首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expressed in mast and T cells/inducible T cell tyrosine kinase (Emt/Itk), a Tec family protein tyrosine kinase, is critical for the development and activation of T lymphocytes. The mechanism through which Emt/Itk mediates its effector functions is poorly understood. In this study, we show that the Emt/Itk Src homology 2 (SH2) domain is critical for the transphosphorylation and activation of Emt/Itk catalytic activity that is mediated by TCR/CD3 engagement. Furthermore, we find that the Emt/Itk SH2 domain is essential for the formation of TCR/CD3-inducible Emt/Itk-LAT complexes, whereas the SH3 domain and catalytic activity are not required. The Emt/Itk-linker of activated T cells (LAT) complexes are biologically important because Jurkat T cells with deficient LAT expression (JCaM2) fail to increase Emt/Itk tyrosine phosphorylation upon TCR/CD3 stimulation. Confocal microscopy reveals that in activated cells, LAT complexes colocalize with TCR/CD3. The present data suggest that upon TCR/CD3 engagement, the Emt/Itk SH2 domain mediates the formation of a molecular complex containing Emt/Itk, LAT, and TCR/CD3; this complex is essential for Emt/Itk activation and function.  相似文献   

2.
The Tec family tyrosine kinase, Itk has been implicated in T cell antigen receptor (TCR) signaling, yet little is known about Itk regulation. Here, we investigate the role of the tyrosine kinase ZAP-70 in regulating Itk. Whereas Itk was activated in Jurkat T cells in response to CD3 cross-linking, Itk activation was defective in the ZAP-70-deficient P116 Jurkat T cell line. Itk responsiveness to TCR engagement was restored in P116 cells stably transfected with ZAP-70 cDNA. ZAP-70 itself could not directly phosphorylate the Itk kinase domain, indicating an indirect regulation of Itk activity. No role was found for ZAP-70 in regulating Itk recruitment to the plasma membrane, an event that has been suggested to be rate-limiting for the activation of Tec family kinases. Indeed, Itk was found to be constitutively targeted to the membrane fraction in both Jurkat and P116 cells. Lat, a prominent in vivo substrate of ZAP-70 that mediates assembly of multimolecular signaling complexes at the plasma membrane of T cells was also found to be required for TCR-stimulated Itk activation. Itk could not be activated by CD3 cross-linking in a Lat-negative cell line, unless Lat expression was restored. Lat and Itk were observed to co-associate in response to CD3 cross-linking in Jurkat T cells, but not in P116 T cells. The Lat-Itk association correlated with Lat tyrosine phosphorylation, which was deficient in the P116 T cells. These data suggest that ZAP-70 and Lat play important, probably sequential, roles in regulating the activation of Itk following TCR engagement.  相似文献   

3.
4.
The Emt/Itk/Tsk tyrosine kinase is involved in intracellular signaling events induced by several lymphocyte surface receptors. Modulation of TCR/CD3-induced phospholipase-C gamma 1 (PLC gamma 1) activity by the tyrosine kinase Emt/Itk/Tsk has been demonstrated based on studies of Itk-deficient murine T lymphocytes. Here we report a TCR/CD3-regulated association between Emt and PLC gamma 1 in both normal and leukemic T cells. In addition, this association was enhanced following independent ligation of the CD2, CD4, or CD28 costimulatory molecules, but not of CD5 or CD6 surface receptors, correlating to the induced tyrosine phosphorylation of Emt. Before Ab-induced T cell activation, we found that the Emt-SH3 domain was crucial for the constitutive Emt/PLC gamma 1 association; however, upon TCR/CD3 engagement, the Emt-SH2 domain was more efficient in mediating the enhanced Emt/PLC gamma 1 interaction. Furthermore, the PLC gamma 1-SH3 domain, but not the two PLC gamma 1-SH2 domains, contributed to formation of the protein complex. Thus, we describe a regulated interaction between Emt and PLC gamma 1, and based on our studies with individual Emt and PLC gamma 1 SH2/SH3 domains, we propose a mechanism for this association.  相似文献   

5.
A novel role for p21-activated protein kinase 2 in T cell activation   总被引:5,自引:0,他引:5  
To identify novel components of the TCR signaling pathway, a large-scale retroviral-based functional screen was performed using CD69 expression as a marker for T cell activation. In addition to known regulators, two truncated forms of p21-activated kinase 2 (PAK2), PAK2DeltaL(1-224) and PAK2DeltaS(1-113), both lacking the kinase domain, were isolated in the T cell screen. The PAK2 truncation, PAK2DeltaL, blocked Ag receptor-induced NFAT activation and TCR-mediated calcium flux in Jurkat T cells. However, it had minimal effect on PMA/ionomycin-induced CD69 up-regulation in Jurkat cells, on anti-IgM-mediated CD69 up-regulation in B cells, or on the migratory responses of resting T cells to chemoattractants. We show that PAK2 kinase activity is increased in response to TCR stimulation. Furthermore, a full-length kinase-inactive form of PAK2 blocked both TCR-induced CD69 up-regulation and NFAT activity in Jurkat cells, demonstrating that kinase activity is required for PAK2 function downstream of the TCR. We also generated a GFP-fused PAK2 truncation lacking the Cdc42/Rac interactive binding region domain, GFP-PAK2(83-149). We show that this construct binds directly to the kinase domain of PAK2 and inhibits anti-TCR-stimulated T cell activation. Finally, we demonstrate that, in primary T cells, dominant-negative PAK2 prevented anti-CD3/CD28-induced IL-2 production, and TCR-induced CD40 ligand expression, both key functions of activated T cells. Taken together, these results suggest a novel role for PAK2 as a positive regulator of T cell activation.  相似文献   

6.
7.
Pleckstrin homology (PH) domain binding to D3-phosphorylated phosphatidylinositides (PI) provides a reversible means of recruiting proteins to the plasma membrane, with the resultant change in subcellular localization playing a key role in the activation of multiple intracellular signaling pathways. Previously we found that the T-cell-specific PH domain-containing kinase Itk is constitutively membrane associated in Jurkat T cells. This distribution was unexpected given that the closely related B-cell kinase, Btk, is almost exclusively cytosolic. In addition to constitutive membrane association of Itk, unstimulated JTAg T cells also exhibited constitutive phosphorylation of Akt on Ser-473, an indication of elevated basal levels of the phosphatidylinositol 3-kinase (PI3K) products PI-3,4-P(2) and PI-3,4,5-P(3) in the plasma membrane. Here we describe a defect in expression of the D3 phosphoinositide phosphatase, PTEN, in Jurkat and JTAg T cells that leads to unregulated PH domain interactions with the plasma membrane. Inhibition of D3 phosphorylation by PI3K inhibitors, or by expression of PTEN, blocked constitutive phosphorylation of Akt on Ser-473 and caused Itk to redistribute to the cytosol. The PTEN-deficient cells were also hyperresponsive to T-cell receptor (TCR) stimulation, as measured by Itk kinase activity, tyrosine phosphorylation of phospholipase C-gamma1, and activation of Erk compared to those in PTEN-replete cells. These data support the idea that PH domain-mediated association with the plasma membrane is required for Itk activation, provide evidence for a negative regulatory role of PTEN in TCR stimulation, and suggest that signaling models based on results from Jurkat T-cell lines may underestimate the role of PI3K in TCR signaling.  相似文献   

8.
Itk, a Tec family tyrosine kinase, acts downstream of Lck and phosphatidylinositol 3'-kinase to facilitate T cell receptor (TCR)-dependent calcium influxes and increases in extracellular-regulated kinase activity. Here we demonstrate interactions between Itk and crucial components of TCR-dependent signaling pathways. First, the inositide-binding pocket of the Itk pleckstrin homology domain directs the constitutive association of Itk with buoyant membranes that are the primary site of TCR activation and are enriched in both Lck and LAT. This association is required for the transphosphorylation of Itk. Second, the Itk proline-rich region binds to Grb2 and LAT. Third, the Itk Src homology (SH3) 3 and SH2 domains interact cooperatively with Syk-phosphorylated SLP-76. Notably, SLP-76 contains a predicted binding motif for the Itk SH2 domain and binds to full-length Itk in vitro. Finally, we show that kinase-inactive Itk can antagonize the SLP-76-dependent activation of NF-AT. The inhibition of NF-AT activation depends on the Itk pleckstrin homology domain, proline-rich region, and SH2 domain. Together, these observations suggest that multivalent interactions recruit Itk to LAT-nucleated signaling complexes and facilitate the activation of LAT-associated phospholipase Cgamma1 by Itk.  相似文献   

9.
10.
Itk and Rlk are members of the Tec kinase family of nonreceptor protein tyrosine kinases that are expressed in T cells, NK cells, and mast cells. These proteins are involved in the regulation of signaling processes downstream of the TCR in CD4(+) T cells, particularly in the phosphorylation of phospholipase C-gamma1 after TCR activation; furthermore, both Itk and Rlk are important in CD4(+) T cell development, differentiation, function, and homeostasis. However, few studies have addressed the roles of these kinases in CD8(+) T cell signaling and function. Using Itk(-/-) and Itk(-/-)Rlk(-/-) mice, we examined the roles of these Tec family kinases in CD8(+) T cells, both in vitro and in vivo. These studies demonstrate that the loss of Itk and Rlk impairs TCR-dependent signaling, causing defects in phospholipase C-gamma1, p38, and ERK activation as well as defects in calcium flux and cytokine production in vitro and expansion and effector cytokine production by CD8(+) T cells in response to viral infection. These defects cannot be rescued by providing virus-specific CD4(+) T cell help, thereby substantiating the important role of Tec kinases in CD8(+) T cell signaling.  相似文献   

11.
Costimulation by CD28 or lipid-raft-associated CD48 potentiate TCR-induced signals, cytoskeletal reorganization, and IL-2 production. We and others have proposed that costimulators function to construct a raft-based platform(s) especially suited for TCR engagement and sustained and processive signal transduction. Here, we characterize TCR/CD48 and TCR/CD28 costimulation in T cells expressing Lck Src homology 3 (SH3) mutants. We demonstrate that Lck SH3 functions after initiation of TCR-induced tyrosine phosphorylation and concentration of transducers within rafts, to regulate the costimulation-dependent migration of rafts to the TCR contact site. Expression of kinase-active/SH3-impaired Lck mutants disrupts costimulation-dependent raft recruitment, sustained TCR protein tyrosine phosphorylation, and IL-2 production. However, TCR-induced apoptosis, shown only to require "partial" TCR signals, is unaffected by expression of kinase-active/SH3-impaired Lck mutants. Therefore, two distinctly regulated raft reorganization events are required for processive and sustained "complete" TCR signal transduction and T cell activation. Together with recent characterization of CD28 and CD48 costimulatory activities, these findings provide a molecular framework for two signal models of T cell activation.  相似文献   

12.
Tec kinases: shaping T-cell activation through actin   总被引:4,自引:0,他引:4  
Following stimulation, T cells undergo marked actin-dependent changes in shape that are required for productive cellular interactions and movement during immune responses. Reorganization of the actin cytoskeletal is also necessary for the formation of an immunological synapse - the convergence of several signaling molecules at the plasma membrane that occurs after effective T-cell receptor (TCR) signaling. Much emerging evidence indicates that the Tec family of tyrosine kinases has a role in actin cytoskeleton reorganization. Specifically, T cells that lack or express mutant versions of the Tec kinase Itk show impaired TCR-induced actin polymerization, cell polarization and regulation of the signaling events involved in cytoskeletal reorganization. These data, as well as other findings, support roles for Tec kinases in actin cytoskeleton regulation.  相似文献   

13.
Coordinated rearrangements of the actin-myosin cytoskeleton facilitate early and late events in T cell activation and signal transduction. As many important features of cell shape rearrangement involve small GTP-binding proteins, we examined the contribution of Rho kinase to the functions of mature T cells. Inhibitors of the Rho kinase pathway all had similar actions to inhibit the proliferation of primary lymphocyte cultures. Likewise, transfection of the human Jurkat T cell line with a dominant negative, kinase-defective mutant of Rho kinase diminished Jurkat cell proliferation. Furthermore, inhibition of Rho kinase substantially attenuated the program of cytokine gene expression that characterizes T cell activation, blocked actomyosin polymerization, and prevented aggregation of the TCR/CD3 complex colocalized with lipid rafts. These actions are relevant to immune responses in vivo, as treatment with a Rho kinase inhibitor considerably prolonged the survival of fully allogeneic heart transplants in mice and diminished intragraft expression of cytokine mRNAs. Thus, Rho GTPases acting through Rho kinase play a unique role in T cell activation during cellular immune responses by promoting structural rearrangements that are critical for T cell signaling.  相似文献   

14.
15.
The TCR is a multimeric structure comprised of distinct Ag recognition and signal transduction components. Although none of the molecules that make up the TCR possess intrinsic protein tyrosine kinase (PTK) activity, stimulation of T cells via the TCR results in the rapid appearance of newly tyrosine phosphorylated proteins in cell lysates. Evidence suggests ligation of the TCR induces activation of a PTK that may be a member of the src family. One early consequence of this TCR-mediated PTK activation is the phosphorylation of the gamma 1 isoform of phospholipase C. This phosphorylation event is associated with increased enzymatic activity resulting in the hydrolysis of phosphatidylinositol 4,5 bisphosphate into two second messengers, inositol 1,4,5 trisphosphate and diacylglycerol. Recently, our laboratory and others have isolated mutant T cells that lack surface expression of CD45, the major surface tyrosine phosphatase expressed on lymphoid cells. Stimulation of the TCR on these cells fails to result in the expected activation events. We demonstrate that reconstitution of surface expression of the 180-kDa isoform of CD45 by gene transfer into a CD45-deficient mutant of the Jurkat T cell leukemic line restores the ability of the TCR to couple fully to its signal transduction machinery. These results support the role of CD45 tyrosine phosphatase activity in regulating the TCR-activated PTK.  相似文献   

16.
The Tec family kinase Itk plays a critical role in signal transduction downstream of the T cell antigen receptor and has been implicated in the activation of phospholipase C-gamma1, a key regulator of calcium mobilization and extracellular signal-regulated kinase (ERK) activation. We have shown previously that Itk is regulated by an activating transphosphorylation event in which Tyr-511 in the kinase domain is phosphorylated by Lck (Heyeck, S. D., Wilcox, H. M., Bunnell, S. C., and Berg, L. J. (1997) J. Biol. Chem. 272, 25401-25408). In this study, we present evidence for another mode of regulation for Itk, the autophosphorylation of Tyr-180 in the Src homology 3 (SH3) domain. To investigate the role of Itk trans- and autophosphorylation in T cell signaling, a retroviral transduction system was used to introduce different versions of Itk into Itk-deficient primary T cells. We report that Itk mutated at either the trans- or the autophosphorylation site is unable to fully restore cytokine production and ERK activation in the Itk-deficient cells; Itk-Y511F is severely defective, whereas Itk-Y180F has partial activity. Because phosphorylation at Tyr-180 is predicted to interfere with ligand binding by the SH3 domain, an SH3 point mutant that cannot bind ligand was also examined and found to be unable to restore function to the Itk-/- cells. These data provide new insights into the complex regulation of Itk in primary T cells.  相似文献   

17.
Itk, a member of the Tec family of tyrosine kinases, is critical for TCR signaling, leading to the activation of phospholipase C gamma1. Early biochemical studies performed in tumor cell lines also implicated Itk in CD28 signaling. These data were complemented by functional studies on primary Itk-/- T cells that suggested a negative role for Itk in CD28 signaling. In this report, we describe a thorough analysis of CD28-mediated responses in T cells lacking Itk. Using purified naive CD4+ T cells from Itk-/- mice, we examine a range of responses dependent on CD28 costimulation. We also analyze Akt and glycogen synthase kinase-3beta phosphorylation in response to stimulation of CD28 alone. Overall, these experiments demonstrate that CD28 signaling, as well as CD28-mediated costimulation of TCR signaling, function efficiently in the absence of Itk. These findings indicate that Itk is not essential for CD28 signaling in primary naive CD4+ T cells.  相似文献   

18.
EphB6 is the most recently identified member of the Eph receptor tyrosine kinase family. EphB6 is primarily expressed in thymocytes and a subpopulation of T cells, suggesting that it may be involved in regulation of T lymphocyte differentiation and functions. We show here that overexpression of EphB6 in Jurkat T cells and stimulation with the EphB6 ligand, ephrin-B1, results in the selective inhibition of TCR-mediated activation of JNK but not the MAPK pathway. EphB6 appears to suppress the JNK pathway by preventing T cell receptor (TCR)-induced activation of the small GTPase Rac1, a critical event in initiating the JNK cascade. Furthermore, EphB6 blocked anti-CD3-induced secretion of IL-2 and CD25 expression in a ligand-dependent manner. Dominant negative EphB6 suppressed the inhibitory activity of the endogenous receptor and enhanced anti-CD3-induced JNK activation, CD25 expression, and IL-2 secretion, confirming the requirement for EphB6-specific signaling. Activation of the JNK pathway and the establishment of an IL-2/IL-2R autocrine loop have been shown to play a role in the negative selection of CD4(+)CD8(+) self-reacting thymocytes. In agreement, stimulation of murine thymocytes with ephrin-B1 not only blocked anti-CD3-induced CD25 up-regulation and IL-2 production, but also inhibited TCR-mediated apoptosis. Thus, EphB6 may play an important role in regulating thymocyte differentiation and modulating responses of mature T cells.  相似文献   

19.
The Tec family tyrosine kinase Itk is critical for efficient signaling downstream of the TCR. Biochemically, Itk is directly phosphorylated and activated by Lck. Subsequently, Itk activates phospholipase C-gamma1, leading to calcium mobilization and extracellular signal-regulated kinase/mitogen-activated protein kinase activation. These observations suggested that Itk might play an important role in positive selection and CD4/CD8 lineage commitment during T cell development in the thymus. To test this, we crossed Itk-deficient mice to three lines of TCR transgenics and analyzed progeny on three different MHC backgrounds. Analysis of these mice revealed that fewer TCR transgenic T cells develop in the absence of Itk. In addition, examination of multiple T cell development markers indicates that multiple stages of positive selection are affected by the absence of Itk, but the T cells that do develop appear normal. In contrast to the defects in positive selection, CD4/CD8 lineage commitment seems to be intact in all the TCR transgenic itk(-/-) lines tested. Overall, these data indicate that altering TCR signals by the removal of Itk does not affect the appropriate differentiation of thymocytes based on their MHC specificity, but does impact the efficiency with which thymocytes complete their maturation process.  相似文献   

20.
HIP-55 (hematopoietic progenitor kinase 1 (HPK1)-interacting protein of 55 kDa, also called SH3P7 and mAbp1) is a novel SH3 domain-containing protein. HIP-55 binds to actin filaments both in vitro and in vivo. HIP-55 activates HPK1 and c-Jun N-terminal kinase (JNK), which are two important lymphocyte signaling molecules. Until now, the regulation and function of HIP-55 in T cell receptor (TCR) signaling were unknown. We found that HIP-55 was recruited to glycolipid-enriched microdomains upon TCR stimulation, which indicates that HIP-55 is regulated by TCR signaling. HIP-55 interacted with ZAP-70, a critical protein-tyrosine kinase in TCR signaling, and this interaction was induced by TCR signaling. ZAP-70 phosphorylated HIP-55 at Tyr-334 and Tyr-344 in vitro and in vivo, and the HIP-55 mutant (Y334F/Y344F) was not tyrosine-phosphorylated in stimulated T cells. To study its function in T cell activation, HIP-55-deficient Jurkat T cells were established using the RNA interference approach. In the HIP-55-deficient cells, TCR (but not UV)-stimulated JNK activation was decreased. Furthermore, the activation of HPK1, a known JNK upstream activator and HIP-55-interacting protein, was also decreased in the HIP-55-deficient cells. Our data reveal the regulation of HIP-55 during TCR signaling, and using a genetic approach, we demonstrate for the first time that HIP-55 plays a functional role in TCR signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号