首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
K W Chung 《Life sciences》1989,44(4):273-280
The purpose of this study was to investigate ethanol-induced changes in androgen receptor sites in the anterior pituitary, hypothalamus, and brain cortex. Young adult male King-Holtzman rats were fed for 5 months a nutritionally complete liquid diet, with ethanol or isocaloric sucrose constituting 36% of the total calories. Androgen receptor sites were measured by sucrose density gradient and charcoal assay using tritiated dihydrotestosterone (DHT). Scatchard plot analysis of the data revealed that apparent dissociation constants of DHT-receptor complex for the anterior pituitary, hypothalamus, and brain cortex from alcohol-fed animals were estimated to be 0.7 +/- 0.13, 0.6 +/- 0.16 and 0.9 +/- 0.15 nM, respectively. These values are identical to those of their isocaloric controls. The concentrations of cytosol androgen receptors of the pituitary, hypothalamus, and brain cortex from alcohol-fed rats were 8.0 +/- 1.2, 6.2 +/- 1.0 and 4.9 +/- 0.7 fmol/mg protein, respectively. This represents about a 34, 24, and 22% reduction when compared to the values of the isocaloric control animals. In contrast to control rats, neither castration nor androgen or LHRH replacement to castrated alcohol-fed rats altered an alcohol-induced reduction of androgen receptor contents. Serum LH and testosterone levels were significantly decreased in alcohol-fed rats but these hormone levels were increased by administration of LHRH or norepinephrine. Such reduction of androgen receptors, serum LH and testosterone, but enhancement of these hormone levels by treatment with neurohormone and neurotransmitter in these animals suggests that ethanol exerts an adverse effect on the hypothalamic-pituitary unit and the neurotransmitter-hypothalamic hormone relationship, resulting in impairment of the androgen-induced sexual events and a suppression of the pituitary gonadotropin secretion.  相似文献   

2.
The metabolism and binding of [1, 2, 6, 7-3H] testosterone in male and female rat brain has been studied in an attempt to find an explanation for the relative androgen unresponsiveness characterizing the female hypothalamo-pituitary axis involved in regulation of hepatic steroid metabolism. The most significant sex differences in the pattern of [3H] testosterone metabolites recovered from several brain regions (including pituitary, pineal gland, and hypothalamus) after intraperitoneal administration of [3H] testosterone were the predominance of testosterone and androstenedione in male brain compared to the quantitative importance of 5alpha-androstane-3alpha, 17beta-diol, 5alpha-androstane-3beta, 17beta-diol, epitestosterone, and dihydroepitestosterone in female brain. One possible explanation for the androgen unresponsiveness of female rats is, therefore, the faster metabolism of testosterone to inactive compounds in female brain. Experiments both in vivo and in vitro showed the presence of high affinity, low capacity binding sites for [3H] testosterone in male pituitary, pineal gland, and hypothalamus (Kd values in the region of 1 X 10(-10) to 1 X 10(-9) M and number of binding sites 1.0 to 1.4 X 10(-14) mol per mg of protein). The steroid - macromolecular complexes generally had a pI of 5.1, were excluded from Sephadex G-200, were heat-labile, and were sensitive to protease. Competition experiments indicated the following order of ligand affinities: testosterone is greater than 5alpha-dihydrotestosterone and estradiol is greater than androstenedione is greater than corticosterone. No steroid-binding proteins of similar nature were found in pituitary, pineal gland, or hypothalamus from female rats. On the basis of these results it is suggested that the androgen unresponsiveness of female rats referred to above relates to the absence of receptor protein for androgens in female rat brain. In support of this hypothesis, 28-day-old female rats, which are known to be affected by androgens with regard to liver enzyme activities, were shown to contain receptor proteins for androgen in the brain. In conclusion, the relative androgen unresponsiveness of the female hypothalamo-pituitary axis is probably explained by the absence of receptor proteins for androgen in female hypothalamus and pituitary. The fast metabolism of testosterone in female rat brain also serves to decrease the availability of active androgen to potential receptor sites. It may be speculated that the presence of androgen receptors in male brain is the result of neonatal programming ("imprinting") by testicular androgen.  相似文献   

3.
Androgen receptor antibodies have recently been developed using fusion proteins containing fragments of human prostatic androgen receptor. We have used a polyclonal antibody raised in rabbits to label androgen receptors in brain sections from male and female rats and monkeys. Free-floating frozen sections were incubated in primary antibody, and processed by the peroxidase-avidin-biotin complex method using biotinylated anti-rabbit IgG. Nickel intensified diaminobenzidine was used as the chromagen, and neurons were labeled in the amygdala, hippocampus, bed nucleus of stria terminalis, septum, preoptic area, in several hypothalamic nuclei including the supraoptic and paraventricular nuclei, in several brain stem motor nuclei and in cerebral cortex. Staining was most intense in cell nuclei but also occurred in cytoplasm and in some neuronal processes. Labeling was more restricted in monkey than in rat brain. Omitting the primary antibody or pre-incubating the primary antibody with rat prostatic cytosol for control purposes demonstrated the specificity of staining.  相似文献   

4.
The LHRH precursor is known to contain the decapeptide and a 56 amino acid peptide termed gonadotropin-releasing hormone-associated peptide (GAP). The purpose of our study was to characterize the proLHRH and its processed products from the cell body and fiber region and from the nerve terminal region of LHRH neurons. The median eminence (ME) and a tissue block containing the preoptic area and hypothalamus (POH) were dissected separately. Tissues were homogenized and peptides were separated according to mol wt. Three different LHRH antisera bound to one immunoreactive (IR) substance which eluted at approximately 1200 mol wt. Subsequently, this material coeluted with synthetic LHRH on a reversed-phase column as a single peak. There was approximately 1.6-fold more LHRH-like IR in the ME than in the POH. The four different GAP antisera recognized multiple mol wt forms of GAP-like IR at approximately 16,000 to 14,000, 8,200, 6,500, 3,500, and 2,800 mol wt. There were more of the high mol wt materials and less of the 6500 and lower mol wt materials in the POH than in the ME. The most abundant species in both regions was the 6500 mol wt form. This IR substance coeluted with synthetic rat GAP1-56 on a reversed-phase column as a single peak. These experiments demonstrate 1) that multiple IR forms of the LHRH prohormone exist in the POH of the rat and 2) that nerve terminals of the LHRH neurons contain LHRH, GAP1-56, and some lower mol wt GAP-like substances. These results provide the first information concerning the processing scheme for the LHRH prohormone in the rat brain.  相似文献   

5.
The binding of medroxyprogesterone acetate (MPA) with cytosol androgen receptors from rat pituitary and hypothalamus was studied. The pituitary and hypothalamic cytosol androgen receptors from adult castrated female rats were in vitro labeled using 3H natural (testosterone (T) and 5 alpha-dihydrotestosterone (DHT] and [3H]synthetic (methyltrienolone) androgens as radioligands. The [3H]androgen-receptor complexes sedimented with a coefficient of 8S in linear sucrose gradients. When incubated with an excess of radioinert MPA, specific binding was abolished indicating interaction of MPA with androgen receptors. Furthermore specific [3H]MPA-androgen cytosol receptor complexes could be identified in these neuroendocrine tissues when a post-gradient receptor labeling technique was used in the absence or presence of radioinert MPA, DHT, and triamcinolone acetonide. A study of binding kinetics disclosed that the equilibrium dissociation constant and saturation binding capacity for the MPA binder, were similar to those exhibited by DHT binding to androgen receptors in both studied tissues under identical experimental conditions. The overall results were interpreted as demonstrating that MPA interacts with cytosol steroid receptors other than those of progesterone in the rat hypothalamus and anterior pituitary. The data are consistent with MPA binding to androgen receptors.  相似文献   

6.
The preoptic area/anterior hypothalamus (POA/AH) sits as a boundary region rostral to the classical diencephalic hypothalamus and ventral to the telencephalic septal region. Numerous studies have pointed to the region's importance for sex-dependent functions. Previous studies suggested that migratory guidance cues within this region might be particularly unique in their diversity. To better understand the early development and differentiation of the POA/AH, cytoarchitectural, birthdate, immunocytochemical, and cell migration studies were conducted in vivo and in vitro using embryonic C57BL/6J mice. A medial preoptic nucleus became discernible using Nissl stain in males and females between embryonic days (E) E15 and E17. Cells containing immunoreactive estrogen receptor-alpha were detected in the POA/AH by E13, and increased in number with age in both sexes. From E15 to E17, examination of the radial glial fiber pattern by immunocytochemistry confirmed the presence of dual orientations for migratory guidance ventral to the anterior commissure (medial-lateral and dorsal-ventral) and uniform orientation more caudally (medial-lateral). Video microscopy studies followed the migration of DiI-labeled cells in coronal 250-microm brain slices from E15 mice maintained in serum-free media for 1-3 days. Analyses showed significant migration along a dorsal-ventral orientation in addition to medial-lateral. The video analyses showed significantly more medial-lateral migration in males than females in the caudal POA/AH. In vivo, changes in the distribution of cells labeled by the mitotic indicator bromodeoxyuridine (BrdU) suggested their progressive migration through the POA/AH. BrdU analyses also indicated significant movement from dorsal to ventral regions ventral to the anterior commissure. The significant dorsal-ventral migration of cells in the POA/AH provides additional support for the notion that the region integrates developmental information from both telencephalic and diencephalic compartments. The sex difference in the orientation of migration of cells in the caudal POA/AH suggests one locus for the influence of gonadal steroids in the embryonic mouse forebrain.  相似文献   

7.
Androgens and estrogens interact in neural tissues to regulate behavioral and neuroendocrine responses. As an initial attempt to identify the cellular level at which these steroids interact, we characterized the time course of nuclear androgen receptor (ARn) occupation in the preoptic area of the hypothalamus (POA) after chronic dihydrotestosterone (DHT) administration and determined whether it was modified by concurrent treatment with estradiol benzoate (EB). We found that ARn levels peaked (47.1 +/- 12.6 fmol/mg DNA) by 12 h after castrated rats were treated with Silastic capsules filled with crystalline DHT and remained significantly elevated for at least an additional 12 h. When EB was injected (2 micrograms/rat) at the same time the DHT capsules were inserted, peak levels of ARn in POA were reached sooner (6 h) and retained longer (48 h). Comparisons with other central and peripheral tissues suggested that this response was unique to the POA. These results suggest that estrogens may modify the response of POA neurons to androgens by altering the duration of ARn occupation.  相似文献   

8.
We have demonstrated a high density of both radiolabeled progesterone and estradiol conjugated to bovine serum albumin binding sites in the medial preoptic area and hypothalamus. Infusions of sex hormone binding globulin into the medial preoptic area of rats increased their female sexual receptivity similarly to the effect of estradiol conjugated to bovine serum albumin, suggesting sex hormone binding globulin acts at binding sites for estradiol conjugated to bovine serum albumin. In this study sex hormone binding globulin was used to displace radiolabeled progesterone conjugated to bovine serum albumin from plasma membrane fractions from the medial preoptic area-anterior hypothalamus and medial basal hypothalamus of ovariectomized rats injected with either 5 microg estradiol benzoate or sesame oil vehicle. We found that sex hormone binding displaced radiolabeled progesterone conjugated to bovine serum albumin in both areas and that in vivo estradiol treatment greatly increased the relative displacement by sex hormone binding globulin in the medial preoptic area-anterior hypothalamus. We interpret these data as indicating the presence of sex hormone binding globulin receptors in brain plasma membranes and further suggest that endogenous steroid conditions may alter these receptors.  相似文献   

9.
Reproductive behavior in male rodents is made up of anticipatory and consummatory elements which are regulated in the brain by sensory systems, reward circuits and hormone signaling. Gonadal steroids play a key role in the regulation of male sexual behavior via steroid receptors in the hypothalamus and preoptic area. Typical patterns of male reproductive behavior have been characterized, however these are not fixed but are modulated by adult experience. We assessed the effects of repeated sexual experience on male reproductive behavior of C57BL/6 mice; including measures of olfactory investigation of females, mounting, intromission and ejaculation. The effects of sexual experience on the number of cells expressing either androgen receptor (AR) or estrogen receptor alpha (ERα) in the primary brain nuclei regulating male sexual behavior was also measured. Sexually experienced male mice engaged in less sniffing of females before initiating sexual behavior and exhibited shorter latencies to mount and intromit, increased frequency of intromission, and increased duration of intromission relative to mounting. No changes in numbers of ERα-positive cells were observed, however sexually experienced males had increased numbers of AR-positive cells in the medial preoptic area (MPOA); the primary regulatory nucleus for male sexual behavior. These results indicate that sexual experience results in a qualitative change in male reproductive behavior in mice that is associated with increased testosterone sensitivity in the MPOA and that this nucleus may play a key integrative role in mediating the effects of sexual experience on male behavior.  相似文献   

10.
Demonstration of two distinct tachykinin receptors in rat brain cortex   总被引:11,自引:0,他引:11  
Eledoisin and substance P are members of a class of peptides termed tachykinins. They share a similar spectrum of biological activities but their relative potencies in various pharmacological assays differ. We have investigated whether there is more than one receptor for these tachykinins in rat brain cortex membranes. 125I-Bolton Hunter-conjugated eledoisin specifically binds to rat brain cortex membranes with high affinity. The binding is inhibited over 95% by unlabeled eledoisin (6.6 microM). Scatchard analysis of the binding of this ligand is curvilinear suggesting that there are two binding sites with KD values of 0.9 +/- 0.7 nM and 20 +/- 10 nM. We tested various analogs and fragments of substance P and eledoisin for their ability to inhibit the binding of 125I-Bolton Hunter-conjugated eledoisin and 125I-Bolton Hunter-conjugated substance P to these membranes. The following peptides are more potent as inhibitors of the 125I-Bolton Hunter-conjugated eledoisin binding site than of the 125I-Bolton Hunter-conjugated substance P binding site: nonradioactive Bolton Hunter-conjugated eledoisin (greater than 100-fold), eledoisin (12-fold), kassinin (22-fold), neuromedin K (greater than 58-fold), and pyroglutamyl substance P(6-11)hexapeptide (4-fold). In contrast, substance P (21-fold), physalaemin (8-fold), and substance P methyl ester (1200-fold) were more potent as inhibitors of 125I-Bolton Hunter-conjugated substance P binding. These results suggest that these two ligands may bind to distinct receptors. 125I-Bolton Hunter-conjugated substance P binds specifically to rat parotid cell receptors, but 125I-Bolton Hunter-conjugated eledoisin does not, indicating that parotid cells contain only one of the receptor subtypes. The cortex membrane binding of both ligands is stimulated by low concentrations of MnCl2 (ED50 = 0.05 mM) and is inhibited by guanylyl-5'-(beta, gamma-imido)diphosphate (IC50 = 0.5 microM).  相似文献   

11.
The binding of the radioactive synthetic hormonal steroids [3H]dexamethasone (9 alpha-fluoro-11 beta, 17 alpha, 21-trihydroxy-16 alpha-methyl-1,4-pregnadiene-3,20-dione) and [3H]methyltrienolone (17 beta-hydroxy-17 alpha-methyl-4,9,11-estratien-3-one) to cytosol from rat skeletal muscle was studied using dextran-coated charcoal to separate unbound and receptor-bound steroid. The rates of association, dissociation, and degradation of the complexes of dexamethasone and methyltrienolone with receptor were highly dependent on temperature. The temperature dependence of association was greater for dexamethasone, and that of degradation was greater for methyltrienolone. Dissociation rates were insignificant for both steroid-receptor complexes compared to association and degradation rates. The apparent equilibrium dissociation constants for the binding of dexamethasone and methyltrienolone to their receptor binding sites were about 7 and 0.3 nM, respectively, regardless of temperature (0. 15 or 23 degrees C). The lack of influence of temperature on the equilibrium constants indicate that the binding was of hydrophobic character, and the corresponding free energy changes upon binding of dexamethasone and methyltrienolone to their respective binding sites were -41 and -49 kJ mol-1 under equilibrium conditions at 0 degrees C. The apparent maximum number of binding sites determined from Scatchard plots under these conditions was about 1900 fmol/g of tissue, 3500 fmol/mg of DNA or 30 fmol/mg of protein in the case of the dexamethasone receptor, and the corresponding figures for the methyltrienolone were about 100 fmol/g of tissue, 200 fmol/mg of DNA or 2 fmol/mg of protein. The ligand specificities of the binding sites for dexamethasone and methyltrienolone were typical of a glucocorticoid and an androgen receptor, respectively. Both steroid-receptor complexes were retained on DNA-cellulose columns, and were eluted by NaCl at an ionic strength of 0.1. The DNA-cellulose step purified about 20 times, and was used to allow gel exclusion chromatography and electrofocusing. Both steroid-receptor complexes were excluded from a column of Sephadex G-150. Electrofocusing in preparative columns gave reproducible patterns consisting of three peaks for each receptor. The apparent isoelectric points were 5.4, 5.6 and 6.2 for the glucocorticoid receptor, and 5.9, 6.2 and 8.5 for the androgen receptor.  相似文献   

12.
We have previously demonstrated a functional role of the preoptic area and anterior hypothalamus (PO/AH) in thermoregulation in freely moving rats at various temperature conditions by using microdialysis and biotelemetry methods. In the present study, we perfused tetrodotoxin (TTX) solution into the PO/AH to investigate whether this manipulation can modify thermoregulation in exercising rats. Male Wistar rats were trained for 3 wk by treadmill running. Body core temperature (Tb), heart rate (HR), and tail skin temperature (Ttail) were measured. Rats ran for 120 min at speed of 10 m/min, with TTX (5 microM) perfused into the left PO/AH during the last 60 min of exercise through a microdialysis probe (control, n=12; TTX, n=12). Tb, HR, and Ttail increased during the first 20 min of exercise. Thereafter, Tb, HR, and Ttail were stable in both groups. Perfusion of TTX into the PO/AH evoked an additional rise in Tb (control: 38.2 +/- 0.1 degrees C, TTX: 39.3 +/- 0.2 degrees C; P <0.001) with a significant decrease in Ttail (control: 31.2 +/- 0.5 degrees C, TTX: 28.3 +/- 0.7 degrees C; P <0.01) and a significant increase in HR (control: 425.2 +/- 12 beats/min, TTX: 502.1 +/- 13 beats/min; P <0.01). These results suggest that the TTX-induced hyperthermia was the result of both an impairment of heat loss and an elevation of heat production during exercise. We therefore propose the PO/AH as an important thermoregulatory site in the brain during exercise.  相似文献   

13.
(-)-[3H]-Dihydroalprenolol((-)[3H]DHA) binding in the rat hypothalamus appears to possess all the characteristics expected of physiologically relevant beta-adrenergic receptors. Binding of (-)-[3H]DHA to the hypothalamic sites was rapid (k1 = 1.3 X 10(-7) min-1) and also rapidly reversible. Binding was saturable at low concentrations of ligand (approximately 50-100 nM). The dissociation constant (KD) of (-)-[3H]DHA binding determined by equilibrium analysis was 19 nM. Binding displayed beta-adrenergic specificity. beta-Adrenergic agonists inhibited binding in the following order of potency: (-)-isoproterenol congruent to (-)-epinephrine greater than (-)-norepinephrine. Specific beta-adrenergic antagonists (-)-propranol and (-)-alprenolol inhibited binding at low concentrations (KD = 25-50nM) whereas the alpha-antagonist phentolamine inhibited binding at very high concentration (KD = 42 micron). Interactions of both agonists and antagonists with the sites showed stereoselectivity. The (-)-isomers of all beta-adrenergic agents tested were more potent than their respective (+)-isomers. These results suggest that specific receptor sites for beta-adrenergic catecholamines are present in rat hypothalamus.  相似文献   

14.
Following castration LHRH levels in the MBH but not in the POA decreased. Testosterone implants in the medial POA following castration failed to alter the LHRH activity either locally in the POA or in remote sites in the MBH. On the contrary, similar T implants in the MBH blocked castration-induced depletion of MBH LHRH stores without affecting either the POA LHRH content or the post-castration hypersecretion of pituitary LH. These findings identify the MBH as the focal site of T action in the regulation of hypothalamic LHRH activity.  相似文献   

15.
Androgen receptors in crude and partially purified 105,000 X g supernatant fractions from rat testis, epididymis, and prostate were studied in vitro using a charcoal adsorption assay and sucrose gradient centrifugation. Androgen metabolism was eliminated during receptor purification allowing determination of the kinetics of [3H]-androgen-receptor complex formation. In all three tissues, receptors were found to have essentially identical capabilities to bind androgen, with the affinity for [3H] dihydrotestosterone being somewhat higher than for [3H] testosterone. Equilibrium dissociation constants for [3H] dihydrotestosterone and [3H] testosterone (KD = 2 to 5 X 10(-10) M) were estimated from independently determined rates of association (ka congruent to 6 X 10(7) M-1 h-1 for [3H] dihydrotestosterone and 2 X 10(8) M-1 h-1 for [3H] testosterone) and dissociation (t 1/2 congruent to 40 hr for [3H] dihydrotestosterone and 15 h [3H] testosterone). Evaluation of the effect of temperature on androgen receptor binding of [3H]testosterone allowed estimation of several thermodynamic parameters, including activation energies of association and dissociation (delta H congruent to 14 kcal/mol), the apparent free energy (delta G congruent to -12 kcal/mol), enthalpy (delta H congruent to -2.5 kcal/mol), and entropy (delta S congruent to 35 cal col-1 K-1). Optimum receptor binding occurred at a pH of 8. Receptor stability was greatly enhanced when bound with androgen. Receptor specificity for testosterone and dihydrotestosterone was demonstrated by competitive binding assays. The potent synthetic androgen, 7 alpha, 17 alpha-dimethyl-19-nortestosterone, inhibited binding of [3H] testosterone or [3H] dihydrotesterone nearly as well as testosterone and dihydrotestosterone while larger amounts of 5 alpha-androstane-3alpha, 17 beta-diol and nonandrogenic steroids were required. Sedimentation coefficients of androgen receptors in all unfractionated supernatants were 4 and 5 to 8 S. Differences in sedimentation coefficients were observed following (NH4)2SO4 precipitation which did not influence the binding properties of the receptors. These results, together with measurements of3alpha/beta-hydroxysteroid oxidoreductase activity in vitro, suggest that organ differences in receptor binding of [3H] dihydrotestosterone and [3H] testosterone in vivo result from relative differences in intracellular concentrations of these androgens rather than from differences in receptor affinities.  相似文献   

16.
Experiments have been designed in order to analyze whether the binding capability of mu opioid receptors in the brain of the male rat is modified by age. In a first experiment, the number of receptors (Bmax) and the constant of affinity (Ka) for the mu ligand 3H-dihydromorphine (3H-DHM) have been measured in the whole brain of male rats of 2, 15 and 22 months of age. In a second experiment the Bmax and the Ka for 3H-DHM have been evaluated in the hypothalamus of male rats of 2 and 22 months of age. In this experiment it was also investigated whether the administration of exogenous testosterone modifies the number and/or the affinity of the hypothalamic mu receptors. Serum levels of LH, FSH, prolactin and testosterone have been measured by specific RIAs. The results obtained show that: serum testosterone levels are significantly decreased in aged rats, while serum LH and FSH show only a small decline; serum prolactin is higher in old than in young animals; the number of mu receptors in the whole brain of 15 and 22 month old animals and in the hypothalamus of 22 month old rats is significantly lower than in the same tissues of young animals; the administration to old animals of testosterone, in doses able to bring back towards normal serum levels of testosterone, induces a decrease of LH and FSH, but has no effect on serum prolactin titers. Testosterone administration does not modify the number of hypothalamic mu opioid receptors, indicating that the decline of brain mu receptors in old animals is not the consequence of the physiological decline of testosterone secretion; in no instance the Ka for the mu ligand is significantly affected.  相似文献   

17.
Summary The preoptic area (POA) or cerebral cortex taken from newborn female rats were transplanted into the third ventricle of ovariectomized adult rats. From the day of transplantation, estradiol-17/ in a silastic capsule was implanted subcutaneously into host animals for 4 weeks. The POA or cerebral cortex transplants were examined at light- and electron-microscopic levels 4 weeks after transplantation. All of the POA or cortical grafts showed an appearance similar to normal neural tissue. Estrogen exposure for 4 weeks via the host induced a significant increase in the volume of the POA grafts. The neuronal population of the POA grafts exposed to estrogen was not significantly different from that of the POA grafts without estrogen treatment. However, the number of axodendritic shaft and spine synapses of the POA grafts exposed to estrogen was significantly greater than that of the POA grafts without estrogen treatment. In contrast, there was no significant difference in the volume of the cortical tissues transplanted into the brain between the control and estrogen-treated groups. These results suggest that estrogen has a stimulatory effect on the development of neuronal substrates in the intraventricular POA graft, increasing its volume and synaptic population.  相似文献   

18.
The preoptic area/anterior hypothalamus (POA/AH) sits as a boundary region rostral to the classical diencephalic hypothalamus and ventral to the telencephalic septal region. Numerous studies have pointed to the region's importance for sex‐dependent functions. Previous studies suggested that migratory guidance cues within this region might be particularly unique in their diversity. To better understand the early development and differentiation of the POA/AH, cytoarchitectural, birthdate, immunocytochemical, and cell migration studies were conducted in vivo and in vitro using embryonic C57BL/6J mice. A medial preoptic nucleus became discernible using Nissl stain in males and females between embryonic days (E) E15 and E17. Cells containing immunoreactive estrogen receptor‐α were detected in the POA/AH by E13, and increased in number with age in both sexes. From E15 to E17, examination of the radial glial fiber pattern by immunocytochemistry confirmed the presence of dual orientations for migratory guidance ventral to the anterior commissure (medial‐lateral and dorsal‐ventral) and uniform orientation more caudally (medial‐lateral). Video microscopy studies followed the migration of DiI‐labeled cells in coronal 250‐μm brain slices from E15 mice maintained in serum‐free media for 1–3 days. Analyses showed significant migration along a dorsal‐ventral orientation in addition to medial‐lateral. The video analyses showed significantly more medial‐lateral migration in males than females in the caudal POA/AH. In vivo, changes in the distribution of cells labeled by the mitotic indicator bromodeoxyuridine (BrdU) suggested their progressive migration through the POA/AH. BrdU analyses also indicated significant movement from dorsal to ventral regions ventral to the anterior commissure. The significant dorsal‐ventral migration of cells in the POA/AH provides additional support for the notion that the region integrates developmental information from both telencephalic and diencephalic compartments. The sex difference in the orientation of migration of cells in the caudal POA/AH suggests one locus for the influence of gonadal steroids in the embryonic mouse forebrain. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 252–266, 1999  相似文献   

19.
T J Chen  W W Tu 《Life sciences》1992,50(21):1639-1647
The present study was conducted to measure the levels of estrogen and androgen receptors (ER and AR, receptively) simultaneously in the anterior pituitary (AP), and various brain regions from adult male and proestrous female hamsters. Medial preoptic area (MPOA), medial basal hypothalamus (MBH), lateral hypothalamus (LH), medial forebrain bundle (MFB), and amygdala (AMG) were identified and removed from 200-microns frozen brain sections by the Palkovits punch-out technique. ER and AR were determined by the in vitro binding assay using [3H]-estradiol and [3H]-methyltrienolone as the binding ligands. In males, high levels of AR were found in the MPOA, MBH, and AP. In females, the MPOA, MBH, LH, and AP contained high levels of ER. The males exhibited significantly higher levels of AR than females in the MPOA, MBH, and LH, whereas the ER levels in these areas were higher in females. In males, ER and AR contents in the AP were higher, but the contents in the AMG were lower as compared to those of females. The calculated ER/AR ratio in MPOA, MBH, and LH were lowest in males. On the contrary, the ratio in these areas were highest in females. These data suggest that sex differences in response to estrogen and androgen may in part be due to sex differences in ER and AR contents in specific brain regions.  相似文献   

20.
The dorsomedial hypothalamus (DMH) plays an important role in relaying information to neural pathways mediating neuroendocrine, autonomic, and behavioral responses to stress. Evidence suggests that the DMH is a structurally and functionally diverse integrative structure that contributes to both facilitation and inhibition of the hypothalamo-pituitary-adrenal axis, depending on the nature of the stimulus and the specific neural circuits involved. Previous studies have determined that stress or stress-related stimuli elevate tissue concentrations of serotonin (5-hydroxytryptamine; 5-HT), 5-hydroxyindoleacetic acid (5-HIAA), dopamine, and noradrenaline selectively within the DMH. In order to determine the specific region of the rat DMH involved, we used high-performance liquid chromatography with electrochemical detection to measure tissue concentrations of 5-HT, 5-HIAA, dopamine, and noradrenaline within five different subregions of the DMH in adult female Lewis and Fischer rats immediately or 4 h following a 30-min period of restraint stress. Compared to unrestrained control rats, restrained rats had elevated concentrations of 5-HT, 5-HIAA, dopamine, and noradrenaline immediately after a 30-min period of restraint and had elevated concentrations of 5-HT 4 h following the onset of a 30-min period of restraint stress. These effects were confined to a specific region that included medial portions of the dorsal hypothalamic area and dorsal ependymal, subependymal, and neuronal components of the periventricular nucleus. Furthermore, these effects were observed in Lewis rats, but not Fischer rats, two closely related rat strains with well-documented differences in neurochemical, neuroendocrine, autonomic, and behavioral responses to stress. These data provide support for the existence of a stress-responsive, amine-accumulating area in the DMH that may play an important role in the differential stress responsiveness of Lewis and Fischer rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号