-hypothesis for barley lpa1. These opposing results contradict the hypothesis that maize lpa1 and barley lpa1 are mutations of orthologous genes, which is suggested by the similar biochemical phenotypes of these mutants. Yet, comparisons of RFLP mapping studies show loci that are homologous between maize chromosome 1S, barley chromosome 4H and barley chromosome 2H, including regions flanking the respective MIPS and/or lpa1 loci. This putative relationship, between the regions flanking the lpa1 mutations on maize 1S and barley 2H, also supports the assertion that these mutations are orthologous despite contradictory results between our maize and barley candidate-gene experiments. Received: 24 August 1998 / Accepted: 19 December 1998  相似文献   

15.
 The most common class of plant disease resistance (R) genes cloned so far belong to the NBS-LRR group which contain nucleotide-binding sites (NBS) and a leucine-rich repeat (LRR). Specific primer sequences derived from a previously isolated NBS-LRR sequence at the Cre3 locus, which confers resistance to cereal cyst nematode (CCN) in wheat (Triticum aestivum L.) were used in isolating a family of resistance gene analogs (RGA) through a polymerase chain reaction (PCR) cloning approach. The cloning, analysis and genetic mapping of a family of RGAs from wheat (cv ‘Chinese Spring’) and barley (Hordeum vulgare L. cvs ‘Chebec’ and ‘Harrington’) are presented. The wheat and barley RGAs contain other conserved motifs present in known R genes from other plants and share between 55–99% amino acid sequence identity to the NBS-LRR sequence at the Cre3 locus. Phylogenetic analysis of the RGAs with other cloned R genes and RGAs from various plant species indicate that they belong to a superfamily of NBS-containing genes. Two of the barley derived RGAs were mapped onto loci on chromosomes 2H (2), 5H (7) and 7H (1) using barley doubled haploid (DH) mapping populations. Some of these loci identified are associated with regions carrying resistance to CCN and corn leaf aphid. Received: 6 January 1998 / Accepted: 1 April 1998  相似文献   

16.
Clones representing two distinct barley catalase genes, Cat1 and Cat2, were found in a cDNA library prepared from seedling polysomal mRNA. Both clones were sequenced, and their deduced amino acid sequences were found to have high homology with maize and rice catalase genes. Cat1 had a 91% deduced amino acid sequence identity to CAT-1 of maize and 92% to CAT B of rice. Cat2 had 72 and 79% amino acid sequence identities to maize CAT-2 and-3 and 89% to CAT A of rice. Barley, maize or rice isozymes could be divided into two distinct groups by amino acid homologies, with one group homologous to the mitochondria-associated CAT-3 of maize and the other homologous to the maize peroxisomal/glyoxysomal CAT-1. Both barley CATs contained possible peroxisomal targeting signals, but neither had favorable mitochondrial targeting sequences. Cat1 mRNA occurred in whole endosperms (aleurones plus starchy endosperm), in isolated aleurones and in developing seeds, but Cat2 mRNA was virtually absent. Both mRNAs displayed different developmental expression patterns in scutella of germinating seeds. Cat2 mRNA predominated in etiolated seedling shoots and leaf blades. Barley genomic DNA contained two genes for Cat1 and one gene for Cat2. The Cat2 gene was mapped to the long arm of chromosome 4, 2.9 cM in telomeric orientation from the mlo locus conferring resistance to the powdery mildew fungus (Erysiphe graminis f.sp. hordei).  相似文献   

17.
G X Yu  A L Bush  R P Wise 《Génome》1996,39(1):155-164
The colinearity of markers linked with resistance loci on linkage group A of diploid oat, on the homoeologous groups in hexaploid oat, on barley chromosome 1H, and on homoeologous maize chromosomes was determined. Thirty-two DNA probes from homoeologous group 1 chromosomes of the Gramineae were tested. Most of the heterologous probes detected polymorphisms that mapped to linkage group A of diploid oat, two linkage groups of hexaploid oat, barley chromosome 1H, and maize chromosomes 3, 6, and 8. Many of these DNA markers appeared to have conserved linkage relationships with resistance and prolamin loci in Avena, Hordeum, and Zea mays. These resistance loci included the Pca crown rust resistance cluster in diploid oat, the R203 crown rust resistance locus in hexaploid oat, the Mla powdery mildew resistance cluster in barley, and the rp3, wsm1, wsm2, mdm1, ht2, and htn1 resistance loci in maize. Prolamin encoding loci included Avn in diploid oat and Hor1 and Hor2 in barley. A high degree of colinearity was revealed among the common RFLP markers on the small chromosome fragments among these homoeologous groups. Key words : disease resistance, colinearity, Gramineae, cereals.  相似文献   

18.
A cloned gene sequence (Vrga1D), with features of the nucleotide-binding-site leucine-rich repeat class of disease resistance (R) gene sequence super family, was previously shown to belong to a family of five gene members derived from a Triticum ventricosum Ces. (syn. Aegilops ventricosa Tausch) segment in wheat (Triticum aestivum L.). This gene family was introgressed, together with the linked rust resistance genes Yr17, Lr37 and Sr38 from T. ventricosum, to wheat chromosome 2AS. An independently derived T. ventricosum segment carrying a leaf rust resistance gene in a French wheat cultivar, was shown to exhibit a rust resistance response equivalent to Lr37 as well as Yr17 and Sr38. DNA probes from different regions of the Vrga1D clone consistently detected the presence of RFLPs associated with the introgressed segment carrying the resistance genes Yr17, Lr37 and Sr38 present in diverse wheat genotypes from Australia, Canada, France and the UK. Our results showed that the transfer of the T. ventricosum- derived Vrga1 gene members and the rust resistance genes were always accompanied by the loss of a corresponding set of Vrga1-related gene members in recipient wheat cultivars presumed to be of homoeoallelic origin. A PCR assay, based on sequences from the 3"-untranslated region of a Vrga1 gene member isolated from the T. ventricosum donor line of the introgressed segment, was developed. The PCR assay detected the presence of the introgressed rust resistance genes across the diverse wheat backgrounds and should be useful in marker- assisted selection in wheat breeding. Received: 24 December 1999 / Accepted: 13 June 2000  相似文献   

19.
Hu G  Richter TE  Hulbert SH  Pryor T 《The Plant cell》1996,8(8):1367-1376
The rp1 locus of maize controls race-specific resistance to the common rust fungus Puccinia sorghi. Four mutant or recombinant Rp1 alleles (rp1-NC3, Rp1-D21, Rp1-MD19, and Rp1-Kr1N) were identified. They condition necrotic phenotypes in the absence of the rust pathogen. These Rp1 lesion mimics fall into three different phenotypic classes: (1) The rp1-NC3 and Rp1-D21 alleles require rust infection or other biotic stimulus to initiate necrotic lesions. These alleles react strongly to all maize rust biotypes tested and also to nonhost rusts. (2) The Rp1-MD19 allele, which has a similar phenotype, also requires a biotic stimulus to initiate lesions. However, Rp1-MD19 shows the race specificity of the Rp1-D gene. (3) The Rp1-Kr1N allele specifies a diffuse necrotic phenotype in the absence of any biotic stimulus and a race-specific reaction when inoculated with maize rust.  相似文献   

20.
Stripe rust, leaf rust, and Barley Yellow Dwarf Virus (BYDV) are important diseases of barley (Hordeum vulgare L). Using 94 doubled-haploid lines (DH) from the cross of Shyri x Galena, multiple disease phenotype datasets, and a 99-marker linkage map, we determined the number, genome location, and effects of genes conferring resistance to these diseases. We also mapped Resistance Gene Analog Polymorphism (RGAP) loci, based on degenerate motifs of cloned disease resistance genes, in the same population. Leaf rust resistance was determined by a single gene on chromosome 1 (7H). QTLs on chromosomes 2 (2H), 3 (3H), 5 (1H), and 6 (6H) were the principal determinants of resistance to stripe rust. Two- locus QTL interactions were significant determinants of resistance to this disease. Resistance to the MAV and PAV serotypes of BYDV was determined by coincident QTLs on chromosomes 1 (7H), 4 (4H), and 5 (1H). QTL interactions were not significant for BYDV resistance. The associations of molecular markers with qualitative and quantitative disease resistance loci will be a useful information for marker-assisted selection. Received: 2 February 1999 / Accepted: 30 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号