首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vacuum-ultraviolet circular dichroism (VUCD) of chondroitin and chontroitin-6-sulfate has been measured to 160 nm for films and to 170 nm for D2O solutions. The pD-dependent dichroic behavior of these glycosaminoglycans in D2O is similar above 200 nm and is in agreement with previous studies. Near 190 nm, the CD band sign is also dependent on pD. VUCD spectra were recorded for films and solutions of poly(L -arginine). In trifluoroethanol the polypeptide is α-helical, while in D2O it exists as a random coil. The well-characterized coil–helix transition of poly(L -arginine) during complexation with chondroitin-6-sulfate was observed by VUCD, including the previously inaccessible entire π → π* band. By construction of difference spectra it was also possible to monitor the VUCD of the polysaccharide component during complexation.  相似文献   

2.
The ultraviolet ORD and CD spectra of amylose, dextran, and mycodextran acetates and some of thier oligomers were recorded in trifluoroethanol solution in the 300–185nm wavelength range. Similarly, the spectra of amylose and dextran xanthates in water solution were obtained in the 400–200 nm range. In the amylose acetate series, the monomer and dimer both show a normal acetyl n → π* transition in CD, while the trimer and the polymer both exhibit an additional, shorter wavelength peak. The latter is presumed to arise from a helical conformation of the amylose chain. This interpretation is substantiated by a helix–coil type transition of the CD spectra of amylose triacetate at elevated temperatures and a reversion of the anomalous CD to the normal CD upon partial deacetylation. By contrast, neither dextran acetates nor mycodextran acetate exhibit any conformational effects. The CD of dextran acetates is quite sensitive to β-1,6 and branch linkages. The ORD and CD of amylose xanthate are complex, suggesting the presence of organized structure in solution. The dextran xanthate shows only a simple ORD spectrum and no observable CD.  相似文献   

3.
A very intense negative band is observed at ~ 183 nm in the CD spectrum of fibronectin from bovine plasma. This transition has not previously been reported, probably because it occurs in a spectral region that has not been readily accessible in earlier studies. At longer wavelength, the observed CD is very similar to spectra reported for human and chick material, having positive bands at ~230 and ~200 nm, and a negative band at ~215nm. The low molar ellipticity of the negative band ([θ] ≈ ?2.5 × 103 deg cm2 dmol?1) suggests little α-helix or β-sheet structure. The new transition, and the two positive bands at higher wavelength, do not correspond to known transitions of the peptide backbone, but all three are present in the CD of N-acetyltyrosineamide. It is therefore suggested that the observed CD behavior of fibronectin arises predominantly from the optical activity of tyrosine side chains. The contribution of this side-chain optical activity to the CD of other proteins is discussed. On raising pH to ionize tyrosine residues, the positive CD band at ~230 nm is lost in both N-acetyltyrosineamide and in fibronectin. The spectral change is fully reversible in the model compound, but only partially reversible in fibronectin. From this evidence, and the magnitude of the 183-nm band, it is suggested that some or all of the tyrosine residues in fibronectin may be present within ordered domains. The possible role of S? S bonds in maintaining tertiary structure is discussed. The interaction of fibronectin with heparin is accompanied by a large increase in the 183-nm band and by slight enhancement of the negative band at 215 nm, consistent with some limited formation of β-sheet. Present results indicate that CD may be of considerable value in characterization of the molecular organization and biologically relevant interactions of fibronectins and of related glycoproteins of the extracellular matrix.  相似文献   

4.
G C Chen  J P Kane 《Biochemistry》1975,14(15):3357-3362
Low density lipoprotein (LDL) (1.024-1.045 G/cm3) was prepared by ultracentrifugal flotation from serum of normal fasting subjects. Circular dichroism (CD) and optical rotatory dispersion (ORD) spectra in the ultraviolet region were measured at 2, 25, and 37 degrees on LDL, lipid extracted from LDL, and on pure component lipids. All exhibit reversible, temperature-dependent optical activities. Sphingomyelin has a strong negative CD band around 195 nm. Cholesterol and cholesteryl esters have a CD minimum at 208 nm. They have positive CD bands around 201 and 198 nm which decrease sharply and become negative at 198 and 193 nm, respectively. The CD of the total lipid extract of LDL is negative and drops monotonically below 200 nm. Thus, the lipid moiety could account for the increasing negativity of the CD of LDL below 195 nm. After subtraction of the ellipticity corresponding to amounts of lipids in organic solvents equivalent to those found in LDL, the 208-210 nm trough of LDL diminishes markedly. This is accompanied by a blue-shift of the extrema from 195-196 to 193 nm and an increase in the magnitude of the positive ellipticity. The fractions of helix and of beta form in the protein, determined by the method of Y. H. Chen, J. T. Yang, and K. H. Chau ((1974), Biochemistry 13, 3350), in the wavelength interval of 250-240 nm, remain essentially unchanged between 2 and 37 degrees. These observations suggest that a substantial part of the thermal change in the CD spectrum of LDL between 208 and 210 nm may be attributable to lipids.  相似文献   

5.
天然态岩豆凝集素(MDL)远紫外圆二色性(CD)谱显示216nm处单一负峰,是一种高β-折叠构象凝集素;近紫外CD谱呈现282nm处负峰和260~275nm及295nm处的负肩,经N-乙基顺丁烯二酰亚胺(NEMI)和对氯汞苯甲酸(PCMB)修饰MDL的巯基,其近紫外CD谱未发生变化,远紫外CD谱仅发生细微变化,MDL凝集活性保持不变;PCMB过量时,CD谱呈现典型的无规卷曲谱形,MDL完全丧失凝集活性,去除PCMB后,活性又全部恢复.二硫苏糖醇(DDT)修饰MDL的二硫键并用碘乙酸(ICH2COOH)保护巯基,MDL远紫外CD谱216nm处的负峰红移至225nm,且显著减小;同时,近紫外CD谱282nm处负峰几乎消失,两负肩分别保持完整,分子中α-螺旋降低,无规卷曲增加较多,MDL凝集活性未发生变化.用N-溴代丁二酰亚胺(NBS)修饰MDL分子中的色氨酸,导致216nm负峰蓝移至208nm且变小,分子中无规卷曲和α-螺旋增加,β折叠减少,近紫外CD谱295nm负肩消失,282nm负峰红移至287nm,MDL凝集活性完全丧失.  相似文献   

6.
Structure of recombinant glutamate decarboxylase (GAD alpha) was studied by optical methods and electron microscopy. The active (pH 4.6) and inert (pH 6.3) holoGAD and apoGAD were investigated. Absorption and CD spectra were recorded in the range of 190 - 500 nm. Visible spectra were resolved into the bands corresponding to individual electron transitions using lognormal curves. The structures of predominant tautomers of internal aldimines were determined as ketoenamine at pH 4.6 and enolimine at pH 6.3. CD spectra show that holoGAD and apoGAD exhibit a negative band at 204 - 245 nm and a positive band near 190 - 204 nm. The contents of the secondary structure elements were estimated on the basis of the values of the mean residue ellipticity. Evidently, the main difference between the GAD forms studied is in the content of alpha-helix and random coil. HoloGAD has 50% of alpha-helix at pH 4.6 and 67% at pH 6.3, whereas apoGAD - 17 and 27%, respectively. Thus presented data establish the essential role of pyridoxal phosphate (PLP) in the organization of the GAD secondary structure due to tightening its polypeptide chain. It seems possible, that conformational changes induced by PLP binding stabilize the protein structure and promote the assembly of subunits into macromolecule, which was confirmed by electron microscopy.  相似文献   

7.
Circular dichroism (CD) and optical rotatory dispersion (ORD) spectra of several liganded derivatives of the monomer and polymer hemoglobin components of the marine annelid, Glycera dibranchiata were measured over the wavelength range 650--195 nm. The differences observed between the monomer and polymer components for the heme dichroic bands in the visible, Soret and ultraviolet wavelength regions seem to result from changes in the heme environment, geometry and coordination state of the central heme iron in these proteins. Within the Soret region, the liganded derivatives of the monomer hemoglobin exhibit predominantly negative circular dichroic bands. The heme band at 260 nm is also absent for the monomer hemoglobin. The ORD and CD spectra in the far-ultraviolet, peptide absorbing region suggest also differences in the alpha-helix content of the monomer and polymer hemoglobins. The values for the single-chain G. dibranchiata hemoglobin are in the expected range (about 70% alpha-helix) as predicted by the X-ray structure of this protein. The lower estimates of the alpha-helix content for the polymer hemoglobin (approx. 50%), may reflect the differences in amino acid composition, primary structure and polypeptide chain foldings. Changes in oxidation state and ligand binding appears to have no pronounced effect on the helicity of either the monomer or polymer hemoglobins. The removal of the heme moiety from the monomer hemoglobin did result in a major decrease in its helix content similar to the loss of heme from myoglobin.  相似文献   

8.
N Murai  S Sugai 《Biopolymers》1974,13(6):1161-1171
In order to study the effect of side-chain length on the conformation of polypeptides, conformational changes of various ionic polypeptides with various lengths of side chain, poly-Nε-glutaryl-L -lysine (PGL), poly-Nδ-glutaryl-L -ornithine (PGO), poly-Nε-succinyl-L -lysine (PSL), and poly-Nδ-succinyl-L -ornithine (PGO), were investigated by ORD, potentiometric titration, and dilatometric measurements in aqueous solution. The results of optical rotation and potentiometric titration measurements indicate strongly that the α-helix stability increases in the sequence PSO < PSL ~ PGO < PGL, which corresponds to increased side-chain length. The volume change associated with the helix–coil transition also increased in the above sequence. This series of polymers seems to be more hydrophobic compared with poly-L -glutamic acid or poly-L -lysine, as suggested from the values of enthalpy and entropy changes for coil–helix transitions.  相似文献   

9.
When a limited region of the experimental electronic circular dichroism (ECD) spectrum is subjected to Kramers-Kronig (KK) transformation, the resulting optical rotatory dispersion (ORD) may or may not reproduce the experimentally measured ORD in the long-wavelength nonresonant region. If the KK transform of experimentally measured ECD in a limited wavelength region reproduces the experimentally measured ORD in the long-wavelength nonresonant region, then that observation indicates that the ORD in the long-wavelength nonresonant region should be satisfactorily predicted from the correspondingly limited number of electronic transitions in a reliable quantum mechanical calculation. On the other hand, if the KK transform of experimentally measured ECD in a limited region does not reproduce the experimentally measured ORD in the long-wavelength nonresonant region, then it should be possible to identify the ECD bands in the shorter wavelength region that are responsible for the differences between experimentally observed ORD and KK-transformed ECD. This approach helps to identify the role of ECD associated with higher energy-excited states in the nature of ORD in the long-wavelength nonresonant region. These concepts are demonstrated here by measuring the experimental ECD and ORD for dimethyl-L-tartrate in different solvents. While ECD spectra of dimethyl-L-tartrate in different solvents show little variation, ORD spectra in the long-wavelength nonresonant region show marked solvent dependence. These observations are explained using the difference between experimental ORD and KK-transformed ECD. Quantum mechanical predictions of ECD and ORD are also presented for isolated (R, R)-dimethyl tartrate at the B3LYP/aug-cc-pVDZ level.  相似文献   

10.
The circular dichroism (CD), optical rotatory dispersion (ORD), and fluorescence emission spectra of two subfractions of pig serum low density lipoproteins (LDL1 and LDL2) were compared. The contribution of the carbohydrate moiety to the CD and ORD spectra was estimated on the basis of data obtained from isolated glycopeptides and the constituent monosaccharides. The carbohydrate moiety had no effect on the conformation of the protein moieties of LDL1 and LDL2 (apoLDL1 and apoLDL2). However, the intensities of the observed extrema in the CD and ORD spectra of the glycopeptides were greater than those expected from the monosaccharide composition. This suggests the existence of secondary structure in the carbohydrate moiety. In contrast to the carbohydrate moiety, the contribution of the lipid moiety to the CD and ORD spectra could not be neglected. When the effect of the lipid moiety was subtrated from the CD and ORD spectra, the spectra due to apoLDL1 and apoLDL2 were quite similar. Delipidation in the presence of sodium dodecyl sulfate (SDS) induced an increase in the content of disordered structure and alpha-helix accompanied by a decrease in the beta-structure. In the presence of SDS, marked quenching occurred in the fluorescence emission spectra with a blue shift of the maximum emission wavelength from 332 to 326 nm. ApoLDL1 and apoLDL2 showed quite similar SDS-induced conformational transitions. The secondary structures of apoLDL1 and apoLDL2 in the native lipoproteins were stable to changes of pH and temperature. However, this stability was lost in the presence of SDS. These results suggest the importance of the lipid moiety in maintaining the native secondary structures of LDL1 and LDL2. From the overall similarity of the optical properties of apoLDL1 and apoLDL2, we conclude that the secondary structures of apoLDL1 and apoLDL2 are identical.  相似文献   

11.
The molar optical rotation at 220 nm and ellipticity values at 210 nm of both sodium hyaluronate and hyaluronic acid are greatly enhanced in comparison to the values for the monomeric units and oligosaccharides indicating a degree of preferred order. With increasing hydrogen ion concentration, there is no appreciable change in the 210 nm circular dichroic band, but the second circular dichroic band below pH 4 changes abruptly to the positive side and reaches a maximum value at pH 2·5. This positive circular dichroic band of hyaluronic acid is temperature and concentration dependent. The major change in sign and position of the second circular dichroic band of hyaluronic acid below pH 4 is attributed to the conformational change of a single polysaccharide chain or to a chain-chain interaction. The results indicate that increase in concentration or decrease in temperature and in the ionization of carboxyl group promotes the formation of ordered cross-link regions. The conformational changes found in solution have been interpreted as an order-disorder transition in the crosslink regions based on the interconversion of random coil and double helix.  相似文献   

12.
The conformational transition of poly-L -tyrosine in 0.1M KCl was investigated by ORD and infrared spectroscopy, potentiometric titration, and sedimentation velocity experiments. It is shown that the fully ordered conformer is obtained by slow titration of the random coil with 0.1N HCl at 25°C. The charge-induced transition, at variance with other poly-α-amino acids, is completed in a narrow range of α. An aggregation process was detected both by potentiometric titration and sedimentation velocity. The polyamino acid aggregates around α = 0.7 at 25°C when the conformational transition is almost complete. Infrared spectra, in the region of the amide I band (1650 cm?1) showed that the transition is a random coil → antiparallel β one. Evidence exists that the form is of the intramolecular type. The foregoing interpretations of ORD and CD spectra in terms of the α-helix conformation are discussed.  相似文献   

13.
The equilibrium binding of ethidium bromide (EB) to two small 147 base-pair (bp) DNA restriction fragments, which exhibit different mobilities in polyacrylamide gels, was investigated by CD. Two larger DNA restriction fragments and calf thymus DNA were also studied for comparison. Difference spectra were calculated by subtracting the spectrum of the pure DNA from the spectra of its DNA–EB complexes. The D/P ratios ranged from 0.03 to 1.0. The difference CD spectra of all fragments are characterized by bands with maxima near 310, 275, and 207 nm, and minima near 290, 253, 225, and 190 nm. The band near 310 nm, which has a shoulder at about 335 nm, has zero intensity at D/P ≤ 0.05, and rises to a plateau value, different for each fragment, at D/P ? 0.3 for large fragments (≥ 1400 bp), and D/P ~ 0.7 for the two small 147 bp fragments. The minimum near 290 nm is markedly blue shifted with increasing D/P, the wavelength of the extremum corresponding approximately to the wavelength of the uv absorption maximum of the DNA–EB complex. The negative amplitude of this band at D/P = 1.0 depends on the molecular weight of the DNA. The difference CD maximum near 275 nm is positive at low D/P ratios, increases and goes through a maximum at D/P = 0.06–0.1, and then becomes increasingly negative with increasing D/P. The amplitude of the negative ellipticity per added dye is constant at high D/P ratios, suggesting that the transition can be attributed to outside-bound EB molecules. The ellipticities at 310, 290, and 253 nm increase in absolute magnitude with increasing D/P at approximately the same rate, suggesting that all three bands are associated with the same optical and/or conformational transition. For the two small 147 bp fragments the fractional increases in amplitude of these bands parallel the fractional increase in length of the DNA upon binding EB, determined by electric birefringence measurements. The titration of the restriction fragments with EB was also followed by optical absorption. Two end points are observed, the first at a D/P ratio of ~ 0.1, reflecting the transition between intercalated and outside-bound dye molecules, and the second at D/P ? 1.0, the equivalence point of the titration.  相似文献   

14.
The vacuum-uv CD of agarose solid films has been measured to 145 nm and shows a positive band near 180 nm and a larger negative band at around 152 nm. The positive band remains accessible in aqueous solution and has been used to characterize changes in molecular conformation and interaction during the sol–gel transition. The temperature profile of vacuum-uv CD shows sharp, discontinuous changes around the melting and setting points of the gel, which are interpreted in terms of cooperative intermolecular association through double helices, and pronounced hysteresis, which is discussed in terms of helix–helix aggregation.  相似文献   

15.
16.
R S Lord  D J Cox 《Biopolymers》1973,12(10):2359-2373
Oligopeptides containing glycine and one or two L -alanyl or L -glutamyl residues have been studied by circular dichroism (CD) and optical rotatory dispersion (ORD) in aqueous solution at pH 1.0, pH 6.0, and pH 10.0 and in aqueous ethanol. Two glycyl residues are required to remove effects of α-carboxyl or amino titration on the optical activity of the internal alanyl or glutamyl residues. The CD spectra of the alanyl and protonated glutamyl residues are similar, having two regions of negative ellipticity around 215 nm resulting in a spectrum reassembling that of poly-α-L -glutamic acid (PGA) at high pH. Another large positive band below 190 nm was observed for gly2-glu2-gly2 in water at pH 6 and 10 and for several peptides in aqueous ethanol. Residue ellipticities were approximately additive in every case except for peptides containing intrenal glutamyl residu at pH 6.0.  相似文献   

17.
The chiroptical behaviour of plant galactomannans has been investigated by a combined vacuum ultraviolet circular dichroism (v.u.c.d) and optical rotatory dispersion (o.r.d.) approach. The samples studied were from Cyamopsis tetragonolobus (guar), Caesalpin'ia spinosa (tara), and Ceratonia siliqua (carob), with galactose levels of 39, 25 and 19%, respectively. V.u.c.d. solid film spectra have been recorded down to 140 nm, and in all cases show a positive band at 169 nm, and a negative band at 149 nm whose relative intensity increases systematically with decreasing galactose content. In solution only the lower energy band is accessible, and has the same position and width as in the solid state but substantially greater amplitude. Residual o.r.d. behaviour, after subtraction of the contribution from the 169 nm band (calculated by Kronig-Kramers transform of fitted c.d. parameters) shows a single band of the same position and width as the high energy solid state transition. The amplitude of both transitions in solution varies linearly with galactose content, consistent with simple additivity of contributions from the two different residues. Extrapolation to 0 and 100% galactose yields molarr ellipticities (103 x deg cm2 dmol?1) at 169 and 149 nm, respectively, of +14 and ?33 for mannan, and ?8 and ?80 for galactan. Reduction in the net intensity of both transitions in the solid state, and to a lesser degree in carob gels, is attributed to conformational restriction of galactose by chain packing, with consequent increase in c.d. intensity from these residues and hence greater cancellation of mannose backbone contributions.  相似文献   

18.
According to its circular dichroism (CD) spectrum, modeccin, a toxic lectin from the roots of the South African plantModecca digitata, is structurally similar to the ricins and abrins. In nearly neutral and weakly alkaline solutions (pH 7.6–9.0) the CD spectra of modeccin displayed a positive CD band at 190–195 nm and a negative band at 210–220 nm, indicating the presence of some α-helix and β-sheet structures. In the near-ultraviolet zone, we observed positive CD bands at 232 and 245 nm and weak negative bands at 285 and 293 nm. In more strongly alkaline solutions of pH 9.5–10.2 the CD bands in the farultraviolet zone were not affected, but the CD band at 232 nm diminished and the CD band at 245 nm was enhanced. These transitions were reversible. At pH 11.2–11.5 the CD band at 232 nm disappeared completely, and the CD bands in the far-ultraviolet diminished. The CD bands at 285 and 293 nm were affected very little by the alkali, and these bands were assigned to buried tryptophan side chains. Sodium dodecyl sulfate and 2,2,2-trifluoroethanol disorganized the tertiary structure of modeccin and reconstructed the secondary structure into a new form with a higher helix content than in the native protein.  相似文献   

19.
Circular dichroism, optical rotatory dispersion, and viscosity of hyaluronic acid at various solvents compositions, concentrations, and pH values have been studied. The data show a large change in the molecular properties in organic/water solvents such as ethanol, p-dioxane, or acetonitrile/water at pH ? pKa. At this pH range of aqueous solution, hyaluronic acid shows a CD minimum near 210 nm whereas in the presence of organic solvent it exhibits a strong negative dichroism (below 200 nm) and a positive band near 226 nm. It undergoes a sharp, cooperative transition with respect to pH and solvent. The observed CD features are assigned to the π-π* and n-π* transitions of the amide and carboxyl chromophores. The ORD results show a gradual blue shift of trough at 220 nm with increasing magnitude of rotation when the organic solvents and hydrogen ion concentrations are increased. A one-term Drude's equation was used to analyze the ORD data, and the result show a variation of dispersion parameters with different solvents in accordance with the observed CD changes. The intrinsic viscosity of hyaluronic acid in mixed solvent at pH 2.6 is lower than that of aqueous solution. All the observed property changes of hyaluronic acid are reversed on addition of foramide in mixed solvents indicating that the hydrogen bonds are involved in this transition. The observed spectroscopic and hydrodynamic features are attributed to a conformational change of hyaluronic acid in a mixed solvent involving intramolecular hydrogen bonding between the acetamido and carboxyl groups. The possible conformational state of hyaluronic acid in solution under various conditions is discussed in terms of the reported helical structure of hyaluronic acid from x-ray diffraction studies.  相似文献   

20.
Summary UV irradiation of the chromatin caused an increase of the positive circular dichroic band in the vicinity of 275 nm (corresponding to DNA) and a deepening of the negative band of proteins at about 225 nm. These changes in the circular dichroic spectrum are monotonous in the range of doses studied (< 6 × 104 J.m–2). The increase of the positive circular dichroic band probably reflects the occurrence of local conformational changes in DNA, which include changes in base position (tilting, distance from helix axis) in the close neighbourhood of photoproducts. The presence of photoproducts in chromatin reduces changes in its circular dichroic spectra with temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号