首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aluminium (Al) tolerance in plants may be conferred by reduced binding of Al in the cell wall through low root cation exchange capacity (CEC) or by organic acid exudation. Root CEC is related to the degree of esterification (DE) of pectin in the cell wall, and pectin hydrolysis plays a role in cell expansion. Therefore, it was hypothesised that Al-tolerant plants with a low root CEC maintain pectin hydrolysis in the presence of Al, allowing cell expansion to continue. Irrespective of the DE, binding of Al to pectin reduced the enzymatic hydrolysis of Al-pectin gels by polygalacturonase (E.C. 3.2.1.15). Pectin gels with calcium (Ca) were slightly hydrolysed by polygalacturonase. It was concluded, therefore, that Al tolerance conferred by low root CEC is not mediated by the ability to maintain pectin hydrolysis. Citrate and malate, but not acetate, effectively dissolved Al-pectate gel and led to hydrolysis of the dissolved pectin by polygalacturonase. The organic acids did not dissolve Ca-pectate, nor did they increase pectin hydrolysis by polygalacturonase. It was concluded that exudation of some organic acids can remove Al bound to pectin and this could alleviate toxicity, constituting a tolerance mechanism.  相似文献   

2.
This study investigates the influence of the degree of pectin esterification (DE) on the sorption of aluminium (Al) by plant roots. Ca-pectates, with varying degrees of esterification, are major constituents of the soil–root interface and of the root apoplast. Ca-pectate networks (Ca–PG and Ca–Al–PG) were formed at three DEs (0%, 26%, 65%) with custom-made cells and used as a model system for the root cell wall. Sorption of Al was conducted for 24 h at a range of oxalic acid concentrations (0–500 μM) at pH 4.50 to examine two different metal resistance mechanisms of plants. In fact, plants release organic acids either to desorb or to complex metals to prevent their sorption by plant roots.Thermal analysis showed that Al sorption did not seem to affect the stability of the pectate gels and the presence of hydrophobic groups (–CH3) at DE?>?0% seemed to even increase the stability of the gels decreasing thermal decomposition. Results suggest two potential Al tolerance mechanisms: (a) high oxalic acid concentrations (500 μM) were able to desorb almost 100% and 72% at DE 65 and 0%, respectively; (b) high oxalic acid concentrations (500 μM) and thus molar ratios of 5:1 (oxalate/Al) reduced Al sorption by 98% and 86% at DE 65 and 0%, respectively. In conclusion, both mechanisms indicate that high degrees of esterification as 65% are much more efficient in excluding Al from the apoplast and might therefore contribute to Al resistance in plants.  相似文献   

3.
Gaume  Alain  Mächler  Felix  Frossard  Emmanuel 《Plant and Soil》2001,234(1):73-81
Root exudation of organic acids as Al-chelating compounds and P nutrition have been suggested to play a major role in Al-resistance in higher plants. Effects of Al exposure on maize plant growth, and organic acid root content and root exudation under various levels of P nutrition were examined. Sikuani, a Colombian maize cultivar tolerant to acid soils with high Al saturation, and Corso, a Swiss cultivar, were grown in sterile hydroponic conditions for 21 days. Al-caused inhibition of root growth was lower in Sikuani than in Corso. Al effect on plant growth was decreased with increasing P content in roots. Al content in roots increased with increasing P content and was higher in Sikuani than in Corso. When exposed to Al, the contents in root apices as well as the root exudation of citric and malic acids in Corso and citric, malic and succinic acids in Sikuani increased, and were higher in Sikuani than in Corso. Increased PEP carboxylase (PEPC) activity in root apices after Al exposure partially explained the variations of organic acid content in the roots. These Al-induced changes in PEPC activity, organic acid content and exudation were reduced in plants supplied with higher P concentrations during the 21 days prior to treatment. Increased secretion of organic acids after exposure to Al appeared to be specific to Al and was not totally explained by increased root content in organic acids.  相似文献   

4.
Blamey  F.P.C.  Ostatek-Boczynski  Z.  Kerven  G.L. 《Plant and Soil》1997,192(2):269-275
Although soluble aluminium (Al) has long been recognised as an important limitation to plant growth on acid soils, the biochemical basis of Al toxicity has not been elucidated. Aluminium accumulation in the cell wall may be important, especially the reaction of Al with calcium (Ca) pectate. A study was conducted to investigate the effects of six ligands, citrate, malate, galacturonate, fluoride, sulfate and chloride, on the sorption of Al by Ca pectate prepared from two sources of pectin that differed in degree of methyl esterification (DE). The sorption of Al by Ca pectate increased linearly with increase in Al added from 25 to 100 µM (or 50 to 200 µM in the case of Al2(SO4)3). There was a significant reduction in Al sorption in the presence of those ligands that form strong complexes with Al, especially citrate and, to a lesser extent, malate and fluoride. There was little difference in Al sorption by Ca pectate prepared from pectin of differing DE. Calcium in the supernatant solution increased linearly by 1.5 nmol for each 1 nmol increase in Al sorbed. The results support the hypothesis that strong complexes of Al with organic and inorganic ligands reduce Al sorption by Ca pectate in the cell wall.  相似文献   

5.
Aluminium (Al) toxicity adversely impacts plant productivity in acid soils by restricting root growth and although several mechanisms are involved the physiological basis of decreased root elongation remains unclear. Understanding the primary mechanisms of Al rhizotoxicity is hindered due to the rapid effects of soluble Al on root growth and the close proximity of many cellular components within the cell wall, plasma membrane, cytosol and nucleus with which Al may react. To overcome some of these difficulties, we report on a novel method for investigating Al interactions with Komagataeibacter xylinus bacterial cellulose (BC)‐pectin composites as cell wall analogues. The growth of K. xylinus in the presence of various plant cell wall polysaccharides, such as pectin, has provided a unique in vitro model system with which to investigate the interactions of Al with plant cell wall polysaccharides. The BC‐pectin composites reacted in a similar way with Al as do plant cell walls, providing insights into the effects of Al on the mechanical properties of the BC‐pectin composites as cell wall analogues. Our findings indicated that there were no significant effects of Al (4–160 μM) on the tensile stress, tensile strain or Young's modulus of the composites. This finding was consistent with cellulose, not pectin, being the major load bearing component in BC‐pectin composites, as is also the case in plant cell walls.  相似文献   

6.
7.
Morin is a fluorochrome which forms a fluorescent complex with aluminium (Al) and is thus used to localize Al in plant tissues. However, reports about the cellular distribution of Al-apoplastic versus symplastic-based on morin staining are often conflicting. The objective of this work was to investigate whether Al localization with morin staining can show the proper cellular distribution of Al. Fresh root cross-sections were made from root apices of maize (cv. Lixis) treated with 25 muM Al for 6 h and stained with morin. Fluorescence microscopic investigation showed Al-morin fluorescence in the cytosol, but not in the cell wall. This is in contrast to the growing evidence which shows that Al mainly accumulates in the cell wall, especially bound to the pectin matrix. Therefore, in vitro analyses were carried out to study whether morin can form a fluorescent complex with Al, which is bound to pectin, cell wall, and other Al-binding ligands such as phosphate, galacturonate, DNA, and ATP. Compared with the control treatment without Al-binding ligands, fluorescence intensity was reduced by about 10-fold in the presence of pectin and isolated cell walls, but fairly unaffected in the presence of phosphate and galacturonate. Al associated with DNA and ATP also formed a fluorescent complex with morin. This implies that, although Al is mainly accumulated in the cell wall, it cannot be detected with morin as it is tightly bound to cell-wall pectin. Thus, morin staining should not be used to study the distribution of Al between cell compartments.  相似文献   

8.
有机酸在植物解铝毒中的作用及生理机制   总被引:11,自引:0,他引:11  
酸性土壤上铝毒是限制作物产量的一个重要障碍因子,具有螯合能力的有机酸在植物铝的外部排斥机制和内部耐受机制均具有重要作用,在铝的外部排斥解毒过程中,植物通过根系分泌有机酸进入根际,如柠檬酸,草酸,苹果酸等与铝形成稳定的复合体,阻止铝进入共质体,从而达到植物体外解除铝毒害效应的目的,且分泌的有机酸对铝的胁迫诱导表现出高度的专一性,分泌的关键点位于根尖,不同的物种间分泌的有机酸种类,分泌的模式及生理机理存在差异,在铝积累型植物的内部解毒过程中,有机酸与铝形成稳定的化合物,降低植物体内铝离子的生理活性,从而降低细胞内铝离子的毒害效应,如绣球花中铝与柠檬酸形成1:1的复合体,荞麦内铝与草酸形成1:3的复合体,本文就有机酸在植物忍耐和积累铝中的作用及生理机制作一简要综述。  相似文献   

9.
Pectin, which is an important component of plant cell walls, strongly binds Al and this may play a role in expression of Al toxicity. Sorption of aluminium (Al) and lanthanum (La) from aqueous solutions onto pectic acid, Ca-pectate and plant cell wall material was pH dependent. For Al at pH 3, sorption was less than the available sorption sites (i.e., the cation exchange capacity) on all three sorbents, whereas at pH 4, sorption of Al was in excess of available sorption capacity. By contrast, sorption of the trivalent Al analogue La corresponded to the available sorption capacity on all three sorbents at pH 5. This indicates, therefore, that Al hydrolyses at ≥ pH 4, and hydrolysis increases with Al concentration in solution. Further, it is proposed that the sorption of Al to pectin leads to deprotonation of the galacturonic acid (GalA) residues. Sorption of Al to pectin limits hydrolysis of Al, thereby shifting the pH of hydrolysis to a higher value. Hydrolysis of Al results in its sorption in excess of the stoichiometric equivalent (assuming the free Al3+ ion), leading to oversaturation of the pectin with Al. Staining of the metal-pectate complexes with the metachromatic dye eosin showed that with increasing Al saturation (but not La saturation), the complex developed a positive net charge, due to formation of some positively charged Al-complexes. The development of a positive charge on the Al-pectate complex may have major effects on cellular transmembrane potential and nutrient acquisition by plant roots. This is the first report of Al binding in excess of binding sites and development of a net positive charge on Al-pectate.  相似文献   

10.
Complexes of aluminium (Al) with organic ligands are believed to represent an important detoxification mechanism in acid soils. However, relatively little is known about the particular ligands produced by decomposing vegetation or about their effects on plant growth in the presence or absence of toxic Al. This paper reports an experiment on the effects of decomposition products of Eucalyptus camaldulensis leaves on the root elongation of maize (Zea mays) cv. DK687 in the presence or absence of Al. The static solution culture experiment used fulvic acid (FA) and humic acid (HA), extracted from E. camaldulensis leaves, at three nominal concentrations, viz. 40, 120 and 360 mg C L-1, replicated 4 times in the presence and absence of 30 µM Al. In the absence of Al, root elongation was increased by 30% by HA at 40 mg C L-1 and by 36% by FA at 120 mg C L-1. In the presence of 30 µM Al, the effects of toxic Al on root elongation were negated by FA and HA at all concentrations. Aluminium was totally complexed in all treatments except FA at 40 mg C L-1 in which treatment only 2.7 µM Al was present in the monomeric form. The E. camaldulensis FA and HA at concentrations of 40 and 120 mg C L-1, either in the presence or absence of Al, stimulated maize root elongation. Aluminium was strongly complexed by the E. camaldulensis FA and HA. The present results, in which FA and HA alleviated Al toxicity limitations on root elongation of maize, are relevant to the protection afforded to plant growth in acid soils amended with organic materials. They highlight the need to focus more on the role of FA and HA.  相似文献   

11.
Ma JF  Hiradate S 《Planta》2000,211(3):355-360
 The forms of Al for uptake by the roots and translocation from the root to the shoot were investigated in a buckwheat (Fagopyrum esculentum Moench, cv. Jianxi) that accumulates Al in its leaves. The Al concentration in the xylem sap was 15-fold higher in the plants exposed to AlCl3 than in those exposed to an Al-oxalate (1:3) complex, suggesting that the roots take up Al in the ionic form. The Al concentration in the xylem sap was 4-fold higher than that in the external solution after a 1-h exposure to AlCl3 solution and 10-fold higher after a 2-h exposure. The Al concentration in the xylem sap increased with increasing Al concentration in the external solution. The Al uptake was not affected by a respiratory inhibitor, hydroxylamine, but significantly inhibited by the addition of La. These results suggest that Al uptake by the root is a passive process, and La3+ competes for the binding sites for Al3+ on the plasma membrane. The form of Al in the xylem sap was identified by 27Al-nuclear magnetic resonance analysis. The chemical shift of 27Al in the xylem sap was around 10.9 ppm, which is consistent with that of the Al-citrate complex. Furthermore, the dominant organic acid in the xylem sap was citric acid, indicating that Al was translocated in the form of Al-citrate complex. Because Al is present as Al-oxalate (1:3) in the root, the present data show that ligand exchange from oxalate to citrate occurs before Al is released to xylem. Received: 10 December 1999 / Accepted: 3 February 2000  相似文献   

12.
An internal detoxification mechanism for Al was investigated in an Al-accumulating plant, hydrangea (Hydrangea macrophylla), focusing on Al forms present in the cells. The leaves of hydrangea contained as much as 15.7 mmol Al kg-1 fresh weight, and more than two-thirds of the Al was found in the cell sap. Using 27Al- nuclear magnetic resonance, the dominant peak of Al was observed at a chemical shift of 11 to 12 parts per million in both intact leaves and the extracted cell sap, which is in good accordance with the chemical shift for the 1:1 Al-citrate complex. Purification of cell sap by molecular sieve chromatography (Sephadex G-10) combined with ion-exclusion chromatography indicated that Al in fractions with the same retention time as citric acid contributed to the observed 27Al peak in the intact leaves. The molar ratio of Al to citric acid in the crude and purified cell sap approximated 1. The structure of the ligand chelated with Al was identified to be citric acid. Bioassay experiments showed that the purified Al complex from the cell sap did not inhibit root elongation of corn (Zea mays L.) and the viability of cells on the root tip surface was also not affected. These observations indicate that Al is bound to citric acid in the cells of hydrangea leaves.  相似文献   

13.
酸性土壤上铝毒是限制作物产量的一个重要障碍因子。具有螯合能力的有机酸在植物铝的外部排斥机制和内部耐受机制均具有重要作用。在铝的外部排斥解毒过程中,植物通过根系分泌有机酸进入根际,如柠檬酸、草酸、苹果酸等与铝形成稳定的复合体,阻止铝进入共质体,从而达到植物体外解除铝毒害效应的目的,且分泌的有机酸对铝的胁迫诱导表现出高度的专一性,分泌的关键点位于根尖。不同的物种间分泌的有机酸种类、分泌的模式及生理机理存在差异。在铝积累型植物的内部解毒过程中,有机酸与铝形成稳定的化合物,降低植物体内铝离子的生理活性,从而降低细胞内铝离子的毒害效应,如绣球花中铝与柠檬酸形成1:1的复合体,荞麦内铝与草酸形成1:3的复合体。本文就有机酸在植物忍耐和积累铝中的作用及生理机制作一简要综述。  相似文献   

14.
Role of organic acids in detoxification of aluminum in higher plants   总被引:21,自引:0,他引:21  
Phytotoxicity of aluminum ion (Al3+) is a serious problem limiting crop production on acid soils. Organic acids with Al-chelating ability play an important role in the detoxification of Al both externally and internally. Al is detoxified externally by the secretion of organic acids such as citric, oxalic, and/or malic acids from the roots. The secretion of organic acids is highly specific to Al and the site of secretion is localized to the root apex. The kind of organic acids secreted as well as secretion pattern differ among plant species. There are two patterns of Al-induced secretion of organic acids: In pattern I, there is no discernible delay between the addition of Al and the onset of the release of organic acids. Activation of the anion channel seems to be involved in this pattern; In pattern II, there is a marked lag phase between the addition of Al and the onset of organic acid release. The action of genes related to the metabolism and secretion of organic acids seems to be involved in this pattern. Internal detoxification of Al in Al-accumulating plants is achieved by the formation of Al-organic acid complex. For instance, the complex of Al-citrate (1:1) in hydrangea and Al-oxalate (1:3) in buckwheat has been identified.  相似文献   

15.
Pectin, a normal constituent of cell walls, caused growth rates to accelerate to the rates in living cells when supplied externally to isolated cell walls of Chara corallina. Because this activity was not reported previously, the activity was investigated. Turgor pressure (P) was maintained in isolated walls or living cells using a pressure probe in culture medium. Pectin from various sources was supplied to the medium. Ca and Mg were the dominant inorganic elements in the wall. EGTA or pectin in the culture medium extracted moderate amounts of wall Ca and essentially all the wall Mg, and wall growth accelerated. Removing the external EGTA or pectin and replacing with fresh medium returned growth to the original rate. A high concentration of Ca2+ quenched the accelerating activity of EGTA or pectin and caused gelling of the pectin, physically inhibiting wall growth. Low pH had little effect. After the Mg had been removed, Ca-pectate in the wall bore the longitudinal load imposed by P. Removal of this Ca caused the wall to burst. Live cells and isolated walls reacted similarly. It was concluded that Ca cross-links between neighbouring pectin molecules were strong wall bonds that controlled wall growth rates. The central role of Ca-pectate chemistry was illustrated by removing Ca cross-links with new pectin (wall "loosening"), replacing vacated cross-links with new Ca2+ ("Ca2+-tightening"), or adding new cross-links with new Ca-pectate that gelled ("gel tightening"). These findings establish a molecular model for growth that includes wall deposition and assembly for sustained growth activity.  相似文献   

16.
The toxic inorganic monomeric forms of aluminium (Al) that limit plant growth have been shown to be effectively detoxified by complexation with organic acid ligands released by breakdown of added organic materials. The binding capacity of these acids is dependent on the degree of dissociation of their carboxyl groups and their ability to form bonds with Al. 27Al NMR spectroscopy provides a non-invasive technique to study the bonding of Al with potential ligands without disturbing the equilibrium of the system. In single ligand systems containing oxalic acid, three 27Al resonance peaks were observed at 6.4, 11.4 and 16.0 ppm downfield from the Al3+ reference peak at 0 ppm. These were assigned to Alox, Alox2 and Alox3 complexes respectively and were observable at pH values down to 3.5. In the presence of the citrate ligand, two 27Al resonance peaks at 6.1 and 11.3 ppm, assigned respectively to the Alcit and Alcit2 complexes, were observed at pH 3.4. At pH 4.3 and an Al:citrate molar ratio of 1:2, the 6.1 ppm peak was not visible, and the second peak further downfield was split into two unresolved peaks at 10.8 and 12.4 ppm indicating the presence of two forms of the Alcit2 complex. Distribution of Al between the various species, based on integration of the resonance peaks and equilibrium calculations carried out using GEOCHEM, is discussed in light of the stability constants present in the database of GEOCHEM version (v.) 1.23 and GEOCHEM-PC v. 2.0. Large discrepancies between the computed values and the NMR measured values indicate the need to incorporate more recent literature values in the database for realistic equilibrium calculations in systems containing organic acid ligands. The potential of using quantitative 27Al NMR measurements to calculate stability constants is discussed.  相似文献   

17.
Cell-wall (CW) pectin content and its degree of methylation in root apices of selected maize cultivars were studied in relation to genotypic Al resistance. Maize cultivars differing in Al resistance were grown in nutrient solution treated with or without Al, and pectin content of the root tips was determined. Control plants did not differ in pectin content in the 5 mm root apex. Al treatment increased the pectin content of the root apex in all cultivars but more prominently in the Al-sensitive cultivars. Pectin and Al contents in 1 mm root sections decreased from the apex to the 3–4 mm zone. Pectin contents of the apical root sections were consistently higher although significantly different only in the 1–2 mm zone in the Al-sensitive cv Lixis. Al contents in most root sections were significantly higher in cv Lixis than in Al-resistant cv ATP-Y. Localization of pectins by immunofluorescence revealed that Al-sensitive cv. Lixis has a higher proportion of low-methylated pectin and thus a higher negativity of the cell wall than Al-resistant cv ATP-Y. This is in agreement with the higher Al content and Al sensitivity of cv Lixis. It is concluded that differences in CW pectin and its degree of methylation contribute to genotypic differences in Al resistance in maize in addition to the release of organic acid anions previously reported.  相似文献   

18.
Aluminium accumulates predominantly in the root apoplast where it binds to the pectin matrix of the cell wall with its negative charges. In this study, we investigated whether short-term Al treatment (2 h) affects the activity of apoplastic acid phosphatase and the exudation of macromolecules by roots and suspension-culture cells of Zea mays L. The pectin content of the cell cultures was modified by long-term adaptation to NaCl stress or long-term adaptation to the cellulose-synthesis inhibitor 2,6-dichlorbenzonitrile (DCB), and by short-term treatment for up to 15 min with pectolyase. At pH 4.5, neither acid phosphatase activity of commercial enzyme preparations nor of exudates from root-tips and suspension-cells of Zea mays L. were affected directly by Al. However, the exudation and the activity of apoplastic acid phosphatase was reduced to a greater extent by Al cells with high pectin content than in cells with normal pectin content. The strongest reduction of acid phosphatase exudation was observed in pectolyase-treated cells with the lowest pectin content. Al reduced not only the release of acid phosphatase from the suspension cells, but also the release of total proteins and pectins. However, no relationship existed between the magnitude of Al-induced reduction of protein and pectin release and the cell pectin contents. These results support the assumption that Al modifies cell-wall and plasma-membrane transport-properties for macromolecules and the activity of apoplastic enzymes thus modifying Al sensitivity.  相似文献   

19.
Yang JL  Li YY  Zhang YJ  Zhang SS  Wu YR  Wu P  Zheng SJ 《Plant physiology》2008,146(2):602-611
Rice (Oryza sativa) is the most aluminum (Al)-resistant crop species among the small-grain cereals, but the mechanisms responsible for this trait are still unclear. Using two rice cultivars differing in Al resistance, rice sp. japonica 'Nipponbare' (an Al-resistant cultivar) and rice sp. indica 'Zhefu802' (an Al-sensitive cultivar), it was found that Al content in the root apex (0-10 mm) was significantly lower in Al-resistant 'Nipponbare' than in sensitive 'Zhefu802', with more of the Al localized to cell walls in 'Zhefu802', indicating that an Al exclusion mechanism is operating in 'Nipponbare'. However, neither organic acid efflux nor changes in rhizosphere pH appear to be responsible for the Al exclusion. Interestingly, cell wall polysaccharides (pectin, hemicellulose 1, and hemicellulose 2) in the root apex were found to be significantly higher in 'Zhefu802' than in 'Nipponbare' in the absence of Al, and Al exposure increased root apex hemicellulose content more significantly in 'Zhefu802'. Root tip cell wall pectin methylesterase (PME) activity was constitutively higher in 'Zhefu802' than in 'Nipponbare', although Al treatment resulted in increased PME activity in both cultivars. Immunolocalization of pectins showed a higher proportion of demethylated pectins in 'Zhefu802', indicating a higher proportion of free pectic acid residues in the cell walls of 'Zhefu802' root tips. Al adsorption and desorption kinetics of root tip cell walls also indicated that more Al was adsorbed and bound Al was retained more tightly in 'Zhefu802', which was consistent with Al content, PME activity, and pectin demethylesterification results. These responses were specific to Al compared with other metals (CdCl(2), LaCl(3), and CuCl(2)), and the ability of the cell wall to adsorb these metals was also not related to levels of cell wall pectins. All of these results suggest that cell wall polysaccharides may play an important role in excluding Al specifically from the rice root apex.  相似文献   

20.
The yeast Yarrowia lipolytica is one of the most intensively studied “non-conventional” yeast species. Its ability to secrete various organic acids, like pyruvic (PA), citric, isocitric, and alpha-ketoglutaric (KGA) acid, in large amounts is of interest for biotechnological applications. We have studied the effect of the alpha-ketoglutarate dehydrogenase (KGDH) complex on the production process of KGA. Being well studied in Saccharomyces cerevisiae this enzyme complex consists of three subunits: alpha-ketoglutarate dehydrogenase, dihydrolipoyl transsuccinylase, and lipoamide dehydrogenase. Here we report the effect of overexpression of these subunits encoding genes and resulting increase of specific KGDH activity on organic acid production under several conditions of growth limitation and an excess of carbon source in Y. lipolytica. The constructed strain containing multiple copies of all three KGDH genes showed a reduced production of KGA and an elevated production of PA under conditions of KGA production. However, an increased activity of the KGDH complex had no influence on organic acid production under citric acid production conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号