首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To explore the mitochondrial genes of the Cruciferae family, the mitochondrial genome of Raphanus sativus (sat) was sequenced and annotated. The circular mitochondrial genome of sat is 239,723 bp and includes 33 protein-coding genes, three rRNA genes and 17 tRNA genes. The mitochondrial genome also contains a pair of large repeat sequences 5.9 kb in length, which may mediate genome reorga-nization into two sub-genomic circles, with predicted sizes of 124.8 kb and 115.0 kb, respectively. Furthermore, gene evolution of mitochondrial genomes within the Cruciferae family was analyzed using sat mitochondrial type (mitotype), together with six other re-ported mitotypes. The cruciferous mitochondrial genomes have maintained almost the same set of functional genes. Compared with Cycas taitungensis (a representative gymnosperm), the mitochondrial genomes of the Cruciferae have lost nine protein-coding genes and seven mitochondrial-like tRNA genes, but acquired six chloroplast-like tRNAs. Among the Cruciferae, to maintain the same set of genes that are necessary for mitochondrial function, the exons of the genes have changed at the lowest rates, as indicated by the numbers of single nucleotide polymorphisms. The open reading frames (ORFs) of unknown function in the cruciferous genomes are not conserved. Evolutionary events, such as mutations, genome reorganizations and sequence insertions or deletions (indels), have resulted in the non- conserved ORFs in the cruciferous mitochondrial genomes, which is becoming significantly different among mitotypes. This work represents the first phylogenic explanation of the evolution of genes of known function in the Cruciferae family. It revealed significant variation in ORFs and the causes of such variation.  相似文献   

2.
The mitochondrial organelle is crucial to the energy metabolism of the eukaryotic cell. Defects in mitochondrial function lie at the core of a wide range of disorders, including both rare primary mitochondrial disorders and more common conditions such as Parkinson's disease and diabetes. Inherited defects in mitochondrial function can be found in both the nuclear genome and the mitochondrial genome, with the latter creating unique challenges in the treatment and understanding of disease passed on through the mitochondrial genome. In this review, we will describe the limited treatment regimens currently used to alleviate primary mitochondrial disorders, as well as the potential for emerging technologies (in particular, those involving direct manipulation of the mitochondrial genome) to more decisively treat this class of disease. We will also emphasize the critical parallels between primary mitochondrial disorders and more common ailments such as cancer and diabetes.  相似文献   

3.
This is the first de novo assembly and annotation of a complete mitochondrial genome in the Ericales order from the American cranberry (Vaccinium macrocarpon Ait.). Moreover, only four complete Asterid mitochondrial genomes have been made publicly available. The cranberry mitochondrial genome was assembled and reconstructed from whole genome 454 Roche GS-FLX and Illumina shotgun sequences. Compared with other Asterids, the reconstruction of the genome revealed an average size mitochondrion (459,678 nt) with relatively little repetitive sequences and DNA of plastid origin. The complete mitochondrial genome of cranberry was annotated obtaining a total of 34 genes classified based on their putative function, plus three ribosomal RNAs, and 17 transfer RNAs. Maternal organellar cranberry inheritance was inferred by analyzing gene variation in the cranberry mitochondria and plastid genomes. The annotation of cranberry mitochondrial genome revealed the presence of two copies of tRNA-Sec and a selenocysteine insertion sequence (SECIS) element which were lost in plants during evolution. This is the first report of a land plant possessing selenocysteine insertion machinery at the sequence level.  相似文献   

4.
Determining mitochondrial genomes is important for elucidating vital activities of seed plants. Mitochondrial genomes are specific to each plant species because of their variable size, complex structures and patterns of gene losses and gains during evolution. This complexity has made research on the soybean mitochondrial genome difficult compared with its nuclear and chloroplast genomes. The present study helps to solve a 30-year mystery regarding the most complex mitochondrial genome structure, showing that pairwise rearrangements among the many large repeats may produce an enriched molecular pool of 760 circles in seed plants. The soybean mitochondrial genome harbors 58 genes of known function in addition to 52 predicted open reading frames of unknown function. The genome contains sequences of multiple identifiable origins, including 6.8 kb and 7.1 kb DNA fragments that have been transferred from the nuclear and chloroplast genomes, respectively, and some horizontal DNA transfers. The soybean mitochondrial genome has lost 16 genes, including nine protein-coding genes and seven tRNA genes; however, it has acquired five chloroplast-derived genes during evolution. Four tRNA genes, common among the three genomes, are derived from the chloroplast. Sizeable DNA transfers to the nucleus, with pericentromeric regions as hotspots, are observed, including DNA transfers of 125.0 kb and 151.6 kb identified unambiguously from the soybean mitochondrial and chloroplast genomes, respectively. The soybean nuclear genome has acquired five genes from its mitochondrial genome. These results provide biological insights into the mitochondrial genome of seed plants, and are especially helpful for deciphering vital activities in soybean.  相似文献   

5.
The complete nucleotide sequence (501,020 bp) of the mitochondrial genome from cytoplasmic male-sterile (CMS) sugar beet was determined. This enabled us to compare the sequence with that previously published for the mitochondrial genome of normal, male-fertile sugar beet. The comparison revealed that the two genomes have the same complement of genes of known function. The rRNA and tRNA genes encoded in the CMS mitochondrial genome share 100% sequence identity with their respective counterparts in the normal genome. We found a total of 24 single nucleotide substitutions in 11 protein genes encoded by the CMS mitochondrial genome. However, none of these seems to be responsible for male sterility. In addition, several other ORFs were found to be actively transcribed in sugar beet mitochondria. Among these, Norf246 was observed to be present in the normal mitochondrial genome but absent from the CMS genome. However, it seems unlikely that the loss of Norf246 is causally related to the expression of CMS, because previous studies on mitochondrial translation products failed to detect the product of this ORF. Conversely, the CMS genome contains four transcribed ORFs (Satp6presequence, Scox2-2 , Sorf324 and Sorf119) which are missing from the normal genome. These ORFs, which are potential candidates for CMS genes, were shown to be generated by mitochondrial genome rearrangements.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by R. Hagemann  相似文献   

6.
Penile cancer is a rare neoplasm that seems to be linked to socio-economic differences. Mitochondrial genome alterations are common in many tumors types and are reported as regulating oxidative metabolism and impacting tumorigenesis. In this study, we evaluate for the first time the mitochondrial genome in penile carcinoma (PeCa), aiming to evaluate heteroplasmy, mitochondrial DNA (mtDNA) mutational load and mtDNA content in Penile tumors. Using next generation sequencing (NGS), we sequenced the mitochondrial genome of 13 penile tumors and 12 non-neoplastic tissue samples, which allowed us to identify mtDNA variants and heteroplasmy. We further evaluated variant’s pathogenicity using Mutpred predictive software and calculated mtDNA content using quantitative PCR. Mitochondrial genome sequencing revealed an increase number of non-synonymous variants in the tumor tissue, along with higher frequency of heteroplasmy and mtDNA depletion in penile tumors, suggesting an increased mitochondrial instability in penile tumors. We also described a list of mitochondrial variants found in penile tumor and normal tissue, including five novel variants found in the tumoral tissue. Our results showed an increased mitochondrial genome instability in penile tumors. We also suggest that mitochondrial DNA copy number (mtDNAcn) and mtDNA variants may act together to imbalance mitochondrial function in PeCa. The better understanding of mitochondrial biology can bring new insights on mechanisms and open a new field for therapy in PeCa.  相似文献   

7.
We have developed a long-extension-PCR strategy which amplifies approximately half of the mitochondrial genome (6.3 kb) of Caenorhabditis elegans using an individual worm as target. We analyzed three strains over their life span to assess the number of detectable deletions in the mitochondrial genome. Two of these strains are wild-type for life span while the third is mutant in the age-1 gene, approximately doubling its maximum life span. At the mean life span in wild-type strains, there was a significant difference between the frequency of deletions detected in the mitochondrial genome compared with the mean number of deletions in young animals. In addition, deletions in the mitochondrial genome occur at a significantly lower rate in age-1 mutants as compared with wild type. We cloned and identified the breakpoints of two deletions and found that one of the deletions had a direct repeat of 8 bp at the breakpoint. This is the largest single study (over 900 individual animals) characterizing the frequency of deletions in the mitochondrial genome as a function of age yet carried out.  相似文献   

8.
Mouse models of mitochondrial disease, oxidative stress, and senescence.   总被引:5,自引:0,他引:5  
During the course of normal respiration, reactive oxygen species are produced which are particularly detrimental to mitochondrial function. This is shown by recent studies with a mouse that lacks the mitochondrial form of superoxide dismutase (Sod2). Tissues that are heavily dependent on mitochondrial function such as the brain and heart are most severely affected in the Sod2 mutant mouse. Recent work with a mouse mutant for the heart/muscle specific isoform of the mitochondrial adenine nuclear translocator (Ant1) demonstrates a potential link between mitochondrial oxidative stress and mitochondrial DNA mutations. These mutations can be detected by Long-extension PCR, a method for detecting a wide variety of mutations of the mitochondrial genome. Such mutations have also been observed in the mitochondrial genome with senescence regardless of the mean or maximal lifespan of the organism being studied. Mutations have been detected with age in Caenorhabditis elegans, mice, chimpanzees, and humans. This implies that a causal relationship may exist between mitochondrial reactive oxygen species production, and the senescence specific occurrence of mitochondrial DNA mutations.  相似文献   

9.
《BBA》2022,1863(5):148554
Mitochondria is a unique cellular organelle involved in multiple cellular processes and is critical for maintaining cellular homeostasis. This semi-autonomous organelle contains its circular genome – mtDNA (mitochondrial DNA), that undergoes continuous cycles of replication and repair to maintain the mitochondrial genome integrity. The majority of the mitochondrial genes, including mitochondrial replisome and repair genes, are nuclear-encoded. Although the repair machinery of mitochondria is quite efficient, the mitochondrial genome is highly susceptible to oxidative damage and other types of exogenous and endogenous agent-induced DNA damage, due to the absence of protective histones and their proximity to the main ROS production sites. Mutations in replication and repair genes of mitochondria can result in mtDNA depletion and deletions subsequently leading to mitochondrial genome instability. The combined action of mutations and deletions can result in compromised mitochondrial genome maintenance and lead to various mitochondrial disorders. Here, we review the mechanism of mitochondrial DNA replication and repair process, key proteins involved, and their altered function in mitochondrial disorders. The focus of this review will be on the key genes of mitochondrial DNA replication and repair machinery and the clinical phenotypes associated with mutations in these genes.  相似文献   

10.
Mitochondrial involvement in amyotrophic lateral sclerosis   总被引:8,自引:0,他引:8  
The causes of motor neuron death in amyotrophic lateral sclerosis (ALS) are so far unknown. The involvement of mitochondria in the disease was initially suggested by ultrastructural studies. More recently these observations have been supported by studies of mitochondrial function in ALS. Alterations in the activity of complexes which make up the mitochondrial electron transport chain have been recorded as well as mutations in the mitochondrial genome. The calcium buffering function of the mitochondria may also be affected in the disease. This review will discuss how mitochondrial dysfunction could be of relevance in ALS and the evidence that an alteration of mitochondrial function is a feature of the disease. The way in which the involvement of mitochondria fits with other aetiological hypotheses for ALS will also be discussed.  相似文献   

11.
Sequence and comparative analysis of the maize NB mitochondrial genome   总被引:21,自引:0,他引:21       下载免费PDF全文
The NB mitochondrial genome found in most fertile varieties of commercial maize (Zea mays subsp. mays) was sequenced. The 569,630-bp genome maps as a circle containing 58 identified genes encoding 33 known proteins, 3 ribosomal RNAs, and 21 tRNAs that recognize 14 amino acids. Among the 22 group II introns identified, 7 are trans-spliced. There are 121 open reading frames (ORFs) of at least 300 bp, only 3 of which exist in the mitochondrial genome of rice (Oryza sativa). In total, the identified mitochondrial genes, pseudogenes, ORFs, and cis-spliced introns extend over 127,555 bp (22.39%) of the genome. Integrated plastid DNA accounts for an additional 25,281 bp (4.44%) of the mitochondrial DNA, and phylogenetic analyses raise the possibility that copy correction with DNA from the plastid is an ongoing process. Although the genome contains six pairs of large repeats that cover 17.35% of the genome, small repeats (20-500 bp) account for only 5.59%, and transposable element sequences are extremely rare. MultiPip alignments show that maize mitochondrial DNA has little sequence similarity with other plant mitochondrial genomes, including that of rice, outside of the known functional genes. After eliminating genes, introns, ORFs, and plastid-derived DNA, nearly three-fourths of the maize NB mitochondrial genome is still of unknown origin and function.  相似文献   

12.
Human umbilical vein endothelial cells (HUVECs) are an endothelial model of replicative senescence. Oxidative stress, possibly due to dysfunctional mitochondria, is believed to play a key role in replicative senescence and atherosclerosis, an age-related vascular disease. In this study, we determined the effect of cell division on genomic instability, mitochondrial function, and redox status in HUVECs that were able to replicate for approximately 60 cumulative population doublings (CPD). After 20 CPD, the nuclear genome deteriorated and the protein content of the cell population increased. This indicated an increase in cell size, which was accompanied by an increase in oxygen consumption, ATP production, and mitochondrial genome copy number and approximately 10% increase in mitochondrial mass. The antioxidant capacity increased, as seen by an increase in reduced glutathione, glutathione peroxidase, GSSG reductase, and glucose-6-phosphate dehydrogenase. However, by CPD 52, the latter two enzymes decreased, as well as the ratio of mitochondrial-to-nuclear genome copies, the mitochondrial mass, and the oxygen consumption per milligram of protein. Our results signify that HUVECs maintain a highly reducing (GSH) environment as they replicate despite genomic instability and loss of mitochondrial function.  相似文献   

13.
All nucleated mammalian cells contain mitochondrial DNA, a small (approximately 15-17 kb) circular genome found in the matrix. This molecule is present in multiple copies, with numbers routinely exceeding 1000 per cell. Many pathogenic mutations of this genome have been reported, with the vast majority being highly recessive. A mismatch repair activity has been recently described in mitochondria that shows no strand bias for correcting point mutations. What could be the physiological function of such an activity? Mammalian mtDNA is remarkable in being a patchwork of many short repeat sequences. With reference to several recent publications, we hypothesise that the function of this activity is to preserve the mitochondrial genome by repairing short loop out sequences that would otherwise be lost as mitochondrial DNA polymerase gamma replicates the mitochondrial genome.  相似文献   

14.
15.
Although the massive sequencing of mitochondrial DNA from various organisms, together with studies of a different nature, has contributed enormously to the knowledge of the organization and function of this cytoplasmic genome, many issues, mainly the relationships with the nuclear genome, remain unsolved. This review critically evaluates the most recent advances in research on the evolution of the mitochondrial DNA from a qualitative and quantitative point of view, underlining the multiplicity of structures and genetic organization of this genome, which contrasts with its reduced, but rather constant, information content in various organisms. It also highlights the role that mitochondrial DNA is now playing, particularly in metazoans, in different disciplines and application fields. Among these, particular attention is focused on the discovery of the mitochondrial origin of several diseases affecting primarily the neuromuscular system.  相似文献   

16.
线粒体DNA是细胞内唯一的核外遗传物质,线粒体的主要功能是合成ATP,为细胞生命活动提供直接能量。线粒体基因组与核基因组在基因、蛋白以及细胞水平上相互作用,共同保证细胞能量代谢有关的活动,维持着线粒体的正常功能和细胞的正常状态。  相似文献   

17.
The putative mitochondrial genome of Plasmodium falciparum   总被引:2,自引:0,他引:2  
Intraerythrocytic stages of mammalian malarial parasites employ glycolysis for energy production but some aspects of mitochondrial function appear crucial to their survival since inhibitors of mitochondrial protein synthesis and electron transport have antimalarial effects. Investigations of the putative mitochondrial genome of Plasmodium falciparum have detected organellar rRNAs and tRNAs encoded by a 35 kb circular DNA. Some features of the organization and sequence of the rRNA genes are reminiscent of chloroplast DNAs. The 35 kb DNA also encodes open reading frames for proteins normally found in chloroplast but not mitochondrial genomes. An apparently unrelated 6 kb tandemly repeated element which encodes two mitochondrial protein coding genes and fragments of rRNA genes is also found in malarial parasites. The malarial mitochondrial genome thus appears quite unusual. Further investigations are expected to provide insights into the possible functional relationships between these molecules and perhaps their evolutionary history.  相似文献   

18.
Intraerythrocytic stages of mammalian malarial parasites employ glycolysis for energy production but some aspects of mitochondrial function appear crucial to their survival since inhibitors of mitochondrial protein synthesis and electron transport have antimalarial effects. Investigations of the putative mitochondrial genome of Plasmodium falciparum have detected organellar rRNAs and tRNAs encoded by a 35 kb circular DNA. Some features of the organization and sequence of the rRNA genes are reminiscent of chloroplast DNAs. The 35 kb DNA also encodes open reading frames for proteins normally found in chloroplast but not mitochondrial genomes. An apparently unrelated 6 kb tandemly repeated element which encodes two mitochondrial protein coding genes and fragments of rRNA genes is also found in malarial parasites. The malarial mitochondrial genome thus appears quite unusual. Further investigations are expected to provide insights into the possible functional relationships between these molecules and perhaps their evolutionary history.  相似文献   

19.
We have continued to develop MITOMAP, a comprehensive database for the human mitochondrial DNA (mtDNA). MITOMAP uses the mtDNA sequence as the unifying element for bringing together information on mitochondrial genome structure and function, pathogenic mutations and their clinical characteristics, population associated variation and gene-gene interactions. As increasingly larger regions of the human genome are sequenced and characterized, the need for integrating such information will grow. Consequently, MITOMAP not only provides a valuable reference for the mitochondrial biologist, it will also provide a model for the development of comprehensive, multi-media information storage and retrieval systems for other components of the human genome. This paper is an update of the changes which have occurred to MITOMAP over the past year.  相似文献   

20.
Mitochondria contain their own genome, a small circular molecule of around 16.5 kbases. The mitochondrial DNA (mtDNA) encodes for only 13 polypeptides, but its integrity is essential for mitochondrial function, as all 13 proteins are regulatory subunits of the oxidative phosphorylation complexes. Nonetheless, the mtDNA is physically associated with the inner mitochondrial membrane, where the majority of the cellular reactive oxygen species are generated. In fact, the mitochondrial DNA accumulates high levels of oxidized lesions, which have been associated with several pathological and degenerative processes. The cellular responses to nuclear DNA damage have been extensively studied, but so far little is known about the functional outcome and cellular responses to mtDNA damage. In this review we will discuss the mechanisms that lead to damage accumulation and the in vitro models we are establishing to dissect the cellular responses to oxidative damage in the mtDNA and to sort out the differential cellular consequences of accumulation of damage in each cellular genome, the nuclear and the mitochondrial genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号