首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the role of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in neuronal excitability and synaptic transmission is still unclear, it is postulated that the HCN channels may be involved in seizure activity. The aim of this study was to assess the effects of ivabradine (an HCN channel inhibitor) on the protective action of four classical antiepileptic drugs (carbamazepine, phenobarbital, phenytoin and valproate) against maximal electroshock-induced seizures in mice. Tonic seizures (maximal electroconvulsions) were evoked in adult male albino Swiss mice by an electric current (sine-wave, 25 mA, 0.2 s stimulus duration) delivered via auricular electrodes. Acute adverse-effect profiles of the combinations of ivabradine with classical antiepileptic drugs were measured in mice along with total brain antiepileptic drug concentrations. Results indicate that ivabradine (10 mg/kg, i.p.) significantly enhanced the anticonvulsant activity of valproate and considerably reduced that of phenytoin in the mouse maximal electroshock-induced seizure model. Ivabradine (10 mg/kg) had no impact on the anticonvulsant potency of carbamazepine and phenobarbital in the maximal electroshock-induced seizure test in mice. Ivabradine (10 mg/kg) significantly diminished total brain concentration of phenytoin and had no effect on total brain valproate concentration in mice. In conclusion, the enhanced anticonvulsant action of valproate by ivabradine in the mouse maximal electroshock-induced seizure model was pharmacodynamic in nature. A special attention is required when combining ivabradine with phenytoin due to a pharmacokinetic interaction and reduction of the anticonvulsant action of phenytoin in mice. The combinations of ivabradine with carbamazepine and phenobarbital were neutral from a preclinical viewpoint.  相似文献   

2.
In the present communication, the dynamic release of amino acid (AA) transmitters induced by valproate (VPA) in pentylenetetrazol (PTZ)-kindled freely moving rats hippocampus has been determined. The results showed that glutamate and aspartate release were significantly increased during the seizure/interical periods, and markedly decreased after the application of 200mg/kg valproate. In contrast, gamma-aminobutyric acid and taurine release were markedly decreased during interical period, and significantly increased during the seizure period. Glycine release was similar to the case of glutamate and aspartate release. The increase of either gamma-aminobutyric acid/taurine or glycine releases during the seizure period could be inhibited by the application of valproate likewise. The results indicate that: (a) the imbalance between excitatory and inhibitory neurotransmitters is really involved in epilepsy; (b) the modulation of valproate on the major amino acid neurotransmitters certainly plays one of important roles on antiepilepsy efficacy; (c) the pentylenetetrazol-kindled epileptogenesis model is a fit one for approaching the mechanisms of valproate modulating amino acid neurotransmitters.  相似文献   

3.
We have previously reported that chronic administration of valproate in developing mice decreased brain aspartic and glutamic acid levels and increased the brain taurine content. The direction of the valproate-induced changes in the cerebral levels of these neurotransmitter amino acids - excitatory in the case of aspartate and glutamate, inhibitory in the case of taurine - appeared relevant to the mechanism of its anticonvulsant action. Since the neuropathology of hypoxia-ischemia also appears to be mediated by release of glutamate/aspartate at the synapse, the valproate-induced reduction of the levels of these neuroexcitatory/neurotoxic amino acids suggested that valproate might increase the tolerance of young mice to anoxia. A doubling of the length of survival of the intact animal in an atmosphere of pure nitrogen gas and a three-fold increase in the duration of respiratory activity (gasping) of the isolated head after chronic administration of valproate support the speculation.  相似文献   

4.
1-Propylbutylphosphinic acid 2, (1-propylbutyl)methylphosphinic acid 3 and 1-propylbutylphosphonic acid 4 have been synthesized as bioisosteres of the corresponding carboxylic acid valproate 1, which is a potent anticonvulsant. The novel phosphinic and phosphonic acids were tested for their anticonvulsant activity and were found to be inactive.  相似文献   

5.
The branched chain fatty acid, valproate, has a number of distinct pharmacological effects on the central nervous system. In experimental animals it showed clear anticonvulsant activity, an observation which led to its major clinical use as an antiepileptic agent, especially in petit mal seizures. More recently, valproate has shown its usefulness in treating mood disorders and migraine headaches. The basis for its clinical efficacy might be related to its ability to enhance central GABAergic neurotransmission or perhaps to its inhibition of Na+ channels. Whether each of the distinct therapeutic effects of valproate has the same molecular basis is not known.  相似文献   

6.
The study was centered on the changes in the amino acid content of nerve endings (synaptosomes) induced by drugs that alter the metabolism of glutamate or gamma-aminobutyric acid (GABA), and that possess convulsant or anticonvulsant properties. The onset of seizures induced by various convulsant agents was associated with a decreased content of GABA and an increased content of glutamate in synaptosomes. The concurrent administration of pyridoxine prevented both the biochemical changes and the convulsions. The administration of gabaculine to mice resulted in large increases in the GABA content of synaptosomes that were counteracted by decreases in glutamate, glutamine, and aspartate levels such that the total content of the four amino acids remained unchanged. The administration of aminooxyacetic acid (0.91 mmol/kg) resulted initially in seizure activity, but subsequently in an anticonvulsant action. No simple relationship existed between the excitable state of the brain induced by aminooxyacetic acid and the changes in the synaptosomal levels of any of the amino acid transmitters. A hypothesis was, however, formulated that explained the convulsant-cum-anticonvulsant action of aminooxyacetic acid on the basis of compartmentation of GABA within the nerve endings.  相似文献   

7.
The anticonvulsant effect of either phenobarbital or dilantin was potentiated by exogenous glycine in DBA/2 audiogenic seizure mice and in 3-mercaptopropionic acid-induced seizures. In seizures caused by pentylenetetrazol, glycine potentiated the anticonvulsant effect of phenobarbital only slightly; in combination with dilantin, which was ineffective by itself, it did not have an effect. Valproic acid, in large doses, prevented 3-mercaptopropionic acid-induced seizures; glycine did not potentiate its effect. Glycine thus potentiates anticonvulsant effects, but only of some drugs and only in some of the seizure models. This suggests that the mechanism of the anticonvulsant effect of glycine is similar to that of some of the anticonvulsant drugs such as dilantin and different from others, and that this mechanism is not effective in all seizure models.  相似文献   

8.

Objective

The mammalian target of rapamycin (mTOR) pathway integrates signals from different nutrient sources, including amino acids and glucose. Compounds that inhibit mTOR kinase activity such as rapamycin and everolimus can suppress seizures in some chronic animal models and in patients with tuberous sclerosis. However, it is not known whether mTOR inhibitors exert acute anticonvulsant effects in addition to their longer term antiepileptogenic effects. To gain insights into how rapamycin suppresses seizures, we investigated the anticonvulsant activity of rapamycin using acute seizure tests in mice.

Methods

Following intraperitoneal injection of rapamycin, normal four-week-old male NIH Swiss mice were evaluated for susceptibility to a battery of acute seizure tests similar to those currently used to screen potential therapeutics by the US NIH Anticonvulsant Screening Program. To assess the short term effects of rapamycin, mice were seizure tested in ≤6 hours of a single dose of rapamycin, and for longer term effects of rapamycin, mice were tested after 3 or more daily doses of rapamycin.

Results

The only seizure test where short-term rapamycin treatment protected mice was against tonic hindlimb extension in the MES threshold test, though this protection waned with longer rapamycin treatment. Longer term rapamycin treatment protected against kainic acid-induced seizure activity, but only at late times after seizure onset. Rapamycin was not protective in the 6 Hz or PTZ seizure tests after short or longer rapamycin treatment times. In contrast to other metabolism-based therapies that protect in acute seizure tests, rapamycin has limited acute anticonvulsant effects in normal mice.

Significance

The efficacy of rapamycin as an acute anticonvulsant agent may be limited. Furthermore, the combined pattern of acute seizure test results places rapamycin in a third category distinct from both fasting and the ketogenic diet, and which is more similar to drugs acting on sodium channels.  相似文献   

9.
Ten analogues of valproic acid (substituted butyric, pentanoic and hexanoic acids) were tested for anticonvulsant activity against audiogenic seizures in DBA/2 mice. There is a consistent correlation between the structure of these branched-chain fatty acids and their anticonvulsant potency, the larger molecules being the more active. There is also a strong correlation between the anticonvulsant potency of these compounds and their ability to reduce cerebral aspartate levels. Cerebral GABA levels are elevated by most, but not all, of the actively anticonvulsant valproate analogues.  相似文献   

10.
The effects of several metabotropic receptor (mGluR) ligands on baseline hippocampal glutamate and GABA overflow in conscious rats and the modulation of limbic seizure activity by these ligands were investigated. Intrahippocampal mGluR group I agonist perfusion via a microdialysis probe [1 mm (R,S)-3,5-dihydroxyphenylglycine] induced seizures and concomitant augmentations in amino acid dialysate levels. The mGlu1a receptor antagonist LY367385 (1 mm) decreased baseline glutamate but not GABA concentrations, suggesting that mGlu1a receptors, which regulate hippocampal glutamate levels, are tonically activated by endogenous glutamate. This decrease in glutamate may contribute to the reported LY367385-mediated anticonvulsant effect. The mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (50 mg/kg) also clearly abolished pilocarpine-induced seizures. Agonist-mediated actions at mGlu2/3 receptors by LY379268 (100 microm, 10 mg/kg intraperitoneally) decreased basal hippocampal GABA but not glutamate levels. This may partly explain the increased excitation following systemic LY379268 administration and the lack of complete anticonvulsant protection within our epilepsy model with the mGlu2/3 receptor agonist. Group II selective mGluR receptor blockade with LY341495 (1-10 microm) did not alter the rats' behaviour or hippocampal amino acid levels. These data provide a neurochemical basis for the full anticonvulsant effects of mGlu1a and mGlu5 antagonists and the partial effects observed with mGlu2/3 agonists in vivo.  相似文献   

11.
Amino acid concentrations have been determined in rat brain regions (cortex, striatum, cerebellum, and hippocampus) by HPLC after administration of acute anticonvulsant doses of sodium valproate (400 mg/kg, i.p.) and -vinyl-GABA (1g/kg, i.p.). After valproate administration the GABA level increases only in the cortex; aspartic acid concentration decreases in the cortex and hippocampus, and glutamic acid decreases in the hippocampus and striatum and increases in the cortex and cerebellum. There are no changes in the concentrations of glutamine, taurine, glycine, serine, and alanine following valproate administration. Only the GABA level increases in all the regions after -vinyl-GABA administration. Cortical analyses 2, 4 and 10 minutes after pulse labeling with 2-[14C]glucose, i.v., shown no change in the rate of cortical glucose utilization in the valproate treated group. The rate of labeling of glutamic acid is also unchanged, but the rate of labeling of GABA is reduced following valproate administration. After -vinyl-GABA administration there is no change in the rate of labeling of GABA. These biochemical findings can be interpreted in terms of a primary anticonvulsant action of valproate on membrane receptors with secondary effects on the metabolism of amino acid neurotransmitters. This contrasts with the primary action of -vinyl-GABA on GABA-transaminase activity.This paper is dedicated to Dr. Derek Richter on his sevety-fifth birthday  相似文献   

12.
Data on convulsant and anticonvulsant action of drugs influencing excitatory amino acid receptors in developing rats are reviewed. Agonists of NMDA type of receptors NMDA and homocysteic acid, elicited an age-related seizure pattern--flexion, emprosthotonic seizures--in the first three postnatal weeks of rats. Generalized clonic-tonic seizures appeared only after a longer latency. Kainic acid administration resulted in epileptic automatisms and later in minimal, clonic seizures followed by generalized tonic-clonic seizures. A decrease of sensitivity to convulsant action with age is a general rule for all agonists tested. Different anticonvulsant action of NMDA and nonNMDA antagonists was demonstrated in a model of generalized tonic-clonic seizures induced by pentetrazol, whereas their action against epileptic afterdischarges elicited by electrical stimulation of cerebral cortex was similar. Again, higher efficacy in younger animals was a rule. As far as metabotropic glutamate receptors are concerned, agonists of groups II and III were shown to protect against convulsant action of homocysteic acid in immature rats and an antagonist of group I receptors MPEP suppressed the tonic phase of generalized tonic-clonic seizures induced by pentetrazol more efficiently in younger than in more mature rat pups. Unfortunately, a higher sensitivity to the action of antagonists of ionotropic glutamate receptors was demonstrated also for unwanted side effects (motor functions were compromized). In contrast, glutamate metabotropic receptor antagonist MPEP did not exhibit any serious side effects in rat pups.  相似文献   

13.
Noradrenaline exerts inhibitory effects on seizure susceptibility. Subtype selective agonists and antagonists were used to identify the anticonvulsant hippocampal adrenoreceptors. Intrahippocampal dialysis was used for administration of all compounds, including pilocarpine for limbic seizure induction, and as the neurotransmitter sampling tool. The noradrenaline reuptake inhibitor maprotiline mediated anticonvulsant effects, associated with dose-dependent increases in extracellular hippocampal noradrenaline, dopamine and GABA levels. At high concentrations, maprotiline produced proconvulsant effects associated with high levels of noradrenaline, dopamine and glutamate. Maprotiline's anticonvulsant effect was blocked by administration of either a selective α(2) - and β(2) -antagonist. α(2) -Antagonist administration with maprotiline was associated with a further increase in noradrenaline and dopamine from maprotiline alone; whereas β(2) -antagonist administered with maprotiline inhibited the dopamine increases produced by maprotiline. α(1A) -Antagonism blocked the GABA-ergic but not the anticonvulsive effect of maprotiline. These results were confirmed as combined but not separate α(2) - and β(2) -adrenoreceptor stimulation, using selective agonists, inhibited limbic seizures. Interestingly, α(1A) -receptor stimulation and α(1D) -antagonism alone also inhibited seizures associated with respectively significant hippocampal GABA increases and glutamate decreases. The main findings of this study are that (i) increased hippocampal noradrenergic neurotransmission inhibits limbic seizures via combined α(2) - and β(2) -receptor activation and (ii) α(1A) - and α(1D) -adrenoreceptors mediate opposite effects on hippocampal excitability.  相似文献   

14.
Antenatal use of anticonvulsant valproic acid can result in a well-recognized cluster of facial dysmorphism, congenital anomalies and neurodevelopmental retardation. In this report, we describe a case with typical features of fetal valproate syndrome (FVS). A 26-year-old female with epilepsy controlled on sodium valproate 800 mg/day since 3 years, gave birth to a male child with characteristic features of FVS. She also had 3 spontaneous first-trimester abortions during those 3 years. Sodium valproate, a widely used anticonvulsant and mood regulator, is a well-recognized teratogen that can result in facial dysmorphism, craniosynostosis, neural tube defects, and neurodevelopmental retardation. Therefore, we strongly recommend avoidance of valproic acid and supplementation of folic acid during pregnancy.  相似文献   

15.
Effects of different classes of antiepileptic drugs on brain-stem pathways   总被引:3,自引:0,他引:3  
Antiepileptic drugs probably act by preventing the spread of the abnormal paroxysmal activity from the epileptogenic focus to surrounding normal neurons. An investigation of the mechanism of action of established anticonvulsant drugs on normal neuronal systems may therefore offer useful insights into the pathogenesis of the seizure disorders that these drugs serve to control. Antiabsence drugs (ethosuximide, valproate) depress reticular inhibitory pathways. Drugs effective against generalized tonic-clonic seizures (phenytoin, carbamazepine, valproate) depress reticular excitatory pathways. Drugs that are also effective against trigeminal neuralgia (phenytoin, carbamazepine) also depress afferent excitation and facilitate segmental inhibition in the trigeminal complex. Drugs that depress afferent excitation and facilitate segmental inhibition but do not depress the reticular system (baclofen) are effective against trigeminal neuralgia but do not have clinical antiepileptic properties. These observations indicate that the ability to depress the reticular core is an important characteristic of antiepileptic drugs, and suggest that the reticular core is involved in the spread and generalization of clinical seizures.  相似文献   

16.
4-Aminopyridine is a powerful convulsant that induces the release of neurotransmitters, including glutamate. We report the effect of intrahippocampal administration of 4-aminopyridine at six different concentrations through microdialysis probes on EEG activity and on concentrations of extracellular amino acids and correlate this effect with histological changes in the hippocampus. 4-Aminopyridine induced in a concentration-dependent manner intense and frequent epileptic discharges in both the hippocampus and the cerebral cortex. The three highest concentrations used induced also a dose-dependent enhancement of extracellular glutamate, aspartate, and GABA levels and profound hippocampal damage. Neurodegenerative changes occurred in CA1, CA3, and CA4 subfields, whereas CA2 was spared. In contrast, microdialysis administration of a depolarizing K+ concentration and of tetraethylammonium resulted in increased amino acid levels but no epileptic activity and no or moderate neuronal damage. These results suggest that seizure activity induced by 4-aminopyridine is due to a combined action of excitatory amino acid release and direct stimulation of neuronal firing, whereas neuronal death is related to the increased glutamate release but is independent of seizure activity. In addition, it is concluded that the glutamate release-inducing effect of 4-aminopyridine results in excitotoxicity because it occurs at the level of nerve endings, thus permitting the interaction of glutamate with its postsynaptic receptors, which is probably not the case after K+ depolarization.  相似文献   

17.
A new gamma-aminobutyric acid derivative, N-phthaloyl GABA (P-GABA), was synthesised and its anticonvulsant activity was tested and compared with sodium valproate for efficacy against experimentally induced convulsions in mice. At a dose of 80 mg/kg, P-GABA rendered more protection than sodium valproate. ED50 of P-GABA and sodium valproate against bicuculline-induced convulsion was 96 and 301 mg/kg respectively in mice.  相似文献   

18.
To assess whether the anesthetic and anticonvulsant activities of alphaxalone display diurnal variability, groups of Syrian hamsters were studied at 4 h-intervals during a 24 h-cycle. The administration of alphaxalone (5 mg/kg) brought about a greater anesthetic activity (loss of righting reflex) at the middle of the photophase. When assessed in hamsters injected with 3-mercaptopropionic acid, alphaxalone displayed maximal anticonvulsant activity at the 4th of darkness. Evaluation of the time needed for first convulsive response indicated that alphaxalone did not show time-dependent effects, while in control hamsters seizure threshold was low during daylight and attained maximal values at night, showing a peak in seizure threshold at light-dark transition.  相似文献   

19.
A al-Hader  M Hasan  Z Hasan 《Life sciences》1992,51(10):779-786
The anticonvulsant effects of propofol, thiopental, and diazepam, administered intravenously, on pentylenetetrazol (PTZ) seizure threshold were studied and compared in the rabbit. The PTZ seizure threshold determined in various rabbit groups during the control phase of conducted experiments, was found to be in the range of 10.1 +/- 2.0 to 13.5 +/- 3.7 mg/kg. Intravenous administration of comparable doses of propofol, thiopental, and diazepam resulted in marked and significant increases in PTZ seizure threshold. At all administered doses (1.25-10.0 mg/kg), propofol was found to be more effective than thiopental in increasing the PTZ threshold dose. However, the anticonvulsant effects of diazepam were more marked than those of propofol, except at a dose of 10 mg/kg where both agents exhibited equipotent activities. These data demonstrate that propofol enjoys a considerable degree of anticonvulsant activity in the rabbit. This anticonvulsant action is greater than that of thiopental at doses ranging from 2.5 to 10 mg/kg and equipotent with diazepam at the 10 mg/kg dose.  相似文献   

20.
BACKGROUND: Valproic acid (VPA) is used to treat epilepsy and bipolar disorders, as well as for migraine prophylaxis. However, its clinical use is limited by two life-threatening side effects: hepatotoxicity and teratogenicity. To develop a more potent and safer second-generation VPA drug, the urea derivatives of four VPA analogs (2-ethyl-3-methylpentanoyl urea, 2-ethylhexanoyl urea, 2-ethyl-4-methylpentanoyl urea, and 2-methylbutanoyl urea) were synthesized. METHODS: Four CNS-active analogs of a VPA urea derivative testedthe anticonvulsant activity in the maximal electroshock seizure test (MES) and subcutaneous metrazol seizure threshold test (scMet). Teratogenic effects of these compounds were evaluated in NMRI mice susceptible to VPA-induced teratogenicity by comparison with VPA. RESULTS: All four VPA analogs showed superior anticonvulsant activity over VPA. Compared with VPA, which induced neural tube defects (NTDs) in fetuses at 1.8 and 3.6 mmol/kg, the analog derivatives induced no NTDs at any concentration up to 4.8 mmol/kg (except for a single abnormality at 3.6 mmol/kg with 2-ethyl-3-methylpentanoyl urea). Skeletal examination also revealed that the acylurea derivatives induced vertebral and rib abnormalities in fetuses markedly less frequently than VPA. Our results confirmed that the analogue derivatives are significantly less teratogenic than VPA in NMRI mice. CONCLUSIONS: The CNS-active VPA analogs containing a urea moiety, which have better anticonvulsant potency and lack teratogenicity, are good potential candidates as second-generation VPA antiepileptic drugs. Birth Defects Res (Part B) 86:394–401, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号