首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A seven- to eightfold increment in hepatic glucose production (endogenous R(a)) occurs in postabsorptive (PA) intense exercise (IE). A similar response is likely present in the postprandial (PP) state, when most such exercise is performed, because 1) little evidence for increased intestinal absorption of glucose during exercise exists, and 2) intravenous glucose does not prevent it. We investigated IE in 10 PA and 8 PP fit, lean, young males who had exercised for 15 min at >84% maximum O(2) uptake, starting 3 h after a 412-kcal mixed meal. The meal induced a small rise in glycemia with sustained insulin and glucagon increases. Preexercise glucose total R(a) and utilization (R(d)) were equal and approximately 130% of the PA level. Exercise hyperglycemia in PP was delayed and diminished and, in early recovery, was of shorter duration and lesser magnitude (P = 0.042). Peak catecholamine (12- to 16-fold increase) and R(a) (PP: 11.5 +/- 1.4, PA: 13.8 +/- 1.4 mg. kg(-1). min(-1)) responses did not differ, and their responses during exercise were significantly correlated. Exercise glucagon, insulin, and glucagon-to-insulin responses were small or not significant. R(d) reached the same peak (PP: 8.0 +/- 0.6, PA: 9.3 +/- 0.8 mg. kg(-1). min(-1)) but was greater at 20-120 min of recovery in PP (P = 0.001). Therefore, the total R(a) response to IE is preserved despite the possibility of prior PP suppression of endogenous R(a) and is consistent with catecholamine mediation. Post-IE hyperglycemia is reduced in the postprandial state.  相似文献   

2.
The postprandial release of immunoreactive insulin, glucagon, gastrin, somatostatin, pancreatic polypeptide (PP), and gastric inhibitory polypeptide (GIP) was studied in parallel with the absorption of sugars and amino acids in conscious pigs. Six pigs fitted with permanent catheters in the portal vein and arterial blood system as well as within an electromagnetic flow probe around the portal vein received successively at 3-day intervals, three meals of 800 g each containing 0, 14, or 28% protein (semisynthetic diets based on fish protein). Blood samples were collected and portal blood flow was recorded during a postprandial period of 8 h. For the same level of feed intake, an increase in the dietary protein concentration led to a higher alpha-amino nitrogen absorption and to a lower appearance of reducing sugars in the portal vein; in addition, the carbohydrate absorption efficiency (amounts absorbed as a percentage of amounts ingested) was reduced, showing the competition between the absorption of amino acids and glucose. The largest absorption occurred during the first 4 h after the meal, but neither the digestion of proteins nor that of carbohydrates were finished 8 h after the meal since portoarterial differences could still be observed. All test meals induced a rise of portal and peripheral concentrations of insulin, gastrin, somatostatin, and PP, and of the systemic level of GIP. Glucagon increased after the 28% protein meal only. The rise of plasma insulin paralleled that of blood glucose, and bore a significant positive relationship to the systemic GIP level in the early postprandial period. In terms of absolute amounts, portoarterial concentration gradients increased postprandially. Insulin release was significantly the highest after intake of the 14% protein diet. The gastrin response was significantly correlated to the amount of protein. Similarly the release of glucagon and somatostatin tended to increase with increasing dietary amount, but differences failed to reach significance (P less than 0.05), except for glucagon 2 h after the meal. There were very close relationships between the hourly amounts of alpha-amino nitrogen absorbed and gastrin and glucagon production, as between insulin and PP secretions. From the present results, the induction of physiological increments of plasma peptide concentration in 60-kg pigs would require infusion rates of about 50-250 micrograms/h for insulin, 1-4 micrograms/h for gastrin 17, 5-10 micrograms/h for glucagon and somatostatin, and 5-50 micrograms/h for PP.  相似文献   

3.
4.
Carboxyl ester lipase (CEL; EC 3.1.1.13) hydrolyzes cholesteryl esters and retinyl esters in vitro. In vivo, pancreatic CEL is thought to liberate cholesterol and retinol from their esters prior to absorption in the intestine. CEL is also a major lipase in the breast milk of many mammals, including humans and mice, and is thought to participate in the processing of triglycerides to provide energy for growth and development while the pancreas of the neonate matures. Other suggested roles for CEL include the direct facilitation of the intestinal absorption of free cholesterol and the modification of plasma lipoproteins. Mice with different CEL genotypes [wild type (WT), knockout (CELKO), heterozygote] were generated to study the functions of CEL in a physiological system. Mice grew and developed normally, independent of the CEL genotype of the pup or nursing mother. Consistent with this was the normal absorption of triglyceride in CELKO mice. The absorption of free cholesterol was also not significantly different between CELKO (87 +/- 26%, mean +/- SD) and WT littermates (76 +/- 10%). Compared to WT mice, however, CELKO mice absorbed only about 50% of the cholesterol provided as cholesteryl ester (CE). There was no evidence for the direct intestinal uptake of CE or for intestinal bacterial enzymes that hydrolyze it, suggesting that another enzyme besides CEL can hydrolyze dietary CE in mice. Surprisingly, CELKO and WT mice absorbed similar amounts of retinol provided as retinyl ester (RE). RE hydrolysis, however, was required for absorption, implying that CEL was not the responsible enzyme. The changes in plasma lipid and lipoprotein levels to diets with increasing lipid content were similar in mice of all three CEL genotypes. Overall, the data indicate that in the mouse, other enzymes besides CEL participate in the hydrolysis of dietary cholesteryl esters, retinyl esters, and triglycerides.  相似文献   

5.
1. High-fat diets, modify the neuroendocrine response and, when prolonged, result in positive energy balance and obesity. Little is known about the effects of fat on the mechanisms operating in the initial steps of the neural and endocrine disturbances. 2. The studies reported here were designed to access the impact of the consumption of a single exclusively animal fat meal (lard), 24 h following its ingestion a) on the response of the hypothalamic serotonergic system to a standard laboratory chow meal and b) on the circulating levels of glucose, insulin, and leptin. The release of serotonin in the extracellular medial hypothalamic space (including the paraventricular-PVN and ventromedian-VMH nuclei) was determined using electrochemical detection following HPLC in samples obtained in vivo by microdialysis, in nonanesthetized adult male Wistar rats. 3. A lard meal resulted in decreased hypothalamic serotonin release postprandially and attenuated (24 h later) the hypothalamic serotonin response that normally follows a balanced meal. 4. In permanently catheterized rats, postprandial glucose and insulin levels measured in samples obtained in vivo, were either not, or only slightly, modified after a lard meal, whereas plasma leptin levels were increased. Interestingly, 24 h after a meal, insulin and leptin levels were increased in those animals eating a fat meal compared with those eating chow. Next-day glucose levels remained identical after the absorption either of a chow, or a lard meal. 5. The changes induced by the fat meal on peripheral and central regulators of energy and glucose homeostasis represent either adaptive mechanisms or early alterations that could render the organism vulnerable to further insults.  相似文献   

6.
The present study was designed to determine the role of carbohydrates during naloxone-induced opiate receptor blockade upon the postprandial rise of plasma somatostatin (SLI), insulin and pancreatic polypeptide (PP) levels in response to protein and fat test meals in conscious dogs. Test meals consisting of 50 g liver extract + 50 g sucrose or 50 g corn oil + 50 g sucrose dissolved in 300 ml water were instilled intragastrically, respectively. Additionally, liver extract and fat meals were given with a concomitant intravenous infusion of glucose. To all test meals either naloxone (4 mg) or saline was added. The addition of sucrose to liver extract or the infusion of i.v. glucose during the liver meal abolished the inhibitory effect of naloxone on the rise of postprandial somatostatin levels which has been described recently. The addition of carbohydrate either orally or intravenously to the fat meal resulted in an even stimulatory effect of naloxone upon the rise of postprandial somatostatin levels. Insulin levels were not changed during liver extract + sucrose or i.v. glucose, respectively. When sucrose or i.v. glucose was administered together with the fat meal the addition of naloxone augmented postprandial insulin secretion. Pancreatic polypeptide (PP) release was augmented during the combination of sucrose or i.v. glucose with the fat and liver meal when naloxone was present in the meals. The present data demonstrate that the addition of carbohydrates either orally or intravenously to fat and protein meals modulates the effect of endogenous opiates in the regulation of postprandial somatostatin, insulin and pancreatic polypeptide release in dogs in a way that carbohydrates induce inhibitory mechanisms that are mediated via endogenous opiate receptors.  相似文献   

7.

Background

Recent studies show that bile acids are involved in glucose and energy homeostasis through activation of G protein coupled membrane receptor (TGR5) and farnesoid X receptor (FXR). A few researches have explored changes of TGR5 and FXR in animals with impaired glucose regulation. This study aimed to observe changes of plasma total bile acids (TBA), glucagon-like-peptide 1 (GLP-1), fibroblast growth factor 15 (FGF15), intestinal expressions of TGR5 and FXR, and correlations between them in rats with glucose intolerance.

Methods

Besides plasma fasting glucose, lipid, TBAs, alanine transaminase (ALT), active GLP-1(GLP-1A) and FGF15, a postprandial meal test was used to compare responses in glucose, insulin and GLP-1A among groups. The expressions of TGR5 and FXR in distal ileum and ascending colon were quantified by real-time PCR and western blot.

Results

TGR5 expression was significantly decreased in distal ileum in DM group compared to other groups, and TGR5 and FXR expressions in ascending colon were also decreased in DM group compared to other groups. Correlation analysis showed correlations between TBA and GLP-1A or FGF15. GLP-1A was correlated with TGR5 mRNA expression in colon, and FGF15 was correlated with FXR mRNA expression in colon.

Conclusions

These results indicates that bile acid-TGR5/FXR axis contributes to glucose homeostasis.
  相似文献   

8.
BackgroundAmomum villosum Lour., (Zingiberaceae) an herbaceous plant in the ginger family, has been used to treat various diseases. In a single-blind, randomized, crossover study, we assessed the postprandial blood insulin and blood glucose responses in healthy subjects (n = 40) after the Amomum villosum water extract (AVE) (5 g/person) or a placebo (5 g/person) consumption.MethodsDuring each treatment course, the healthy subject consumed a regular late afternoon meal, followed by fasting for 12 h, and arrived at the clinical study center the next morning. Blood insulin and blood glucose levels were assessed at 0, 30, 60, 90, and 120 min after AVE consumption. Between each treatment, the subjects accomplished one week of a washout period.ResultsThe AVE intake demonstrated a significant (67.26%) decline in postprandial blood glucose AUC0–120 min (incremental area under the curve from 0 to 120 min) versus the placebo (P = 0.011). Furthermore, AVE reduced postprandial blood insulin AUC0–120 min by 59.95% compared to the placebo group (P < 0.003), supporting the blood glucose results.ConclusionThis study revealed that AVE consumption significantly reduced postprandial insulin and glucose levels in healthy individuals, due in part to inhibition of α-glucosidase, and glucose transport.  相似文献   

9.
The carrier frequency of Asn291Ser polymorphism of the lipoprotein lipase (LPL) gene is 4;-6% in the Western population. Heterozygotes are prone to fasting hypertriglyceridemia and low high density lipoprotein (HDL) cholesterol concentrations especially when secondary factors are superimposed on the genetic defect. We studied the LPL Asn291Ser gene variant as a modulator of postprandial lipemia in heterozygote carriers. Ten normolipidemic carriers were compared to ten control subjects, who were selected to have similar age, sex, BMI, and apolipoprotein (apo)E-phenotype. The subjects were given a lipid-rich mixed meal and their insulin sensitivity was determined by euglycemic hyperinsulinemic clamp technique. The two groups had comparable fasting triglycerides and glucose utilization rate during insulin infusion, but fasting HDL cholesterol was lower in carriers (1.25 +/- 0.05 mmol/L) than in the control subjects (1. 53 +/- 0.06 mmol/L, P = 0.005). In the postprandial state the most pronounced differences were found in the very low density lipoprotein 1 (VLDL1) fraction, where the carriers displayed higher responses of apoB-48 area under the curve (AUC), apoB-100 AUC, triglyceride AUC, and retinyl ester AUC than the control subjects. The most marked differences in apoB-48 and apoB-100 concentrations were observed late in the postprandial period (9 and 12 h), demonstrating delayed clearance of triglyceride-rich particles of both hepatic and intestinal origin. Postprandially, the carriers exhibited enrichment of triglycerides in HDL fraction. Thus, in normolipidemic carriers the LPL Asn291Ser gene variant delays postprandial triglyceride, apoB-48, apoB-100, and retinyl ester metabolism in VLDL1 fraction and alters postprandial HDL composition compared to matched non-carriers.  相似文献   

10.
目的 探讨二甲双胍对老年2型糖尿病患者肠道菌群、血糖血脂及炎性因子水平的影响。 方法 选取2018年3月至2019年9月我院收治的120例2型糖尿病患者为研究对象,随机分为观察组和对照组,各60例。两组患者均给予常规胰岛素治疗,观察组在此基础上加用二甲双胍治疗。观察两组患者治疗前后肠道菌群变化,胰岛功能水平[空腹胰岛素(FINS)、餐后2 h胰岛素(2hINS)、空腹C肽(FCP)、餐后2 h C肽(2hCP)、胰岛素抵抗指数(HOMA IR)],血糖血脂水平[糖化血红蛋白(HbAlc)、空腹血糖(FPG)、总胆固醇(TC)、三酰甘油(TG)、低密度脂蛋白胆固醇(LDL C)、高密度脂蛋白胆固醇(HDL C)]及炎性因子水平[白细胞介素6(IL 6)、C反应蛋白(CRP)、肿瘤坏死因子α(TNF α)]。 结果 治疗前,两组患者肠道菌群数量比较差异无统计学意义(均P>0.05)。治疗后,对照组患者肠道菌群数量与治疗前比较差异无统计学意义(均P>0.05),而观察组患者肠道双歧杆菌、乳杆菌、拟杆菌数量较治疗前和对照组均显著增加,肠球菌、肠杆菌及酵母菌数量显著降低(均P0.05)。治疗后,两组患者FINS、2hINS、FCP、2hCP水平明显升高,且观察组高于对照组(均Plc、FPG、TG、LDL C、CRP、IL 6和TNF α水平显著降低,且观察组低于对照组(均P结论 二甲双胍可明显增加患者肠道有益菌群数量,调节菌群失衡,控制血糖血脂代谢水平,改善炎症状态。  相似文献   

11.
Insulin resistance, impaired glucose tolerance, high circulating levels of free fatty acids (FFA), and postprandial hyperlipidemia are associated with the metabolic syndrome, which has been linked to increased risk of cardiovascular disease. We studied the metabolic responses to an oral glucose/triglyceride (TG) (1.7/2.0 g/kg lean body mass) load in three groups of conscious 7-h fasted Zucker rats: lean healthy controls, obese insulin-resistant/dyslipidemic controls, and obese rats treated with the dual peroxisome proliferator-activated receptor alpha/gamma agonist, tesaglitazar, 3 mumol.kg(-1).day(-1) for 4 wk. Untreated obese Zucker rats displayed marked insulin resistance, as well as glucose and lipid intolerance in response to the glucose/TG load. The 2-h postload area under the curve values were greater for glucose (+19%), insulin (+849%), FFA (+53%), and TG (+413%) compared with untreated lean controls. Treatment with tesaglitazar lowered fasting plasma glucose, improved glucose tolerance, substantially reduced fasting and postload insulin levels, and markedly lowered fasting TG and improved lipid tolerance. Fasting FFA were not affected, but postprandial FFA suppression was restored to levels seen in lean controls. Mechanisms of tesaglitazar-induced lowering of plasma TG were studied separately using the Triton WR1339 method. In anesthetized, 5-h fasted, obese Zucker rats, tesaglitazar reduced hepatic TG secretion by 47%, increased plasma TG clearance by 490%, and reduced very low-density lipoprotein (VLDL) apolipoprotein CIII content by 86%, compared with obese controls. In conclusion, the glucose/lipid tolerance test in obese Zucker rats appears to be a useful model of the metabolic syndrome that can be used to evaluate therapeutic effects on impaired postprandial glucose and lipid metabolism. The present work demonstrates that tesaglitazar ameliorates these abnormalities and enhances insulin sensitivity in this animal model.  相似文献   

12.
The effect of islet-activating protein (IAP) purified from culture medium of Bordetella pertussis was examined in dogs. This was assessed by the levels of pancreatic polypeptide (PP) as well as the responses of plasma insulin and glucagon to a parasympathomimetic agent, bethanechol. Plasma responses of these pancreatic hormones were measured before and 5 days after IAP injection. Although IAP had no significant effect on the bethanechol-stimulated increase in plasma glucose, insulin and glucagon, the PP response to bethanechol was significantly reduced after IAP treatment compared with that before IAP (p less than 0.05). In conclusion, IAP significantly and selectively reduced bethanechol-stimulated PP release in the dog although the mechanism remained to be elucidated.  相似文献   

13.

Background

Low birth weight and slow growth during infancy are associated with increased rates of chronic diseases in adulthood. Associations with risk factors such as fasting glucose and lipids concentrations are weaker than expected based on associations with disease. This could be explained by differences in postprandial responses, which, however, have been little studied. Our aim was to examine the impact of growth during infancy on postprandial responses to a fast-food meal (FF-meal) and a meal, which followed the macro-nutrient composition of the dietary guidelines (REC-meal).

Methodology/Principal Findings

We recruited 24 overweight 65–75 year-old subjects, 12 with slow growth during infancy (SGI-group) and 12 with normal early growth. All the subjects were born at term. The study meals were isocaloric and both meals were consumed once. Plasma glucose, insulin, triglycerides (TG) and free fatty acids (FFA) were measured in fasting state and over a 4-h period after both meals. Subjects who grew slowly during infancy were also smaller at birth. Fasting glucose, insulin or lipid concentrations did not differ significantly between the groups. The TG responses were higher for the SGI-group both during the FF-meal (P = 0.047) and the REC-meal (P = 0.058). The insulin responses were significantly higher for the SGI-group after the FF-meal (P = 0.036). Glucose and FFA responses did not differ significantly between the groups.

Conclusions

Small birth size and slow early growth predict postprandial TG and insulin responses. Elevated responses might be one explanation why subjects who were small at birth and experiencing slow growth in infancy are at an increased risk of developing cardiovascular diseases in later life.  相似文献   

14.

Objective

To determine if metabolically healthy obese (MHO) individuals have a different metabolic response to a standardized diet compared to lean healthy (LH) and metabolically unhealthy obese (MUO) individuals.

Methods

Thirty adults (35–70 yrs) were classified as LH, MHO, and MUO according to anthropometric and clinical measurements. Participants consumed a standardized high calorie meal (~1330 kcal). Blood glucose and insulin were measured at fasting, and 15, 30, 60, 90 and 120 min postprandially. Additional blood samples were collected for the targeted analysis of amino acids (AAs) and derivatives, and fatty acids (FAs).

Results

The postprandial response (i.e., area under the curve, AUC) for serum glucose and insulin were similar between MHO and LH individuals, and significantly lower than MUO individuals (p < 0.05). Minor differences were found in postprandial responses for AAs between MHO and MUO individuals, while three polyunsaturated FAs (linoleic acid, γ-linolenic acid, arachidonic acid) showed smaller changes in serum after the meal in MHO individuals compared to MUO. Fasting levels for various AAs (notably branched-chain AA) and FAs (e.g., saturated myristic and palmitic acids) were found to correlate with glucose and insulin AUC.

Conclusion

MHO individuals show preserved insulin sensitivity and a greater ability to adapt to a caloric challenge compared to MUO individuals.  相似文献   

15.
In this study, we investigated in rats if hydroxycitric acid (HCA) reduces the postprandial glucose response by affecting gastric emptying or intestinal glucose absorption. We compared the effect of regulator HCA (310 mg/kg) and vehicle (control) on the glucose response after an intragastric or intraduodenal glucose load to investigate the role of altered gastric emptying. Steele's one-compartment model was used to investigate the effect of HCA on systemic glucose appearance after an intraduodenal glucose load, using [U-(13)C]-labeled glucose and d-[6,6-(2)H(2)]-labeled glucose. Because an effect on postabsorptive glucose clearance could not be excluded, the effect of HCA on the appearance of enterally administered glucose in small intestinal tissue, liver, and portal and systemic circulation was determined by [U-(14)C]glucose infusion. Data show that HCA treatment delays the intestinal absorption of enterally administered glucose at the level of the small intestinal mucosa in rats. HCA strongly attenuated postprandial blood glucose levels after both intragastric (P < 0.01) and intraduodenal (P < 0.001) glucose administration, excluding a major effect of HCA on gastric emptying. HCA delayed the systemic appearance of exogenous glucose but did not affect the total fraction of glucose absorbed over the study period of 150 min. HCA treatment decreased concentrations of [U-(14)C]glucose in small intestinal tissue at 15 min after [U-(14)C]glucose administration (P < 0.05), in accordance with the concept that HCA delays the enteral absorption of glucose. These data support a possible role for HCA as food supplement in lowering postprandial glucose profiles.  相似文献   

16.
We aimed to investigate how assimilation of nutrients affects the postprandial responses of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) and to evaluate the effect of pancreatic enzyme substitution (PES) on insulin secretion in patients with chronic pancreatitis (CP) and pancreatic exocrine insufficiency (PEI). Eight male patients with CP and PEI were studied. Blood was sampled frequently on two separate days after ingestion of a liquid meal with and without PES, respectively. Eight healthy male subjects served as a control group. beta-Cell responsiveness was estimated as changes in insulin secretion rates in response to changes in postprandial plasma glucose (PG). There was no difference in the PG incremental area under curve (AUC) for patients with and without PES [406 +/- 100 vs. 425 +/- 80 mM.4 h (mean +/- SE), P = 0.8]. The response of total GLP-1 was higher after PES (AUC: 7.8 +/- 1.2 vs. 5.3 +/- 0.6 nM.4 h, P = 0.01), as was the response of total GIP (AUC: 32.7 +/- 7.5 vs. 21.1 +/- 8.3 nM.4 h, P = 0.01). Concurrently, both plasma insulin, plasma C-peptide, and total insulin secretion increased after PES (AUC: 17.7 +/- 4.2 vs. 13.6 +/- 2.9 nM.4 h, P = 0.02; 237 +/- 31.4 vs. 200 +/- 27.4 nM.4 h, P = 0.005; and 595 +/- 82 vs. 497 +/- 80 pmol.kg(-1).4 h, P = 0.01, respectively). beta-Cell responsiveness to glucose was not significantly different on the two study days for patients with CP. These results suggest that the secretion of GLP-1 and GIP is under influence of the digestion and absorption of nutrients in the small intestine and that PES increases insulin secretion.  相似文献   

17.
Bile salt-stimulated carboxyl ester lipase (CEL), also called cholesterol esterase, is one of the major proteins secreted by the pancreas. The physiological role of CEL was originally thought to be its mediation of dietary cholesterol absorption. However, recent studies showed no difference between wild type and CEL knockout mice in the total amount of cholesterol absorbed in a single meal. The current study tests the hypothesis that CEL in the intestinal lumen may influence the type of lipoproteins produced. A lipid emulsion containing 4 mm phospholipid, 13.33 mm [(3)H]triolein, and 2.6 mm [(14)C]cholesterol in 19 mm taurocholate was infused into the duodenum of lymph fistula CEL(+/+) and CEL(-/-) mice at a rate of 0.3 ml/h. Results showed no difference between CEL(+/+) and CEL(-/-) mice in the rate of cholesterol and triglyceride transport from the intestinal lumen to the lymph. However, CEL(-/-) mice produced predominantly smaller lipoproteins, whereas the CEL(+/+) mice produced primarily large chylomicrons and very low density lipoprotein. The proximal intestine of CEL(-/-) mice was also found to possess significantly less ceramide hydrolytic activity than that present in CEL(+/+) mice. By using Caco2 cells grown on Transwell membranes as a model, sphingomyelinase treatment inhibited the secretion of larger chylomicron-like lipoproteins without affecting total cholesterol secretion. In contrast, the addition of CEL to the apical medium increased the amount of large lipoproteins produced and alleviated the inhibition induced by sphingomyelinase. Taken together, this study identified a novel and physiologically significant role for CEL, namely the promotion of large chylomicron production in the intestine. The mechanism appears to be mediated through CEL hydrolysis of ceramide generated during the lipid absorption process.  相似文献   

18.
The possibility that salt increases plasma glucose and insulin responses to starchy foods was investigated. Six healthy adults took four morning test meals randomly: 50 g carbohydrate as cooked lentils or white bread, with or without 4.25 g of added salt (an amount within the range of salt found in a meal). When salt was added to the lentils the incremental area under the three hour plasma glucose curve was significantly greater than that for lentils alone (43.2 mmol.min/l v 11.1 mmol.min/l (778 mg.min/100 ml v 200 mg.min/100 ml]. When salt was added to bread the peak glucose concentration was significantly higher than that for unsalted bread (6.96 mmol/l v 6.35 mmol/l (125 mg/100 ml v 114 mg/100 ml], and this was followed by relative hypoglycaemia. Plasma insulin concentrations at 45 minutes were higher after a meal of salted lentils and salted bread than after the unsalted foods (p less than 0.05). The high insulin concentration after salted bread was sustained for one hour after the meal, thus the mean area under the three hour curve was 39% greater than that for unsalted bread (p less than 0.05). Salt may increase the postprandial plasma glucose and insulin responses to lentils and bread by accelerating the digestion of starch by stimulating amylase activity or accelerating small intestinal absorption of the liberated glucose, or both. The findings of this preliminary study, if confirmed by others, would support the recommendation that diabetics, as well as the general population, should reduce their intake of salt.  相似文献   

19.
High respiratory quotient (RQ) has been associated with fat mass (FM) gain in some, but not all studies. Variability among results may reflect differences in the RQ variable measured (fasting vs. 24‐h) or may be due to differences in control for factors that affect RQ, such as diet, energy balance, circulating insulin, and insulin sensitivity. The objective of this study was to determine whether different RQ values (fasting, sleeping, nonsleeping, and 24‐h) would predict change in FM over 2 years in obesity‐prone women, controlling for diet and adjusting for energy balance, circulating insulin, and insulin sensitivity. Participants were 33 previously overweight premenopausal women. Fasting, sleeping, nonsleeping, and 24‐h RQ values were measured during controlled‐diet conditions by respiratory chamber calorimetry. Intravenous glucose tolerance tests were also performed to adjust for fasting insulin, acute insulin response to glucose, and insulin sensitivity. Over the following 2 years, changes in FM were tracked annually by dual energy X‐ray absorptiometry. High nonsleeping RQ (NSRQ) predicted 2‐year change in FM independently of energy balance, circulating insulin, and insulin sensitivity. This observation suggests that low postprandial fat oxidation may uniquely predispose obesity‐prone individuals to accrual of adipose tissue.  相似文献   

20.
AIMS: Amylin is a second beta-cell hormone that is normally co-secreted with insulin in response to meals; it complements the effects of insulin in postprandial glucose control, in part by suppressing glucagon secretion. In patients with type 2 diabetes, mealtime administration of the human amylin analog pramlintide markedly improves postprandial glucose excursions. The aim of this study was to examine whether pramlintide reduces the postprandial hyperglucagonemia that is often seen in this patient population. METHODS: Utilizing a single-blind, placebo-controlled crossover design, 24 patients with type 2 diabetes, 12 insulin-treated and 12 non-insulin-treated, underwent a standardized mixed meal test on 2 occasions during which they received, in randomized order, a five-hour intravenous infusion of placebo or pramlintide (100 microg/h). RESULTS: During the placebo infusion, plasma glucose and plasma glucagon concentrations increased substantially after the meal. During the pramlintide infusion, postprandial plasma glucose and plasma glucagon responses were significantly (p < 0.05, all) reduced following ingestion of the same meal, both in the insulin-treated and non-insulin-treated subgroups. CONCLUSION: Supplementation of mealtime amylin with pramlintide reduces postprandial hyperglucagonemia in patients with type 2 diabetes, a mechanism that likely contributes to pramlintide's postprandial glucose-lowering effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号