首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of inorganic nitrogen (N) source (NH4+, NO3 or both) on growth, biomass allocation, photosynthesis, N uptake rate, nitrate reductase activity and mineral composition of Canna indica were studied in hydroponic culture. The relative growth rates (0.05-0.06 g g−1 d−1), biomass allocation and plant morphology of C. indica were indifferent to N nutrition. However, NH4+ fed plants had higher concentrations of N in the tissues, lower concentrations of mineral cations and higher contents of chlorophylls in the leaves compared to NO3 fed plants suggesting a slight advantage of NH4+ nutrition. The NO3 fed plants had lower light-saturated rates of photosynthesis (22.5 μmol m−2 s−1) than NH4+ and NH4+/NO3 fed plants (24.4-25.6 μmol m−2 s−1) when expressed per unit leaf area, but similar rates when expressed on a chlorophyll basis. Maximum uptake rates (Vmax) of NO3 did not differ between treatments (24-35 μmol N g−1 root DW h−1), but Vmax for NH4+ was highest in NH4+ fed plants (81 μmol N g−1 root DW h−1), intermediate in the NH4NO3 fed plants (52 μmol N g−1 root DW h−1), and lowest in the NO3 fed plants (28 μmol N g−1 root DW h−1). Nitrate reductase activity (NRA) was highest in leaves and was induced by NO3 in the culture solutions corresponding to the pattern seen in fast growing terrestrial species. Plants fed with only NO3 had high NRA (22 and 8 μmol NO2 g−1 DW h−1 in leaves and roots, respectively) whereas NRA in NH4+ fed plants was close to zero. Plants supplied with both forms of N had intermediate NRA suggesting that C. indica takes up and assimilate NO3 in the presence of NH4+. Our results show that C. indica is relatively indifferent to inorganic N source, which together with its high growth rate contributes to explain the occurrence of this species in flooded wetland soils as well as on terrestrial soils. Furthermore, it is concluded that C. indica is suitable for use in different types of constructed wetlands.  相似文献   

2.
Our study aimed to test the ability of aquatic plants to use bicarbonate when acclimated to three different bicarbonate concentrations. To this end, we performed experiments with the three species Ceratophyllum demersum, Egeria densa, Lagarosiphon major to determine photosynthetic rates under varying bicarbonate concentrations. We measured bicarbonate use efficiency, photosynthetic performance and respiration. For all species, our results revealed that photosynthetic rates were highest in replicates grown at low alkalinity. Thus, E. densa had approx. five times higher rates at low (264 ± 15 μmol O2 g−1 DW h−1) than at high alkalinity (50 ± 27 μmol O2 g−1 DW h−1), C. demersum had three times higher rates (336 ± 95 and 120 ± 31 μmol O2 g−1 DW h−1), and L. major doubled its rates at low alkalinity (634 ± 114 and 322 ± 119 μmol O2 g−1 DW h−1). Similar results were obtained for bicarbonate use efficiency by E. densa (136 ± 44 and 43 ± 10 μmol O2 mequiv. L−1 g−1 DW h−1) and L. major (244 ± 29 and 82 ± 24 μmol O2 mequiv. L−1 g−1 DW h−1). As to C. demersum, efficiency was high but unaffected by alkalinity, indicating high adaptation ability to varied alkalinities. A pH drift experiment supported these results. Overall, our results suggest that the three globally widespread worldwide species of our study adapt to low inorganic carbon availability by increasing their efficiency of bicarbonate use.  相似文献   

3.
Calcification and primary production responses to irradiance in the temperate coralline alga Lithothamnion corallioides were measured in summer 2004 and winter 2005 in the Bay of Brest. Coralline algae were incubated in dark and clear bottles exposed to different irradiances. Net primary production reached 1.5 μmol C g−1 dry wt h−1 in August and was twice as high as in January–February. Dark respiration showed significant seasonal variations, being three-fold higher in summer. Maximum calcification varied from 0.6 μmol g−1 dry wt h−1 in summer 2004 to 0.4 μmol g−1 dry wt h−1 in winter 2005. According to PE curves and the daily course of irradiance, estimated daily net production and calcification reached 131 μg C g−1 dry wt and 970 μg CaCO3 g−1 dry wt in summer 2004, and 36 μg C g−1 dry wt and 336 μg CaCO3 g−1 dry wt in winter 2005. The net primary production of natural L. corallioides populations in shallow waters was estimated at 10–600 g C m−2 y−1, depending on depth and algal biomass. The mean annual calcification of L. corallioides populations varied from 300 to 3000 g CaCO3 m−2. These results are similar to those reported for tropical coralline algae in terms of carbon and carbonate productivity. Therefore, L. corallioides can be considered as a key element of carbon and carbonate cycles in the shallow coastal waters where they live.  相似文献   

4.
Two extracellular chitinases (designated as Chi-56 and Chi-64) produced by Massilia timonae were purified by ion-exchange chromatography, ammonium sulfate precipitation, and gel-filtration chromatography. The molecular mass of Chi-56 was 56 kDa as determined by both SDS-PAGE and gel-filtration chromatography. On the other hand, Chi-64 showed a molecular mass of 64 kDa by SDS-PAGE and 28 kDa by gel-filtration chromatography suggesting that its properties may be different from those of Chi-56. The optimum temperature, optimum pH, pI, Km, and Vmax of Chi-56 were 55 °C, pH 5.0, pH 8.5, 1.1 mg mL−1, and 0.59 μmol μg−1 h−1, respectively. For Chi-64, these values were 60 °C, pH 5.0, pH 8.5, 1.3 mg mL−1, and 1.36 μmol μg−1 h−1, respectively. Both enzymes were stimulated by Mn2+ and inhibited by Hg2+, and neither showed exochitinase activity. The N-terminal sequences of Chi-56 and Chi-64 were determined to be Q-T-P-T-Y-T-A-T-L and Q-A-D-F-P-A-P-A-E, respectively.  相似文献   

5.
Myriophyllum spicatum and Potamogeton crispus are common species of shallow eutrophic lakes in north-eastern Germany, where a slow recovery of the submersed aquatic vegetation was observed. Thus, the characterisation of the root oxygen release (ROL) as well as its implication for geochemical processes in the sediment are of particular interest. A combination of microelectrode measurements, methylene blue agar and a titanium(III) redox buffer was used to investigate the influence of the oxygen content in the water column on ROL, diel ROL dynamics as well as the impact of sediment milieu. Oxygen gradients around the roots revealed a maximum oxygen diffusion zone of up to 250 μm. During a sequence with a light/dark cycle as well as alternating aeration of the water column, maximum ROL with up to 35% oxygen saturation at the root surface occurred under light/O2-saturated conditions. A decrease to about 30% was observed under dark/O2-saturated conditions, no ROL was detected at dark/O2-depleted conditions and only a weak ROL with 5–10% oxygen saturation at the root surface was measured under light but O2-depleted water column. These results indicate, that during darkness, ROL is supplied by oxygen from the water column and even during illumination and active photosynthesis production, ROL is modified by the oxygen content in the water column. Visualisation of ROL patterns revealed an enhanced ROL for plants which were grown in sulfidic littoral sediment in comparison to plants grown in pure quartz sand. For both plant species grown in sulfidic littoral sediment, a ROL rate of 3–4 μmol O2 h−1 plant−1 was determined with the Ti(III) redox buffer. For plants grown in pure quartz sand, the ROL rate decreased to 1–2 μmol O2 h−1 plant−1. Hence, aside from the oxygen content in the water column, the redox conditions and microbial oxygen demand in the sediment has to be considered as a further major determinant of ROL.  相似文献   

6.
Myriophyllum spicatum L. is a nonindigenous invasive plant in North America that can displace the closely related native Myriophyllum sibiricum Komarov. We analyzed the chemical composition (including: C, N, P, polyphenols, lignin, nonpolar extractables, and sugars) of M. spicatum and M. sibiricum and determined how the chemistry of the two species varied by plant part with growing environment (lake versus tank), irradiance (full sun versus 50% shading), and season (July through September). M. spicatum had higher concentrations of carbon, polyphenols and lignin (C: 47%; polyphenols: 5.5%; lignin: 18%) than M. sibiricum (C: 42%; polyphenols: 3.7%; lignin: 9%) while M. sibiricum had a higher concentration of ash under all conditions (12% versus 8% for M. spicatum). Apical meristems of both species had the highest concentration of carbon, polyphenols, and tellimagrandin II, followed by leaves and stems. Tellimagrandin II was present in apical meristems of both M. spicatum (24.6 mg g−1 dm) and M. sibiricum (11.1 mg g−1 dm). Variation in irradiance from 490 (shade) to 940 (sun) μmol of photons m−2 s−1 had no effect on C, N, and polyphenol concentrations, suggesting that light levels above 490 μmol of photons m−2 s−1 do not alter chemical composition. The higher concentration of polyphenols and lignin in M. spicatum relative to M. sibiricum may provide advantages that facilitate invasion and displacement of native plants.  相似文献   

7.
Uptake rates of nitrate and phosphate were measured for four species and one variety of Porphyra from Long Island Sound (USA) at two temperatures and two nutrient medium concentrations at increasing intervals over a 24- or 48-h period. Maximum uptake rates found were: V30 μM0-1 h=73.8 μmol NO3 g−1 DW h−1 and V3 μM0-1 h=16.7 μmol PO4 g−1 DW h−1, in the two thinnest Porphyra. We found that the nitrate uptake rates were significantly greater at 30 μM than 3 μM NO3 concentration, and that the uptake rates decreased with time of exposure. Temperature (5, 15, and 25 °C) did not have as strong an effect on nitrate uptake rates as did nutrient concentration. Q10 values and uptake rates at four different nitrate concentrations indicated that nutrient uptake at 5 °C was initially an active process. After 24 h, the processes involved appeared passive as Q10 values were between 1.0 and 1.3 and nitrate uptake curves were linear. Nitrate uptake rates correlated positively with the surface area/volume (SA/V) ratio. No coherent trends were found for uptake of phosphate, except that the uptake rates were significantly higher in 30 μM NO3 medium as opposed to 3 μM NO3. We did not find any significant difference in uptake rate and pattern between the summer species Porphyra purpurea (Roth.) C. Agardh, the eurythermic Porphyra suborbiculata Kjellm., the winter species Porphyra rosengurttii J. Coll and J. Cox, and the two varieties of Porphyra leucosticta Thur. Le Jol. (both winter species).  相似文献   

8.
Gamete production after exposure to hypoxia or sulphide was studied in the marine macroalga Ulva sp. collected in the Sacca di Goro, Italy. Experiments were carried out on discs (12 mm diameter) of thalli cultured in artificial sea water in laboratory at 20 ± 1 °C, 152 μmol m−2 s−1, 16 h photoperiod and 30‰ salinity. Dehydration of thallus was used as inducer of gametogenesis and growth and gamete release during recovery after 10, 20, 30 or 40 min dehydration (20 ± 1 °C, 25% humidity) were analysed. Unlike non-dehydrated thalli the dehydrated ones produced gametes. Thallus discs, non-dehydrated or subjected to 30 min dehydration, were exposed to hypoxia (1.78–4.02 μmol O2 L−1) or sulphide (1 mM) for 3, 5, or 7 days at 20 °C in the dark. Non-dehydrated and dehydrated thalli maintained in normoxic conditions in the dark were the controls. Gamete density was checked by counting at the end of the incubation period and during the subsequent 7 days of recovery under 16 h photoperiod in normoxic conditions. Non-dehydrated thalli maintained in normoxic conditions in the dark released gametes when returned to light suggesting that dark constitutes a stimulus to gamete production. The presence of gametes at the end of 3 days incubation of dehydrated thalli in normoxia demonstrated that gametogenesis can occur even in the dark. However, gametes were not present at the end of incubation in hypoxic and sulphidic conditions. Actually, during hypoxic incubation oxygen consumption in D-thalli was very low, only 0.117 × 10−3 μmol O2 mg−1 h−1 compared to 5.93 × 10−3 μmol O2 mg−1 h−1 in normoxia, denoting a reduction of the metabolic rate that could not sustain gametogenesis. During recovery after incubation in normoxic, hypoxic or sulphidic conditions densities of gametes from dehydrated thalli showed significant differences and resulted after hypoxia > after normoxia > after sulphide. Differences in non-dehydrated thalli were not significant. Dehydrated thalli, still green at the end of the incubation period, underwent blanching in the course of recovery in parallel to gamete production, while non-dehydrated thalli maintained their green colour even after exposure to sulphide. Our findings suggest that macroalga Ulva sp. can survive exposure to darkness, severe hypoxia and high sulphide levels and can maintain gamete production even when the exposure to these stress conditions is joined to dehydration.  相似文献   

9.
In this study we assessed the growth, morphological responses, and N uptake kinetics of Salvinia natans when supplied with nitrogen as NO3, NH4+, or both at equimolar concentrations (500 μM). Plants supplied with only NO3 had lower growth rates (0.17 ± 0.01 g g−1 d−1), shorter roots, smaller leaves with less chlorophyll than plants supplied with NH4+ alone or in combination with NO3 (RGR = 0.28 ± 0.01 g g−1 d−1). Ammonium was the preferred form of N taken up. The maximal rate of NH4+ uptake (Vmax) was 6–14 times higher than the maximal uptake rate of NO3 and the minimum concentration for uptake (Cmin) was lower for NH4+ than for NO3. Plants supplied with NO3 had elevated nitrate reductase activity (NRA) particularly in the roots showing that NO3 was primarily reduced in the roots, but NRA levels were generally low (<4 μmol NO2 g−1 DW h−1). Under natural growth conditions NH4+ is probably the main N source for S. natans, but plants probably also exploit NO3 when NH4+ concentrations are low. This is suggested based on the observation that the plants maintain high NRA in the roots at relatively high NH4+ levels in the water, even though the uptake capacity for NO3 is reduced under these conditions.  相似文献   

10.
A case study on Centaurea gymnocarpa Moris & De Not., a narrow endemic species, was carried out by analyzing its morphological, anatomical, and physiological traits in response to natural habitat stress factors under Mediterranean climate conditions. The results underline that the species is particularly adapted to the environment where it naturally grows. At the plant level, the above-ground/below-ground dry mass (1.73 ± 0.60) shows its investment predominately in the above-ground structure with a resulting total leaf area per plant of 1399 ± 94 cm2. The senescent attached leaves at the base of the plant contribute to limit leaf transpiration by shading soil around the plant. Moreover, the dense C. gymnocarpa leaf pubescence, leaf rolling, the relatively high leaf mass area (LMA = 12.3 ± 1.3 mg cm−2) and leaf tissue density (LTD = 427 ± 44 mg cm−3) contribute to limit leaf transpiration, also postponing leaf death under dry conditions. At the physiological level, a relatively low respiration/photosynthesis ratio (R/PN) in spring results from high R [2.26 ± 0.59 μmol (CO2) m−2 s−1] and PN [12.3 ± 1.5 μmol (CO2) m−2 s−1]. The high photosynthetic nitrogen use efficiency [PNUE = 15.5 ± 0.4 μmol (CO2) g−1 (N) s−1] shows the large amount of nitrogen (N) invested in the photosynthetic machinery of new leaves, associated to a high chlorophyll content (Chl = 35 ± 5 SPAD units). On the contrary, the highest R/PN ratio (1.75 ± 0.19) in summer is due to a significant PN decrease and increase of R in response to drought. The low PNUE [1.5 ± 0.2 μmol (CO2) g−1 (N) s−1] in this season is indicative of a greater N investment in leaf cell walls which may contribute to limit transpiration. On the contrary, the low R/PN ratio (0.05 ± 0.02) in winter is resulting from the limited enzyme activity of the respiratory apparatus [R = 0.23 ± 0.08 μmol (CO2) m−2 s−1] while the low PNUE [3.5 ± 0.2 μmol (CO2) g−1 (N) s−1] suggests that low temperatures additionally limit plant production. The experiment of the imposed water stress confirms that the C. gymnocarpa growth capability is in conformity with the severe conditions of its natural habitat, likewise as it may be the case with others narrow endemic species that have occupied niches with similar extreme conditions.  相似文献   

11.
A fully factorial pond experiment was designed using two irradiance levels and two phosphorus concentrations to investigate irradiance and phosphorus effects on the growth of three submerged macrophytes: common waterweed (Elodea canadensis), Eurasian water milfoil (Myriophyllum spicatum), and water stargrass (Zosterella dubia). Results revealed that higher irradiance (230 μmol s−1 m−2 vs. 113 μmol s−1 m−2 at 2 m depth) had significant positive effects on submerged macrophyte growth: increasing the number of individuals (seven-fold), the number of species surviving (two-fold), aboveground biomass (11-fold), belowground biomass (10-fold), and total biomass (11-fold), whereas elevated sediment phosphorus (2.1–3.3 mg g−1 vs. 0.7 mg g−1 dry sediment) did not have any significant impact. However, responses to irradiance differ among macrophyte species due to their morphology and physiology. Waterweed increased in numbers of individuals and total biomass under high irradiance while biomass per individual remained the same (∼0.02 g). The other species increased both in numbers and biomass per individual. These results suggest that increased irradiance rather than decreased phosphorus loading is the main driver of changes in submerged macrophytes in North American temperate lake ecosystems.  相似文献   

12.
Rasineni GK  Guha A  Reddy AR 《Plant science》2011,181(4):428-438
The photosynthetic response of trees to rising CO2 concentrations largely depends on source-sink relations, in addition to differences in responsiveness by species, genotype, and functional group. Previous studies on elevated CO2 responses in trees have either doubled the gas concentration (>700 μmol mol−1) or used single large addition of CO2 (500-600 μmol mol−1). In this study, Gmelina arborea, a fast growing tropical deciduous tree species, was selected to determine the photosynthetic efficiency, growth response and overall source-sink relations under near elevated atmospheric CO2 concentration (460 μmol mol−1). Net photosynthetic rate of Gmelina was ∼30% higher in plants grown in elevated CO2 compared with ambient CO2-grown plants. The elevated CO2 concentration also had significant effect on photochemical and biochemical capacities evidenced by changes in FV/FM, ABS/CSm, ET0/CSm and RuBPcase activity. The study also revealed that elevated CO2 conditions significantly increased absolute growth rate, above ground biomass and carbon sequestration potential in Gmelina which sequestered ∼2100 g tree−1 carbon after 120 days of treatment when compared to ambient CO2-grown plants. Our data indicate that young Gmelina could accumulate significant biomass and escape acclimatory down-regulation of photosynthesis due to high source-sink capacity even with an increase of 100 μmol mol−1 CO2.  相似文献   

13.
GOX is the most widely used enzyme for the development of electrochemical glucose biosensors and biofuel cell in physiological conditions. The present work describes the production of a recombinant glucose oxidase from Penicillium amagasakiense (yGOXpenag) displaying a more efficient glucose catalysis (kcat/KM(glucose) = 93 μM−1 s−1) than the native GOX from Aspergillus niger (nGOXaspng), which is the most industrially used (kcat/KM(glucose) = 27 μM−1 s−1). Expression in Pichia pastoris allowed easy production and purification of the recombinant active enzyme, without overglycosylation. Its biotechnological interest was further evaluated by measuring kinetics of ferrocinium-methanol (FMox) reduction, which is commonly used for electron transfer to the electrode surface. Despite their homologies in sequence and structure, pH-dependant FMox reduction was different between the two enzymes. At physiological pH and temperature, we observed that electron transfer to the redox mediator is also more efficient for yGOXpenag than for nGOXaspng(kcat/KM(FMox) = 27 μM−1 s−1 and 17 μM−1 s−1 respectively). In our model system, the catalytic current observed in the presence of blood glucose concentration (5 mM) was two times higher with yGOXpenag than with nGOXaspng. All our results indicated that yGOXpenag is a better candidate for industrial development of efficient bioelectrochemical devices used in physiological conditions.  相似文献   

14.
Short-and long-duration light curves were applied to four macroalgae (Ulva sp., Codium fragile, Ecklonia radiata and Lessonia variegata), and two microalgal species (Chlorella emersonii and Chaetoceros muellerii). With increasing light curve duration, the maximal relative electron transport rate increased by a factor of three in E. radiata, and by factors of 1.25 and 1.23 in C. emersonii and L. variegata, respectively, but did not change in C. fragile and Ch. muellerii. The light saturation point Ek increased by 26 μmol photons m−2 s−1 in C. emersonii and 20 μmol photons m−2 s−1 in Ch. muellerii and E. radiata with elevated light curve exposure times. Oscillatory patterns of the continuous fluorescence readings reflect accumulation of QA. Continuous fluorescence values increased, or decreased, by approximately 10% within light curve increments. However, oscillations of 25% were not uncommon, which shows that cells are changing their photo-physiological response state during steady light conditions. Increasing dark acclimation times prior to light curve application lowered maximal relative electron transport rates in the C. emersonii (from 28 ± 1.7 to 25 ± 1.2 for 15 and 95 min dark acclimation in short-duration light curves respectively). This effect was counterbalanced by longer light curve application. It can therefore be concluded that manipulation of light exposure and dark incubation prior to the experiment affects the photosynthetic response, presumably due to different activation states of photosynthetic and photoprotective mechanisms. The highly species-specific photo-response patterns imply that a common rapid light curve protocol will generate artefacts in some species.  相似文献   

15.
Changes in photosynthetic pigment ratios showed that the Chlorophyll d-dominated oxyphotobacterium Acaryochloris marina was able to photoacclimate to different light regimes. Chl d per cell were higher in cultures grown under low irradiance and red or green light compared to those found when grown under high white light, but phycocyanin/Chl d and carotenoid/Chl d indices under the corresponding conditions were lower. Chl a, considered an accessory pigment in this organism, decreased respective to Chl d in low irradiance and low intensity non-white light sources. Blue diode PAM (Pulse Amplitude Modulation) fluorometry was able to be used to measure photosynthesis in Acaryochloris. Light response curves for Acaryochloris were created using both PAM and O2 electrode. A linear relationship was found between electron transport rate (ETR), measured using a PAM fluorometer, and oxygen evolution (net and gross photosynthesis). Gross photosynthesis and ETR were directly proportional to one another. The optimum light for white light (quartz halogen) was about 206 ± 51 μmol m− 2 s− 1 (PAR) (Photosynthetically Active Radiation), whereas for red light (red diodes) the optimum light was lower (109 ± 27 μmol m− 2 s− 1 (PAR)). The maximum mean gross photosynthetic rate of Acaryochloris was 73 ± 7 μmol mg Chl d− 1 h− 1. The gross photosynthesis/respiration ratio (Pg/R) of Acaryochloris under optimum conditions was about 4.02 ± 1.69. The implications of our findings will be discussed in relation to how photosynthesis is regulated in Acaryochloris.  相似文献   

16.
Three Algerian populations of female Pistacia atlantica shrubs were investigated in order to check whether their terpenoid contents and morpho-anatomical parameters may characterize the infraspecific variability. The populations were sampled along a gradient of increasing aridity from the Atlas mountains into the northwestern Central Sahara.As evidenced by Scanning Electron Microscopy, tufted hairs could be found only on seedling leaves from the low aridity site as a population-specific trait preserved also in culture. Under common garden cultivation seedlings of the high aridity site showed a three times higher density of glandular trichomes compared to the low aridity site. Increased aridity resulted also in reduction of leaf sizes while their thickness increased. Palisade parenchyma thickness also increases with aridity, being the best variable that discriminates the three populations of P. atlantica.Analysis of terpenoids from the leaves carried out by GC-MS reveals the presence of 65 compounds. The major compounds identified were spathulenol (23 μg g−1 dw), α-pinene (10 μg g−1 dw), verbenone (7 μg g−1 dw) and β-pinene (6 μg g−1 dw) in leaves from the low aridity site; spathulenol (73 μg g−1 dw), α-pinene (25 μg g−1 dw), β-pinene (18 μg g−1 dw) and γ-amorphene (16 μg g−1 dw) in those from medium aridity and spathulenol (114 μg g−1 dw), α-pinene (49 μg g−1 dw), germacrene D (29 μg g−1 dw) and camphene (23 μg g−1 dw) in leaves from the high aridity site. Terpene concentrations increased with the degree of aridity: the highest mean concentration of monoterpenes (136 μg g−1 dw), sesquiterpenes (290 μg g−1 dw) and total terpenes (427 μg g−1 dw) were observed in the highest arid site and are, respectively, 3-, 5- and 4-fold higher compared to the lower arid site. Spathulenol and α-pinene can be taken as chemical markers of aridity. Drought discriminating compounds in low, but detectable concentrations are δ-cadinene and β-copaene. The functional roles of the terpenoids found in P. atlantica leaves and principles of their biosynthesis are discussed with emphasis on the mechanisms of plant resistance to drought conditions.  相似文献   

17.
We tested the effects of UV radiation (UVR) and nitrate limitation on the production of dimethylsulfide (DMS), particulate dimethylsulfoniopropionate (DMSPp), and particulate dimethylsulfoxide (DMSOp) in natural seawater from the Gulf of Mexico and in phytoplankton cultures. DMS/Chl a ratios in PAR-only and PAR + UV-exposed seawater were 0.44–2.0 and 0.46–1.9 nmol DMS μg−1 Chl a, respectively, whereas the ratios in cultures of Amphidinium carterae were 1.0–2.2 nmol μg−1 in PAR-exposed samples and 0.91–2.1 nmol μg−1 in PAR + UV-exposed samples. These results suggested that UVR did not substantially affect DMS/Chl a ratios in seawater and A. carterae culture samples. Similarly, UVR had no significant effect on DMSOp/Chl a in seawater samples (0.83–1.6 nmol DMSO μg−1 Chl a for PAR + UV vs. 0.70–1.5 nmol μg−1 for PAR-exposed seawater samples, respectively) or in A. carterae cultures (0.20–1.3 and 0.19–0.88 nmol DMSO μg−1 Chl a in PAR + UV- and PAR-exposed cultures, respectively). In an experiment with the diatom, Thalassiosira oceanica, the culture was grown in high nitrate (30 μM) or low nitrate (6 μM) media and exposed to PAR-only or PAR + UV. The low nitrate, PAR-only samples showed an increase of intracellular dimethylsulfoniopropionate (DMSP) concentration from 2.1 to 15 mmol L−1 in 60 h, but the increase occurred only after cultures reached the stationary phase. Cultures of T. oceanica grown under UVR had lower growth rates than those under PAR-only (μ′ = 0.17 and 0.32 d−1, respectively) and perhaps did not experience severe nitrate limitation even in the low nitrate treatment. These results suggest that the elevated UVR in low nitrate environments could result in reduction of DMSP in some species, whereas DMSP concentrations would not be affected in eutrophic areas.  相似文献   

18.
The ammonium (NH4+) and nitrate (NO3) uptake responses of tetrasporophyte cultures from a Portuguese population of Gracilaria vermiculophylla were studied. Thalli were incubated at 5 nitrogen (N) levels, including single (50 μM of NH4+ or NO3) and combined addition of each of the N sources. For the combined additions, the experimental conditions attempted to simulate 2 environments with high N availability (450 μM NO3 + 150 μM NH4+; 250 μM NO3 + 50 μM NH4+) and the mean N concentrations occurring at the estuarine environment of this population (30 μM NO3 + 5 μM NH4+). The uptake kinetics of NH4+ and NO3 were determined during a 4 h time-course experiment with N deprived algae. The experiment was continued up to 48 h, with media exchanges every 4 h. The uptake rates and efficiency of the two N sources were calculated for each time interval. For the first 4 h, G. vermiculophylla exhibited non-saturated uptake for both N sources even for the highest concentrations used. The uptake rates and efficiency calculated for that period (V0-4 h), respectively, increased and decreased with increasing substrate concentration. NO3 uptake rates were superior, ranging from 1.06 ± 0.1 to 9.65 ± 1.2 μM g(dw)−1 h−1, with efficiencies of 19% to 53%. NH4+ uptake rates were lower (0.32 ± 0.0 to 5.75 ± 0.08 μM g(dw)−1 h−1) but G. vermiculophylla removed 63% of the initial 150 μM and 100% at all other conditions. Uptake performance of both N sources decreased throughout the duration of the experiment and with N tissue accumulation. Both N sources were taken up during dark periods though with better results for NH4+. Gracilaria vermiculophylla was unable to take up NO3 at the highest concentration but compensated with a constant 27% NH4+ uptake through light and dark periods. N tissue accumulation was maximal at the highest N concentration (3.9 ± 0.25% dw) and superior under NH4+ (3.57 ± 0.2% dw) vs NO3 (3.06 ± 0.1% dw) enrichment. The successful proliferation of G. vermiculophylla in estuarine environments and its potential utilization as the biofilter component of Integrated Multi-Trophic Aquaculture (IMTA) are discussed.  相似文献   

19.
Techniques utilizing β-glucuronidase (GUS) activity as an indicator of Escherichia coli (E. coli) presence use labeled glucuronides to produce optical signals. Carboxyumbelliferyl-β-d-glucuronide (CUGlcU) is a fluorescent labeled glucuronide that is soluble and highly fluorescent at natural water pHs and temperatures and, therefore, may be an ideal reagent for use in an in situ optical sensor. This paper reports for the first time the Michaelis-Menten kinetic parameters for the binding of E. coli GUS with CUGlcU as Km = 910 μM, Vmax = 41.0 μM min−1, Vmax/Km 45.0 μmol L−1 min−1, the optimal pH as 6.5 ± 1.0, optimal temperature as 38 °C, and the Gibb's free energy of activation as 61.40 kJ mol−1. Additionally, it was found CUGlcU hydrolysis is not significantly affected by heavy solvents suggesting proton transfer and solvent addition that occur during hydrolysis are not limiting steps. Comparison studies were made with the more common fluorescent molecule methylumbelliferyl-β-d-glucuronide (MUGlcU). Experiments showed GUS preferentially binds to MUGlcU in comparison to CUGlcU. CUGlcU was also demonstrated in a prototype optical sensor for the detection of E. coli. Initial bench testing of the sensor produced detection of low concentrations of E. coli (1.00 × 103 CFU/100 mL) in 230 ± 15.1 min and high concentrations (1.05 × 105 CFU/100 mL) in 8.00 ± 1.01 min.  相似文献   

20.
High phenotypic plasticity has been hypothesized to affect the invasiveness of plants, as high plasticity may enlarge the breath of environments in which the plants can survive and reproduce. Here we compare the phenotypic plasticity of invasive and non-invasive populations of the same species in response to growth temperature. Populations of the submerged macrophyte Ceratophyllum demersum from New Zealand, where the species is introduced and invasive, and from Denmark, where the species is native and non-invasive, were grown in a common garden setup at temperatures of 12, 18, 25 and 35 °C. We hypothesized that the phenotypic plasticity in fitness-related traits like growth and photosynthesis were higher in the invasive than in the non-invasive population. The invasive population acclimated to elevated temperatures through increased rates of photosynthesis (range: Pamb: 8-452 μmol O2 g−1 DM h−1) and relative growth rates (range: 0.01-0.05 d−1) and associated regulations in the photosynthetic machinery. The non-invasive population had a lower acclimation potential (range: Pamb: 43-173 μmol O2 g−1 DM h−1; RGR: 0.01-0.03 d−1), but was better at acclimating to cooler conditions by regulation of the light-harvesting complex. Hence, the invasive population of C. demersum from New Zealand had higher phenotypic plasticity in response to temperature than the non-invasive Danish population. This might be the result of genetic evolution since its introduction to New Zealand five decades ago, but further studies are needed to test this hypothesis. The study also indicate, that the global increase in temperature may exacerbate the problems experienced with the invasive C. demersum in New Zealand, as the performance and fitness of this population appear to be favoured at elevated temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号