首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetate Synthesis from H2 plus CO2 by Termite Gut Microbes   总被引:1,自引:7,他引:1       下载免费PDF全文
Gut microbiota from Reticulitermes flavipes termites catalyzed an H2-dependent total synthesis of acetate from CO2. Rates of H2-CO2 acetogenesis in vitro were 1.11 ± 0.37 μmol of acetate g (fresh weight)−1 h−1 (equivalent to 4.44 ± 1.47 nmol termite−1 h−1) and could account for approximately 1/3 of all the acetate produced during the hindgut fermentation. Formate was also produced from H2 + CO2, as were small amounts of propionate, butyrate, and lactate-succinate. However, H2-CO2 formicogenesis seemed largely unrelated to acetogenesis and was believed not to be a significant reaction in situ. Little or no CH4 was formed from H2 + CO2 or from acetate. H2-CO2 acetogenesis was inhibited by O2, KCN, CHCl3, and iodopropane and could be abolished by prefeeding R. flavipes with antibacterial drugs. By contrast, prefeeding R. flavipes with starch resulted in almost complete defaunation but had little effect on H2-CO2 acetogenesis, suggesting that bacteria were the acetogenic agents in the gut. H2-CO2 acetogenesis was also observed with gut microbiota from Prorhinotermes simplex, Zootermopsis angusticollis, Nasutitermes costalis, and N. nigriceps; from the wood-eating cockroach Cryptocercus punctulatus; and from the American cockroach Periplaneta americana. Pure cultures of H2-CO2-acetogenic bacteria were isolated from N. nigriceps, and a preliminary account of their morphological and physiological properties is presented. Results indicate that in termites, CO2 reduction to acetate, rather than to CH4, represents the main electron sink reaction of the hindgut fermentation and can provide the insects with a significant fraction (ca. 1/3) of their principal oxidizable energy source, acetate.  相似文献   

2.
Acetate Synthesis from H(2) plus CO(2) by Termite Gut Microbes   总被引:1,自引:0,他引:1  
Gut microbiota from Reticulitermes flavipes termites catalyzed an H(2)-dependent total synthesis of acetate from CO(2). Rates of H(2)-CO(2) acetogenesis in vitro were 1.11 +/- 0.37 mumol of acetate g (fresh weight) h (equivalent to 4.44 +/- 1.47 nmol termite h) and could account for approximately 1/3 of all the acetate produced during the hindgut fermentation. Formate was also produced from H(2) + CO(2), as were small amounts of propionate, butyrate, and lactate-succinate. However, H(2)-CO(2) formicogenesis seemed largely unrelated to acetogenesis and was believed not to be a significant reaction in situ. Little or no CH(4) was formed from H(2) + CO(2) or from acetate. H(2)-CO(2) acetogenesis was inhibited by O(2), KCN, CHCl(3), and iodopropane and could be abolished by prefeeding R. flavipes with antibacterial drugs. By contrast, prefeeding R. flavipes with starch resulted in almost complete defaunation but had little effect on H(2)-CO(2) acetogenesis, suggesting that bacteria were the acetogenic agents in the gut. H(2)-CO(2) acetogenesis was also observed with gut microbiota from Prorhinotermes simplex, Zootermopsis angusticollis, Nasutitermes costalis, and N. nigriceps; from the wood-eating cockroach Cryptocercus punctulatus; and from the American cockroach Periplaneta americana. Pure cultures of H(2)-CO(2)-acetogenic bacteria were isolated from N. nigriceps, and a preliminary account of their morphological and physiological properties is presented. Results indicate that in termites, CO(2) reduction to acetate, rather than to CH(4), represents the main electron sink reaction of the hindgut fermentation and can provide the insects with a significant fraction (ca. 1/3) of their principal oxidizable energy source, acetate.  相似文献   

3.
Whole-cell preparations of Clostridium thermoaceticum were exposed to a short pulse of (14)CO(2) under conditions in which double-labeled acetate was synthesized. Radioactive methyltetrahydrofolate monoglutamate, diglutamate, and triglutamates were isolated from extracts of the cells. The radioactivity was found to be exclusively in the five methyl position. The specific activities of the methyltetrahydrofolate derivatives were very high and were in accord with the proposal that methyltetrahydrofolates are the precursors of the methyl of acetate. A new method of separation of folates employing QAE-Sephadex chromatography and a linear gradient with triethylammonium bicarbonate is presented which completely resolves the common folate monoglutamates and, upon freeze-drying, yields salt-free preparations.  相似文献   

4.
Most heterotrophic bacteria assimilate CO2 in various carboxylation reactions during biosynthesis. In this study, assimilation of 14CO2 by heterotrophic bacteria was used for isotope labeling of active microorganisms in pure cultures and environmental samples. Labeled cells were visualized by microautoradiography (MAR) combined with fluorescence in situ hybridization (FISH) to obtain simultaneous information about activity and identity. Cultures of Escherichia coli and Pseudomonas putida assimilated sufficient 14CO2 during growth on various organic substrates to obtain positive MAR signals. The MAR signals were comparable with the traditional MAR approach based on uptake of 14C-labeled organic substrates. Experiments with E. coli showed that 14CO2 was assimilated during both fermentation and aerobic and anaerobic respiration. The new MAR approach, HetCO2-MAR, was evaluated by targeting metabolic active filamentous bacteria, including “Candidatus Microthrix parvicella” in activated sludge. “Ca. Microthrix parvicella” was able to take up oleic acid under anaerobic conditions, as shown by the traditional MAR approach with [14C]oleic acid. However, the new HetCO2-MAR approach indicated that “Ca. Microthrix parvicella,” did not significantly grow on oleic acid under anaerobic conditions with or without addition of NO2, whereas the addition of O2 or NO3 initiated growth, as indicated by detectable 14CO2 assimilation. This is a metabolic feature that has not been described previously for filamentous bacteria. Such information could not have been derived by using the traditional MAR procedure, whereas the new HetCO2-MAR approach differentiates better between substrate uptake and substrate metabolism that result in growth. The HetCO2-MAR results were supported by stable isotope analysis of 13C-labeled phospholipid fatty acids from activated sludge incubated under aerobic and anaerobic conditions in the presence of 13CO2. In conclusion, the novel HetCO2-MAR approach expands the possibility for studies of the ecophysiology of uncultivated microorganisms.  相似文献   

5.
6.
Cell extracts of Peptostreptococcus productus (strain Marburg) obtained from CO grown cells mediated the synthesis of acetate from CO plus CO2 at rates of 50 nmol/min × mg of cell protein. 14CO was specifically incorporated into C1 of acetate. No label exchange occurred between 14C1 of acetyl-CoA and CO, indicating that 14CO incorporation into acetate was by net synthesis rather than by an exchange reaction. In acetate synthesis from CO plus CO2 the latter substrate could be replaced to some extent by formate or methyl tetrahydrofolate as the methyl donor. The methyl group of methyl cobalamin was incorporated into acetate ony at very low activities. The cell extracts contained high levels of enzyme activities involved in acetate or cell carbon synthesis from CO2. The following enzymic activities were detected: CO: methyl viologen oxidoreductase, formate dehydrogenase, formyl tetrahydrofolate synthetase, methenyl tetrahydrofolate cyclohydrolase, methylene tetrahydrofolate dehydrogenase, methylene tetrahydrofolate reductase, phosphate acetyltransferase, acetate kinase, hydrogenase, NADPH: benzyl viologen oxidoreductase, and pyruvate synthase. Some kinetic and other properties were studied.  相似文献   

7.
The Gotland Deep, an anoxic basin, was investigated for its heterotrophic microflora as a station representative of the central Baltic Sea and as an example of a brackish water environment. One hundred twenty-three bacterial strains were isolated along the water column by use of four different cultivation procedures. High-resolution electrophoresis of the low-molecular-weight (LMW) RNA (5S rRNA and tRNA) was used for analysis of the taxonomic position of the strains. The banding pattern of the LMW RNA generated by the electrophoresis allowed a taxonomic grouping at the species level of the 123 strains into 24 different genotypes. This grouping was confirmed by use of long-range gels with a substantially better resolution than that of standard gels; i.e., about 60% more tRNA bands were obtained on the long-range gels, and the distance between the bands was increased by about two-thirds. The majority of the strains (76%) could be identified to the species level by comparison with LMW RNA profiles from reference strains stored in an electronic database. Eighty-seven percent of the strains could be assigned to the families Vibrionaceae, Enterobacteriaceae, and Pseudomonadaceae (rRNA group I). The most abundant species among the isolates were Shewanella putrefaciens (48%) and a new Pseudomonas species (24%). The remaining fraction of 28% of the isolates was split into 22 other genotypes. Thirteen of these genotypes were represented by single isolates. This study demonstrates the utility of LMW RNA profiling for a rapid assessment of genotypic diversity of heterotrophic isolates from natural environments.  相似文献   

8.
The 13C records in tree ring cellulose have been evaluated in terms of CO2 production rates on the basis of a two box model of atmosphere and ocean. We show that a linear relationship exists between the actual atmospheric excess, deltaM(t), and the actual production rate, P(t), for periods of exponential growth of the production rate. No further calibration data from other sources are needed. The results are certainly depending to some degree on the properties of the used model, but it is demonstrated that even much more complex models have essentially the same property as it has been used here. The analysis covers the perion 1800--1935, where world-wide parallel trends have been found in the tree records. The delta13C shift in atmospheric carbon due to the addition of carbon from the fossil and biospheric reservoir was -1.66% in 1935. The model analysis yields a total production of the order of 100 ppm = 212 . 10(9) tC. Roughly one half of it was produced during the last 25 years of the period. The contribution from the fossil source was 20% of the total. An open question is where the sinks are for those amounts of mobilized carbon.  相似文献   

9.
10.
The biological utilization of CO2 and H2 for the formation of short-chain fatty acids was studied by using a mixed culture of bacteria. Optimization of a medium was carried out in continuous culture to identify limiting factors which controlled growth and production of organic acids. The optimal pH for growth and acid production was 7.0 at 37°C; the maximal cell concentration obtained was 5.9 g of cells per liter (dry weight), and the maximal amount of volatile acids formed was 4.7 g/liter, with acetic acid as the predominant acid. With the optimized medium, it was found that the rate of transfer of hydrogen or carbon dioxide, or both, from gas to liquid was the limiting factor which controlled growth and production of acids.  相似文献   

11.
为了探讨超临界二氧化碳(supercritical carbon dioxide, SC-CO2)技术与提取物的分级分离在萃取芸香活性成分的应用价值,本研究采用SC-CO2和乙酸乙酯萃取芸香中植物蜡和活性成分,并调查粒径和CO2流量对提取产量的影响。在250 bar、40℃条件下提取,并使第一个分离器冷却到-10℃,可获得较好的提取效率。当粒径较小时,提取过程更快,即内部传质控制该过程。分级分离可选择性去除表皮植物蜡,约占由SC-CO2处理产生的总提取物的77.5%W/W。第二分离器中的获得的提取物中活性化合物可达86.3%W/W。随后采用气相色谱-质谱联用仪(gas chromatography-mass spectrometry, GC-MS)分析表明,乙酸乙酯提取物低于SC-CO2提取物的萃取效率,主要是由于提取物中含有大量的植物蜡。本研究为超临界二氧化碳技术在萃取芸香活性成分方面的提供技术参考。  相似文献   

12.
用高效液相色谱法在线检测刺五加超临界提取物中异嗪皮啶的含量, 采用ODS 色谱柱, 检测波长为345 nm, 流动相为乙腈/超纯水(v/v)=2/8, 异嗪皮啶加样回收率100.8%, RSD 为2.0%, 该方法简便, 结果准确可靠。  相似文献   

13.
Sixty-one strains of alkane-oxidizing bacteria were tested for their ability to oxidize N-(2-hexylamino-4-phenylimidazol-1-yl)-acetamide to imidazol-2-yl amino acids applicable for pharmaceutical purposes. After growth with n-alkane, 15 strains formed different imidazol-2-yl amino acids identified by chemical structure analysis (mass and nuclear magnetic resonance spectrometry). High yields of imidazol-2-yl amino acids were produced by the strains Gordonia rubropertincta SBUG 105, Gordonia terrae SBUG 253, Nocardia asteroides SBUG 175, Rhodococcus erythropolis SBUG 251, and Rhodococcus erythropolis SBUG 254. Biotransformation occurred via oxidation of the alkyl side chain and produced 1-acetylamino-4-phenylimidazol-2-yl-6-aminohexanoic acid and the butanoic acid derivative. In addition, the acetylamino group of these products and of the substrate was transformed to an amino group. The product pattern as well as the transformation pathway of N-(2-hexylamino-4-phenylimidazol-1-yl)-acetamide differed in the various strains used.  相似文献   

14.
Fecal suspensions from humans were incubated with 13CO2 and H2. The suspensions were from subjects who harbored 10(8) and 10(10) methanogens per g (dry weight) of feces, respectively, and from a subject who did not harbor methanogens. Quantitative nuclear magnetic resonance spectroscopy showed that acetate labeled in both the methyl and carboxyl groups was formed by suspensions from the subject without methanogens and the subject with the lower concentrations of methanogens. The amounts of labeled acetate formed were in agreement with the amounts expected based on measurements of H2 utilization. No labeled acetate was formed by suspensions from the subject with the higher concentrations of methanogens, and essentially all of the H2 used was accounted for by CH4 production. Suspensions from the subject with lower concentrations of methanogens produced both methane and acetate from H2 and CO2. The results indicate that reduction of CO2 to acetate may be a major pathway for microbial production of acetate in the human colon except when very high concentrations of methanogens (ca. 10(10) per g [dry weight] of feces) are present. Double-labeled acetate was also formed from H2 and 13CO2 by fecal suspensions from nonmethanogenic and moderately methanogenic rats.  相似文献   

15.
16.
Total number of bacteria, cellulolytic bacteria, and H2-utilizing microbial populations (methanogenic archaea, acetogenic and sulfate-reducing bacteria) were enumerated in fresh rumen samples from sheep, cattle, buffaloes, deer, llamas, and caecal samples from horses. Methanogens and sulfate reducers were found in all samples, whereas acetogens were not detected in some samples of each animal. Archaea methanogens were the largest H2-utilizing populations in all animals, and a correlation was observed between the numbers of methanogens and those of cellulolytic microorganisms. Higher counts of acetogens were found in horses and llamas (1 × 104 and 4 × 104 cells ml−1 respectively).  相似文献   

17.
Clostridium thermoaceticum ferments xylose, fructose, and glucose with acetate as the only product. In fermentations with mixtures of the sugars, xylose is first fermented, then fructose, and last, glucose. Fructose inhibits the fermentation of glucose, and this inhibition appears to be due to a repression of the synthesis of an enzyme needed for glucose utilization. Addition of metals to the culture medium increases the cell yield drastically from about 7 to 18 g per liter, and Y(glucose) values between 40 and 50 are obtained. According to the postulated pathways of the fermentation of glucose and synthesis of acetate from CO(2) by C. thermoaceticum, 3 mol of ATP are available as energy for growth. Thus a Y(adenosine 5'-triphosphate) of 13 to 16 is obtained. Because the normal Y(ATP) value is 10.5, this could mean that an additional source of ATP is available by an unknown mechanism. The addition of metals also increases the nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase activity, the overall reaction ((14)CO(2) --> acetate), and the incorporation of the methyl group of 5-methyltetrahydrofolate into acetate. These reactions are catalyzed very efficiently by cells harvested in early growth, whereas cells obtained at the end of a fermentation have very low formate dehydrogenase activity and capacity to incorporate CO(2) into acetate. The following enzymes involved in the synthesis of acetate from CO(2) and in the metabolism of pyruvate are present in extracts of C. thermoaceticum: 10-formyltetrahydrofolate synthetase, 5,10-methenyltetrahydrofolate cyclohydrolase, 5,10-methylenetetrahydrofolate dehydrogenase, 5,10-methylenetetrahydrofolate reductase, phosphate acetyltransferase, and acetate kinase. These enzymes are not or are very little affected by the addition of metals to the growth medium.The amount of corrinoids in cells from early growth is low, whereas it is high in cells harvested late in growth. The opposite is found for the activity of delta-aminolevulinate dehydratase, which is high at the beginning of growth and low at the end.  相似文献   

18.
Fourier transform 13C nuclear magnetic resonance spectra have been obtained of intact, fresh soybean ovules (Glycine max L. cv. Dare) harvested from pods subtended by a trifoliolate exposed to 13CO2 1 to 3 days earlier. The high resolution spectra are interpreted in terms of the labeled sugars and lipids in the ovule. Comparison of the spectra taken over the 3-day period permits qualitative estimates of sugar metabolism and rates of lipid synthesis. The spectra also contain information about the distribution of labels within the lipid chains. This information leads to a method of estimating the extent to which glucose degradation in the synthesizing soybean ovule is involved in the reactions of the phosphogluconate pathway.  相似文献   

19.
A model primitive gas containing a mixture of N2, CO and water vapor over a water pool (300 mL, 37 °C) was subjected to electric discharges. The discharge vessel (7 L in volume) was equipped with a CO2 absorber (The CO2 being formed during the discharge), thus simulating possible absorption of CO2 in the primitive ocean. The vessel also has a cold trap ( –15 °C), which protects the primary products against the further decomposition in the discharge phase by enabling these products to adhere to the trap. Since the partial pressures of CO and N2 decreased at rates of 1.5–1.7 cmHg day–1 and 0.1–0.2 cmHg day–1, respectively, the gases were added at regular intervals. The solution was analyzed at regular intervals for HCN, HCHO and urea, and maximum concentrations of about 50, 2, and 140 mM were observed. The discharge phase was continued for 6 months. In the solution, glycine (5.6% yield based on the carbon), glycylglycine (0.64%), orotic acid (0.004%) and small amounts of the other amino acids were found.  相似文献   

20.
The total dry mass of human erythrocytes was determined by both interference microscopy and x-ray microradiography. The determination of mass per unit area, and calculation of total dry mass per cell were simplified by changing the shape of the cells to spheres which were then flattened to discs of constant thickness when smeared on glass slides for measurement of fixed cells by interferometry, and to oblate spheroids when smeared on parlodion-coated slides for measurement of fixed cells by x-ray absorption. From x-ray measurements of 100 smeared and alcohol-fixed cells a mean dry mass per cell of 33.7 x 10-12 g was obtained. Interference measurements of 100 fresh cells suspended in isotonic saline gave a mean value of 32.4 x 10-12 g while interference measurement of 100 smeared and alcohol-fixed cells gave a mean value of 30.8 x 10-12 g. The first two values compare well with a mean corpuscular hemoglobin of 31.2 x 10-12 g, obtained from determinations of erythrocyte count and hemoglobin, since 95 per cent of the dry mass of the cell is hemoglobin. The difference in interference values between the fixed and fresh cells is possibly due to a difference between the specific refractive increment of alcohol-denatured hemoglobin and that of the unmodified substance. The value for the latter was used since that of the former is unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号