首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alu elements undergo amplification through retroposition and integration into new locations throughout primate genomes. Over 500,000 Alu elements reside in the human genome, making the identification of newly inserted Alu repeats the genomic equivalent of finding needles in the haystack. Here, we present two complementary methods for rapid detection of newly integrated Alu elements. In the first approach we employ computational biology to mine the human genomic DNA sequence databases in order to identify recently integrated Alu elements. The second method is based on an anchor-PCR technique which we term Allele-Specific Alu PCR (ASAP). In this approach, Alu elements are selectively amplified from anchored DNA generating a display or 'fingerprint' of recently integrated Alu elements. Alu insertion polymorphisms are then detected by comparison of the DNA fingerprints generated from different samples. Here, we explore the utility of these methods by applying them to the identification of members of the smallest previously identified subfamily of Alu repeats in the human genome termed Ya8. This subfamily of Alu repeats is composed of about 50 elements within the human genome. Approximately 50% of the Ya8 Alu family members have inserted in the human genome so recently that they are polymorphic, making them useful markers for the study of human evolution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
At present, nucleotide sequences of 100 different Alu repeats are known, i.e. 0.01% of the total number of Alu repeats in the genome. It is clear that one can not refer the evolutionary characteristics of Alu repeats obtained from the analysis of the available limited sample to all Alu repeats comprised in the genome, without additional statistical estimations. For supplementary investigation of such average evolutionary characteristics as the extent of intraspecific divergence, the rate of Alu repeats transposition (insertion, excision), we used the method of imitation simulation of the process of Alu repeats transposition in the genome. As a result of simulation, phylogenetic relations were obtained among all Alu repeats. It was shown that the evolutionary characteristics evaluated for different samples of repeats were similar. It was proved that the extent of divergence of Alu repeats in the model is twice as small as that evaluated, according to the real data (0.15, instead of 0.3). Possible reasons for such discrepancy have been discussed.  相似文献   

3.
The contextual analysis of nucleotide sequences of 22 Alu repeats arrangement regions in the human genome has been carried out and some of their peculiarities have been revealed. In particular, the occurrence of marked and statistical non-random homology between the repeats and the regions of their integration has been shown. A mechanism of choosing the Alu repeats insertion regions in the genome has been suggested taking into account these peculiarities. Using a sample of the 80 human Alu repeats sequences peculiarities of these repeats location within the genome has been investigated. A tendency to the formation of Alu repeats clusters in various regions of the genome was revealed. A range of possible mechanisms on such Alu clusters emergence is considered. On the basis of the data obtained an "attraction" mechanism, according to which integration of Alu repeats into the definite region of the genome increases the insertion probability of other Alu repeats into the same region, are proposed.  相似文献   

4.
5.
Analysis of DNA sequences of the human chromosomes 21 and 22 performed using a specially designed MegaGene software allowed us to obtain the following results. Purine and pyrimidine nucleotide residues are unevenly distributed along both chromosomes, displaying maxima and minima (Y waves phi) with a period of about 3 Mbp. Distribution of G + C along both chromosomes has no distinct maxima and minima, however, chromosome 21 contains considerably less G + C than chromosome 22. Both exons and Alu repeats are unevenly distributed along chromosome 21: they are scarce in its left part and abundant in the right part, while MIR elements are quite monotonously spread along this chromosome. The Alu repeats show a wave-like distribution pattern similar for both repeat orientations. The number of the Alu repeats of opposite orientations was equal for both studied chromosomes, and this may be considered a new property of the human genome. The positive correlation between the exon and Alu distribution patterns along the chromosome, the concurrent distribution of Alu repeats in both orientations along the chromosome, and the equal copy numbers for Alu in direct and inverted orientations within an individual chromosome point to their important role in the human genome, and do not fit the notion that Alu repeats belong to parasitic (junk) DNA.  相似文献   

6.
The PV subfamily of Alu repeats in human DNA is largely composed of recently inserted members. Here we document additional members of the PV subfamily that are found in chimpanzee but not in the orthologous loci of human and gorilla, confirming the relatively recent and independent expansion of this Alu subfamily in the chimpanzee lineage. As further evidence for the youth of this Alu subfamily, one PV Alu repeat is specific to Pan troglodytes, whereas others are present in Pan paniscus as well. The A-rich tails of these Alu repeats have different lengths in Pan paniscus and Pan troglodytes. The dimorphisms caused by the presence and absence of PV Alu repeats and the length polymorphisms attributed to their A-rich tails should provide valuable genetic markers for molecular-based studies of chimpanzee relationships. The existence of lineage-specific Alu repeats is a major sequence difference between human and chimpanzee DNAs. Correspondence to: C.W. Schmid  相似文献   

7.
A significant fraction of Alu repeats in human sperm DNA, previously found to be unmethylated, is nearly completely methylated in DNA from many somatic tissues. A similar fraction of unmethylated Alus is observed here in sperm DNA from rhesus monkey. However, Alus are almost completely methylated at the restriction sites tested in monkey follicular oocyte DNA. The Alu methylation patterns in mature male and female monkey germ cells are consistent with Alu methylation in human germ cell tumors. Alu sequences are hypomethylated in seminoma DNAs and more methylated in a human ovarian dysgerminoma. These results contrast with methylation patterns reported for germ cell single-copy, CpG island, satellite, and L1 sequences. The function of Alu repeats is not known, but differential methylation of Alu repeats in the male and female germ lines suggests that they may serve as markers for genomic imprinting or in maintaining differences in male and female meiosis.  相似文献   

8.
Nucleotide sequencing of two terminal subfragments of a cloned human DNA fragment has been done. The fragment cloned hybridized dispersively along all chromosomes except for Y chromosome and C heterochromatic chromosome regions. Both subfragments sequenced contain Alu repeats, whose structures differ partially from those of accurately determined sequences of human Alu repeats. The results obtained are discussed in respect of possible usage of Alu repeats containing sequences for construction of special polymorphic molecular markers of human chromosomes.  相似文献   

9.
10.
There are over a million Alu repetitive elements dispersed throughout the human genome, and a high level of Alu-sequence similarity ensures a strong propensity for unequal crossover events, some of which have lead to deleterious oncogenic rearrangements. Furthermore, Alu insertions introduce consensus 3' splice sites, which potentially facilitate alternative splicing. Not surprisingly, Alu-mediated defective splicing has also been associated with cancer. To investigate a possible correlation between the expansion of Alu repeats associated with primate divergence and predisposition to cancer, 4 Alu-mediated rearrangements--known to be the basis of cancer--were selected for phylogenetic analysis of the necessary genotype. In these 4 cases, it was determined that the different phylogenetic age of the oncogenic recombination-prone genotype reflected the evolutionary history of Alu repeats spreading to new genomic sites. Our data implies that the evolutionary expansion of Alu repeats to new genomic locations establishes new predispositions to cancer in various primate species.  相似文献   

11.
The human albumin-alpha-fetoprotein genomic domain contains 13 repetitive DNA elements randomly distributed throughout the symmetrical structures of these genes. These repeated sequences are located at different sites within the two genes. The human albumin gene contains five Alu elements within four of its 14 intervening sequences. Two of these repeats are located in intron 2, and the remaining three are located in introns 7, 8, and 11. The human alpha-fetoprotein gene contains three of these Alu elements, one in intron 4 and the remaining two in the 3'-untranslated region. In addition, the human alpha-fetoprotein gene contains a Kpn repeat and two classes of novel repeats that are absent from the human albumin gene. Six of the Alu elements within the two genes are bound by short direct repeats that harbor five base substitutions in 120 possible positions (60 bp times 2 termini). The absence of Alu repeats from analogous positions in rodents indicates that these repeats invaded the albumin-alpha-fetoprotein domain less than 85 Myr ago (the time of mammalian radiation). Furthermore, considering the conservation of terminal repeats flanking the Alu sequences of the albumin-alpha-fetoprotein domain (0.042 changes per site), we submit that the average time of Alu insertion into this gene family could have been as recently as 15-30 Myr ago.  相似文献   

12.
13.
Alu repeats are the most common type of repetitive DNA sequences dispersed throughout the human genome. Technical advances in the field of cytogenetics and molecular biology have facilitated the analysis of epithelial tumors and hematologic malignancies which has led to the observation of Alu elements in and near sites often involved in chromosomal rearrangements. Repair mechanisms of double strand breaks (DSB) such as homol-ogous recombination (HR) may rely on the sequence homology of Alu repeats, potentially leading to chromosomal rearrange-ments. Databases have confirmed the strong association between Alu repeats, specifically the 26 bp consensus sequence and chro-mosomal regions involved in deletions and translocations. Although the Alu repetitive sequence is a potential "hotspot" during homologous recombination, there are other cellular mech-anisms that may play a more prominent role in the initiation of chromosomal rearrangements.  相似文献   

14.
A complex study on various evolutionary peculiarities of the mammalia dispersed Alu repeats (Alu repeats of primates and B1 of rodents) has been carried out by phylogenetic analysis. A phylogenetic tree, containing the 7SL RNA genes and the Alu repeats of primates and rodents has been constructed. It has been shown that the branch of the phyletic line leading to the Alu repeats of primates and B1 of rodents from the 7SL RNA genes occurred after the divergence of the 7SL RNA genes of amphibia and mammalia, but before the divergence of the 7SL RNA genes of primates and rodents (250.10 years ago). A statistically reliable slowing down in the evolutionary rates of one of two monomers for the human Alu repeats has been proved. It may be caused by the functional load of the corresponding monomer in connection with the presence of a definit regulatory site in it.  相似文献   

15.
Summary There are several hundred thousand members of the Alu repeat family in the human genome. Those Alu elements sequenced to date appear to fit into subfamilies. A novel Alu has been found in an intron of the human CAD gene: it appears to be due to rearrangement between Alu repeats belonging to two different subfamilies. Further sequence data from this intron suggest that the Alu element may have rearranged prior to its entry into the CAD gene. Such findings indicate that, in addition to single nucleotide substitutions and deletions, DNA rearrangments may be a factor in generating the diversity of Alu repeats found in primate genomes.  相似文献   

16.
17.
The presence of Alu repeats downregulates the expression of the green fluorescent protein(GFP) gene.We found that SV40PolyA(PolyA,240 bp),in either orientation,eliminated the inhibition of GFP gene expression induced by Alu repeats when it was placed between the GFP gene and the Alu repeats.In this study,4 different segments(each 60 bp) were amplified from antisense PolyA(PolyAas) by PCR,and inserted upstream of Alu14 in pAlu14 plasmid(14 Alu repeats inserted downstream of the GFP gene in vector pEGFP-C1 in...  相似文献   

18.
Revision of consensus sequence of human Alu repeats--a review   总被引:37,自引:0,他引:37  
Nucleotide sequences of 50 human Alu repeats and their flanking regions are presented together with the consensus sequence based on the literature and our findings. The results indicate the need for some revisions of the Alu consensus sequence published by Deininger et al. (1981). Most nucleotide substitutions among the Alu members are transitions, rather than transversions. The Alu sequence seems to consist of 'conserved' regions and 'variable' regions. The conserved regions consist of a 25-bp region between nt positions 23 and 47 and a 16-bp region between nt positions 245 and 260. The 16-bp region corresponds to the region of 7SL RNA that is claimed to fold and become paired with the internal promoter sequence. Two A-rich regions, one located at the right end of the first monomer and the other at the right end of the second monomer, are variable. No defined property was found with direct repeats flanking the Alu repeats.  相似文献   

19.
Developmental differences in methylation of human Alu repeats.   总被引:16,自引:3,他引:13       下载免费PDF全文
Alu repeats are especially rich in CpG dinucleotides, the principal target sites for DNA methylation in eukaryotes. The methylation state of Alus in different human tissues is investigated by simple, direct genomic blot analysis exploiting recent theoretical and practical advances concerning Alu sequence evolution. Whereas Alus are almost completely methylated in somatic tissues such as spleen, they are hypomethylated in the male germ line and tissues which depend on the differential expression of the paternal genome complement for development. In particular, we have identified a subset enriched in young Alus whose CpGs appear to be almost completely unmethylated in sperm DNA. The existence of this subset potentially explains the conservation of CpG dinucleotides in active Alu source genes. These profound, sequence-specific developmental changes in the methylation state of Alu repeats suggest a function for Alu sequences at the DNA level, such as a role in genomic imprinting.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号