首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erythroblastic leukemic (EBL) cells incubated in media containing essential amino acids, glutamine and serine incorporate more [3H]-leucine into protein than those incubated without serine. Cells incubated with serine contain higher intracellular serine concentrations and display increased rates of peptide chain initiation on polyribosomal profile analysis. Deficiency of serine inhibited protein synthesis more than deficiencies of most other single essential amino acids, but no further inhibition was seen when single essential amino acids were removed from serine deficient media. Serine also enhanced the uptake of [3H]-uridine and its transfer to RNA while several essential amino acids had no effect. We conclude that in EBL cells, serine is an essential amino acid and that exogenous repletion of intracellular concentrations induces a positive pleiotypic response. We have previously shown that after incubation with serine for 15 min. EBL cells have greater numbers of plasmalemma insulin receptors. Regulation of cell surface receptors may therefore comprise another limb of the pleiotypic response.  相似文献   

2.
P388 (murine) and CEM (human) leukemia cells were exposed in vitro to a serine-deprived medium. Cultivation was carried out at 37 degrees C, 5% CO2. Proliferation assay was conducted with a RPMI 1640 medium (control) and a serine-deprived medium for 3 days. The deprivation of serine reduced the proliferation of both cells, and the necessity of serine for the cell proliferation was thus recognized. The effects of the substance on the level and pattern of intracellular amino acids were observed. P388 cells exposed to serine-deprived medium for 3 h were then transferred to the control medium. The cellular amino acid levels were determined at the time of medium change and 1, 2, 3 h thereafter. Serine-deprivation improved intracellular amino acids in comparison with those from control, and the medium change to control reduced their levels. Therefore, extracellular serine appeared to regulate the efflux of amino acids from cells. This suggests that serine-deprivation may be useful for anticancer drug retention in the cells.  相似文献   

3.
The effects of tumour-promoting phorbol esters on the receptor-mediated endocytosis of insulin were investigated in the human hepatoma cell line HepG2. Treatment of these cells with the biologically active phorbol 12-O-tetradecanoylphorbol 13-acetate (TPA), but not with the non-tumour-promoting analogue 4 alpha-phorbol 12,13-didecanoate, resulted in dramatic morphological changes, which were accompanied by a 1.5-2.5-fold increase in specific 125I-insulin association with the cells at 37 degrees C. This increase in insulin binding was not observed when the binding reaction was performed at 4 degrees C. The potentiation of 125I-insulin association with TPA-treated cells at 37 degrees C could be completely accounted for by an increase in the intracellular pool of internalized insulin; there was no concomitant increase in cell-surface insulin binding. Dissociation studies showed that the enhanced internalization of insulin by cells after treatment with TPA resulted from a decrease in the rate of intracellular processing of the insulin after receptor-mediated endocytosis. The phorbol-ester-induced enhancement of internalized insulin in HepG2 cells was additive with the potentiation of endocytosed insulin induced by both the lysosomotropic reagent chloroquine and the ionophore monensin; this indicates that TPA affects the intracellular processing of the insulin receptor at a point other than those disrupted by either of these two reagents. The potentiation of insulin receptor internalization by tumour-promoting phorbol esters could be completely mimicked by treatment with phospholipase C, but not with phospholipase A, and partially mimicked by treatment with the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol. By these criteria, the effects of phorbol esters on the insulin receptor in HepG2 cells appear to be mediated through protein kinase C. These results support the concept that the activation of protein kinase C by treatment with phorbol esters causes a perturbation of the insulin-receptor-mediated endocytotic pathway in HepG2 cells, reflected in a long-term decreased rate of dissociation of internalized insulin by the phorbol-ester-treated cells.  相似文献   

4.
We examined the effect of insulin treatment on HTC cells transfected with large numbers of either normal insulin receptors (HTC-IR) or insulin receptors defective in tyrosine kinase (HTC-IR/M-1030). In both HTC-IR and HTC-IR/M-1030 cells, 20 h of insulin treatment (1 microM) at 37 degrees C resulted in a 65% decrease in the number of binding sites with a reciprocal 6-fold increase in affinity. In contrast, treatment with 10 nM insulin (20 h, 37 degrees C) also increased receptor affinity but had a smaller effect on the number of binding sites. 125I-Insulin binding to soluble receptors from HTC-IR and HTC-IR/M-1030 cells pretreated with insulin showed results similar to those obtained in intact cells. In both HTC-IR and HTC-IR/M-1030 cells, insulin enhanced insulin receptor degradation. In HTC-IR/M-1030 cells a 1-h incubation with insulin did not change receptor number and had only a small effect on receptor affinity; also there was no effect of insulin after a 20-h incubation at 15 degrees C. Inhibiting protein synthesis by pretreatment with cycloheximide (100 microM) did not block either the decrease in receptor number or the increase in receptor affinity. Both HTC-IR and HTC-IR/M-1030 cells exhibited a very slow rate of insulin and insulin receptor internalization and no differences were seen in this parameter when HTC-IR cells were compared to HTC-IR/M-1030 cells. These studies indicate, therefore, that in cells expressing kinase-defective insulin receptors, insulin down-regulates insulin receptor number via enhanced receptor degradation, and up-regulates receptor affinity. These effects were time- and temperature-dependent, but not dependent on new protein synthesis, and suggest that activation of tyrosine kinase may not be a prerequisite for certain mechanisms whereby insulin regulates its receptor.  相似文献   

5.
We have studied the effect of plasminogen activator inhibitors PAI-1 and PAI-2 on the binding of urokinase-type plasminogen activator (u-PA) to its receptor in the human choriocarcinoma cell line JAR. With 125I-labeled ligands in whole-cell binding assays, both uncomplexed u-PA and u-PA-inhibitor complexes bound to the receptor with a Kd of approximately 100 pM at 4 degrees C. Transferring the cells to 37 degrees C led to degradation to amino acids of up to 50% of the cell-bound u-PA-inhibitor complexes, whereas the degradation of uncomplexed u-PA was 15%; the remaining ligand was recovered in an apparently intact form in the medium or was still cell associated. The degradation could be inhibited by inhibitors of vesicle transport and lysosomal hydrolases. By electron microscopic autoradiography, both 125I-u-PA and 125I-u-PA-inhibitor complexes were located over the cell membrane at 4 degrees C, with the highest density of grains over the membrane at cell-cell interphases, but, after incubation at 37 degrees C, 17 and 27% of the grains for u-PA and u-PA-PAI-1 complexes, respectively, appeared over lysosomal-like bodies. These findings suggest that the u-PA receptor possesses a clearance function for the removal of u-PA after its complex formation with a specific inhibitor. The data suggest a novel mechanism by which receptor-mediated endocytosis is initiated by the binding of a secondary ligand.  相似文献   

6.
Using the number and concentration of amino acids in Dulbecco's modified Eagle's medium as reference (DMEM = 100%), we found that a maximally effective concentration of insulin (10 ng/ml) stimulated protein synthesis by 125% over basal rate in the presence of 50% amino acids (EC50 = 19%), but by only 48% in amino acid-free buffer. Moreover, time course experiments revealed that amino acid regulation of insulin action was very rapid (t1/2 of 9.5 min) and readily reversible (less than 30 min). This effect was specific in that basal rates of protein synthesis were unaltered by amino acids. A second effect of amino acids was to markedly enhance insulin sensitivity of the protein synthesis system in a dose-dependent manner. Thus, the half-maximally effective concentrations of insulin required to stimulate protein synthesis fell from 0.43 to 0.25 to 0.15 ng/ml in the presence of 0, 50, and 150% amino acids. Neither insulin sensitivity nor maximal insulin responsiveness of the glucose transport system was altered by amino acids, nor did amino acids affect the insulin binding capacity of cells. When we divided the 14 amino acids found in DMEM into two groups, we found that one group of 7 amino acids had little or no effect on insulin sensitivity or responsiveness, whereas the other group was fully active (a 157% increase in insulin responsiveness, ED50 of 0.21 ng/ml versus a 68% increase, ED50 of 0.51 ng/ml, with no amino acids). Isoleucine and serine together increased both insulin sensitivity and responsiveness to 60-70% of that seen with the full complement of amino acids. In conclusion: 1) amino acids modulate insulin action by enhancing maximal insulin responsiveness and insulin sensitivity of the protein synthesis system, and the regulatory site of amino acid action appears to be distal to the common signal pathway, within the insulin action-protein synthesis cascade, and 2) the effects of amino acids are specific, in that basal rates of protein synthesis are unaffected, only certain amino acids influence insulin action, and amino acids fail to alter insulin binding or the insulin-responsive glucose transport system. These studies, together with those in the companion paper, demonstrate that the pleiotropic actions of insulin on enhancing glucose uptake and protein synthesis are mediated through divergent pathways that can be independently regulated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The highly thermosensitive and permeable mutants are the mutants from which intracellular contents including proteins can be released when they are incubated both in the low osmolarity water and at the nonpermissive temperature (usually 37 degrees C). After mutagenesis by using nitrosoguanidine, a highly thermosensitive and permeable mutant named Z114 was obtained from the marine yeast Cryptococcus aureus G7a. Of the total protein, 65.3% was released from the mutant cells suspended in distilled water after they were treated at 37 degrees C overnight. However, only 12.3% of the total protein was released from the mutant cells suspended in 1.0 M sorbitol solution after they were treated at 37 degrees C overnight. We found that intracellular density of the mutant treated at 37 degrees C was greatly decreased, and cell volume of the mutant treated at 37 degrees C was increased due to the increased protein release. However, no significant changes in the intracellular density and cell volume of the mutant were observed when its cells suspended in 1.0 M sorbitol solution were treated at 37 degrees C. It was found that no big changes in cell growth, protein content, vitamin C content, nucleic acid content, fatty acids, and amino acid compositions of both the mutant and its wild type were detected. Therefore, the highly thermosensitive and permeable mutant still can be a good candidate as single-cell protein. This means that the method used in this study is a simple and efficient way to release protein from the highly thermosensitive and permeable yeast mutant cells with high protein content.  相似文献   

8.
1. Alanine, glutamine and serine were actively accumulated in liver cells isolated from starved rats. 2. This accumulation was inhibited when either Na+ or HCO3- ions were omitted from the incubation medium. In general the degree of dependence on Na+ was quantitatively similar to that on HCO3-. 3. The apparent Km values for the transport of all three amino acids were in the range 3--5mM with Vmax. values in the range 15--25nmol/min per mg of cell protein at 37 degrees C. 4. Alanine and serine transport were mutually competitive; glutamine inhibited the transport of alanine and serine non-competitively. 5. The initial rate of transport of these amino acids was inhibited when the intracellular content of ATP was decreased. 6. Ouabain inhibited the rate of alanine transport without inhibiting the rate of alanine metabolism. 7. It is concluded that a minimum of three transport systems must be postulated to exist in the liver cell plasma membrane to account for the transport of alanine, serine and glutamine. The rate of transport of these amino acids in isolated hepatocytes is unlikely to limit the rate at which they are metabolized.  相似文献   

9.
1. The effects of insulin, glucagon and dexamethasone on the amino acid consumption by primary cultures of rat hepatocytes were studied in a medium containing all essential amino acids or in those deficient in some essential or nonessential amino acids. 2. The cells which were cultured in a medium containing all the essential amino acids responded to insulin by enhancing the consumption of amino acids and augmenting protein synthesis. 3. However, the cells did not respond to insulin significantly when they were cultured in a medium deficient in lysine or some other essential amino acids. 4. The results suggest that some essential amino acid deficiency impairs the transmission of the signal of insulin to the site of the metabolic changes induced by the hormone.  相似文献   

10.
The present study shows that insulin causes an increase in the binding of alpha 2-macroglobulin (alpha 2M) to 3T3-L1 adipocytes. Scatchard analysis of the binding at 4 degrees C indicated an approximate 2-fold increase in the number of alpha 2M binding sites, with no change in the apparent affinity of the receptor. In addition, a 2-3-fold increase in the binding of monoclonal antibody 2C6, which recognizes a component of the alpha 2M receptor, was found in cells treated at 37 degrees C with insulin and then KCN to inhibit receptor endocytosis. An increased cellular accumulation of alpha 2M was also observed in response to insulin. Interestingly, the increase in the rate of accumulation of alpha 2M was significantly smaller than the increase in the number of alpha 2M receptors on the cell surface, suggesting that the rate of ligand internalization or subsequent processing is altered in response to insulin. Ultrastructural analysis of the internalization pathway of the alpha 2M receptor was performed using colloidal gold-coupled 2C6 monoclonal antibody. Control cells incubated for 20 min at 37 degrees C with the gold-conjugated antibody displayed 40% of cellular gold particles on the cell surface and 60% within intracellular structures. In insulin-treated cells this proportion was reversed, with 64% of the particles being found on the cell surface, and only 36% within intracellular structures. Significant differences in the distribution of gold particles among intracellular structures were detected between control and insulin-treated cells. Whereas in control cells, 18% of the total cellular gold particles internalized into tubulovesicles and multivesicular bodies, in insulin-treated cells only 3% of the gold particles were found within these structures. These data indicate that the movement of this receptor between endocytic compartments is altered in response to insulin, and suggest that the effect of insulin to increase the cell surface concentration of alpha 2M receptors and the accumulation of alpha 2M is due, at least in part, to alterations in the endocytic portion of the receptor recycling pathway.  相似文献   

11.
1. The preparation of cell suspensions by treatment of chick embryo hearts with collagenase at various stages of development is described. 2. Measurements of oxygen consumption, incorporation of labelled leucine into protein and accumulation of labelled alpha-aminoisobutyric acid against a concentration gradient indicated a long-lasting viability of the isolated heart cells in vitro; a satisfactory preservation of subcellular structures, including plasma membrane, was assessed by electron-microscopic examination. 3. The rate of alpha-aminoisobutyric acid accumulation by cardiac cells isolated from hearts at different stages of embryological development decreased with aging; insulin stimulated the intracellular accumulation of this amino acid analogue. 4. Insulin increased the uptake by isolated heart cells of several (14)C-labelled naturally occurring amino acids; however, the fraction of amino acid taken up by the cells that was recovered free intracellularly, and therefore the concentration ratio (between intracellular water and medium), was enhanced by the hormone only with glycine, proline, serine, threonine, histidine and methionine. When isolated heart cells were incubated in the presence of a mixture of labelled amino acids, the addition of insulin increased the disappearance of radioactivity from the medium. 5. The general pattern of amino acid transport (in the absence and in the presence of insulin) in isolated cardiac cells was similar to that found in intact hearts, suggesting that the biological preparation described in this paper might be useful for studies of cell permeability and insulin action.  相似文献   

12.
Receptor sites for insulin on GH3 cells were characterized. Uptake of 125I-labeled insulin by the cells was dependent upon time and temperature, with apparent steady-states reached by 120, 20 and 10 min at 4, 23 and 37 degrees C, respectively. The binding sites were sensitive to trypsin, suggesting that the receptors contain protein. Insulin competed with 125I-labeled insulin for binding sites, with half-maximal competition observed at 5 nM insulin. Neither adrenocorticotropic hormone nor growth hormone competed for 125I-labeled insulin binding sites. 125I-labeled insulin binding was reversible, and saturable with respect to hormone concentration. 125I-labeled insulin was degraded at both 4 and 37 degrees C by GH3 cells, but not by medium conditioned by these cells. After a 5 min incubation at 37 degrees C, products of 125I-labeled insulin degradation could be recovered from the cells but were not detected extracellularly. Extending the time of incubation resulted in the recovery of fragments of 125I-labeled insulin from both cells and the medium. Native insulin inhibited most of the degradation of 125I-labeled insulin suggesting that degradation resulted, in part, from a saturable process. At steady-state, degradation products of 125I-labeled insulin, as well as intact hormone, were recovered from GH3 cells. After 30 min incubation at 37 degrees C, 80% of the cell-bound radioactivity was not extractable from GH3, cells with acetic acid.  相似文献   

13.
A proteolytic activity hydrolyzing denatured proteins of Bacillus megaterium labelled with 35S or 14C amino acids was detected in cells of the asporogenic strain of Bacillus megaterium. The substrate is hydrolyzed by the enzyme or enzymes at optimum pH around 7, their activity being almost completely inhibited by EDTA and o-phenanthroline. PMSF, the inhibitor of serine proteases, is slightly inhibitory. Gel filtration on a Sephadex column separated the protease activity to two or three fractions. The protease activity in cells with the repressed synthesis of protease corresponds to 5-20 mug of substrate degraded per hour by 1 mg of protein at 37 degrees C. It increases five to ten-fold during the derepression. When the intracellular protease activity increases the extracellular enzyme begins to be excreted into the medium. The intracellular protease activity rapidly decreases after the addition of chloramphenicol or of a mixture of amino acids to the derepressed culture. Half or even more of the protease activity is released from the cells during their conversion to protoplasts by means of lysozyme. This "periplasmic" activity remains mostly in the supernatant also after mesosomes have been centrifuged down from the periplasm. A portion of the activity bound in protoplasts sediments together with membrane fraction after their lysis.  相似文献   

14.
In chicken thymocytes isolated from 15--40 day-old chickens, after a 2 h incubation at 37 degrees C, insulin stimulated amino isobutyric acid uptake (maximal response: 40--50% of increase at 1 microgram insulin/ml and half maximal response at 60 ng/ml) by specifically stimulating the influx without altering the efflux. Insulin also stimulated glucose oxidation (maximal response: 11% of increase at 1 microgram insulin/ml). Binding of 125I-labelled chicken insulin to thymocytes was rapid and higher at 15 degrees C than at 37 degrees C. At steady state, (90 min at 15 degrees C), chicken, porcine and goose insulins were equipotent in inhibiting the binding of 125I-labelled chicken insulin. Maximal binding capacity was estimated at 1250 pg insulin/10(8) cells, i.e., 1250 binding sites/cell with an apparent dissociation constant of 200 ng insulin/ml at 15 degrees C. Degradation of 125I-labelled chicken insulin in the incubation medium was negligible at 15 degrees C but very noticeable at 37 degrees C. Therefore, the low level of insulin binding at 15 degrees C reflects a true scarcity of insulin receptors in chicken thymocytes as compared to rat thymocytes.  相似文献   

15.
16.
Incubation of 3T3-L1 adipocytes with insulin at 37 degrees C resulted in a 2-fold increase in specific binding of transferrin to cell-surface receptors, as measured by a subsequent incubation of cells at 4 degrees C with 125I-transferrin. The insulin concentration required for half-maximal effect was 10 nM, and the half-time for insulin action was 40 s. By comparison, insulin stimulated hexose transport in 3T3-L1 adipocytes with a half-maximal effect at 8 nM and a half-time of 105 s. Scatchard analysis of 125I-transferrin binding to cells at 4 degrees C showed that the insulin-induced increase in transferrin receptor binding was due to an increase in the number of surface transferrin receptors. When cells were incubated for 2 h at 37 degrees C with 125I-transferrin to achieve steady-state binding and then exposed to insulin, there was a 1.7-fold increase in surface-bound transferrin (acid-sensitive) and a corresponding decrease in intracellularly bound transferrin (acid-insensitive). Thus, insulin elicits translocation of intracellular transferrin receptors to the plasma membrane. Concomitant with the 2-fold increase in surface receptors in response to insulin, there was a 2-fold increase in the rate of 59Fe3+ uptake from 59Fe3+-loaded transferrin. The rate of externalization of the intracellular 125I-transferrin-receptor complex at 37 degrees C was determined for basal and insulin-treated cells. Insulin increased the first-order rate constant for this process 1.7-fold. The effect of insulin on the rate of externalization is sufficient to account for the increase in surface transferrin receptors.  相似文献   

17.
The fate of 125I-labeled transforming growth factor-beta (125I-TGF beta) after binding to its cells surface receptor has been investigated in BALB/c 3T3 mouse fibroblasts. Binding of 125I-TGF beta to cellular receptors at 4 degrees C is pH-sensitive, being markedly decreased at pH less than 6. Most (approximately 90%) of the 125I-TGF beta bound to cells at 4 degrees C can be removed by a brief treatment with acidic medium but is converted into an acid-resistant state rapidly after shifting the cells to 37 degrees C. Cell-bound 125I-TGF beta is degraded at 37 degrees C and the degradation products are released into the medium. The lysosomotropic bases chloroquine, methylamine, and ammonium and the carboxylic ionophore monensin inhibit the degradation and release of 125I-TGF beta from the cells. Cells allowed to accumulate 125I-TGF beta intracellularly by the action of chloroquine or monensin were treated with the bifunctional agent disuccinimidyl suberate in the presence of detergent Triton X-100; this treatment caused the cross-linking of internalized 125I-TGF beta with the 280-kilodalton TGF beta receptor component. Under conditions in which sustained binding and degradation of saturating 125I-TGF beta concentrations occurs, there is no marked decrease in the binding capacity of the cells even when protein synthesis is blocked with cycloheximide. These results indicate that after TGF beta binding the TGF beta:receptor complex becomes rapidly internalized and that TGF beta is directed towards lysosomes where it is degraded and released. However, the cell surface is replenished with TGF beta receptors recycled after internalization or supplied by a large intracellular pool.  相似文献   

18.
The time-course and insulin concentration dependency of internalization of insulin and its receptor have been examined in isolated rat adipose cells at 37 degrees C. The internalization of insulin was assessed by examining the subcellular distribution of cell-associated [125I]insulin among plasma membrane, and high-density (endoplasmic reticulum-enriched) and low-density (Golgi-enriched) microsomal membrane fractions prepared by differential ultracentrifugation. The distribution of receptors was measured by the steady-state exchange binding of fresh [125I]insulin to these same membrane fractions. At 37 degrees C, insulin binding to intact cells is accompanied initially by the rapid appearance of intact insulin in the plasma membrane fraction, and subsequently, by its rapid appearance in both the high-density and low-density microsomal membrane fractions. An apparent steady-state distribution of insulin per mg of membrane protein among these subcellular fractions is achieved within 30 min in a ratio of 1:1.54:0.80, respectively. Concomitantly, insulin binding to intact cells is associated with the rapid disappearance of approx. 30% of the insulin receptors initially present in the plasma membrane fraction and appearance of 20-30% of those lost in the low-density microsomal membrane fraction. However, the number of receptors in the high-density microsomal membrane fraction does not change. This redistribution of receptors also appears to reach a steady-state within 30 min. Both processes are insulin concentration-dependent, correlating with receptor occupancy in the intact cell, and are partially inhibited at 16 degrees C. While the steady-state subcellular distributions of insulin and its receptor do not correlate with that of acid phosphatase, chloroquine markedly increases the levels of insulin associated with all three membrane fractions in apparent proportion to the distribution of this lysosomal marker enzyme activity, without more than marginally potentiating insulin's effects on the distribution of receptors. These results demonstrate that insulin, initially bound to the plasma membrane of the isolated rat adipose cell, is rapidly translocated by a receptor-mediated process into at least two intracellular compartments associated with the cell's high- and low-density microsomes. Furthermore, insulin simultaneously induces the translocation of its own receptor from the plasma membrane into the latter compartment. These translocations appear to represent the internalization and partial dissociation of the insulin-receptor complex through insulin-induced receptor cycling.  相似文献   

19.
We have isolated from bovine cerebral cortex cells and purified to homogeneity an 18,000 dalton, pl 3.0 sialoglycopeptide that inhibits protein synthesis and DNA synthesis of nontransformed but not transformed cells without affecting uptake of radiolabeled precursors. In this paper, we examine the relationship between the binding of the sialoglycopeptide inhibitor to 3T3 cells and inhibition of protein synthesis. Binding of the sialoglycopeptide to 3T3 cells was rapid at 37 degrees C and reached a maximum at 30 min; the binding at 37 degrees C was shown to be saturable and specific. Scatchard analysis of the binding indicated that 3T3 cells contained about 2 X 10(4) receptors/cell with a dissociation constant of 1.0-1.5 nM. Several lines of evidence indicated that receptor occupancy on 3T3 cells correlated with the protein synthesis inhibitory activity of the sialoglycopeptide. A comparison of the kinetics of inhibitor binding with the kinetics of protein synthesis inhibition demonstrated that binding directly correlated with the inhibition of protein synthesis, concentration-dependent inhibition of protein synthesis directly correlated with concentration-dependent receptor occupancy, and a direct correlation was also observed between the kinetics of inhibitor dissociation from its specific cell surface receptor and the kinetics of recovery from protein synthesis inhibition.  相似文献   

20.
The effects of insulin on embryonic chicken cartilage in organ culture and the dependence of these effects on essential amino acids have been studied. In the presence of all essential amino acids, insulin: (1) increases 2-deoxy-D-glucose and alpha-aminoisobutyric acid uptake; (2) increases [5(-3H] uridine flux into uridine metabolites and the intracellular UTP pool; (3) expands the size of the intracellular UTP pool; (4) does not change the specific activity of the UTP pool; and (5) stimulates RNA, proteoglycan, and total protein synthesis. In lysine (or other essential amino acid)-deficient medium, the effects of insulin are different. While insulin stimulates incorporation of [5(-3)H] uridine into RNA, it does so by increasing the specific activity of the UTP pool without increasing RNA synthesis. Insulin stimulates 2-deoxy-D-glucose and alpha-aminoisobutyric acid uptake but no longer stimulates proteoglycan, total protein, or RNA synthesis or expands the size of the UTP pool. These data indicate that there are amino acid dependent and independent effects of insulin on cartilage. Transport processes are amino acid independent, while synthetic processes are amino acid dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号