首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 485 毫秒
1.
The aim of this study was to define the conditions required for exocytosis in pancreatic acini permeabilised with the bacterial toxin streptolysin O. Treatment of a suspension of acini with streptolysin O caused the release of both the cytoplasmic enzyme lactate dehydrogenase and the zymogen granule enzyme amylase. The release of amylase occurred more quickly than that of lactate dehydrogenase and was smaller in magnitude. In addition, a component of amylase release occurred only in the presence of Ca2+ (at concentrations in the micromolar range), ATP and GTP gamma S. We conclude that this component represents an exocytotic event, but that the release of lactate dehydrogenase occurs through toxin-generated lesions. The concentrations of Ca2+, ATP and GTP gamma S causing half-maximal exocytosis were 0.7 microM, 0.2 mM and 10 microM, respectively. This system should permit a study of the mechanisms underlying regulated exocytosis in this cell type.  相似文献   

2.
Addition of Staphylococcus aureus alpha-toxin to adult bovine chromaffin cells maintained in primary culture causes permeabilization of cell membrane as shown by the release of intracellular 86Rb+. The alpha-toxin does not provoke a spontaneous release of either catecholamines or chromogranin A, a protein marker of the secretory granule, showing the integrity of the secretory vesicle membrane. However the addition of micromolar free Ca2+ concentration induced the co-release of noradrenaline and chromogranin A. In alpha-toxin-treated cells, the released chromogranin A could not be sedimented and lactate dehydrogenase was still associated within cells, which provides direct evidence that secretory product is liberated by exocytosis. By contrast, permeabilization of cells with digitonin caused a Ca2+-dependent but also a Ca2+-independent release of secretory product, a dramatic loss of lactate dehydrogenase, as well as release of secretory product in a sedimentable form. Ca2+-dependent exocytosis from alpha-toxin-permeabilized cells required Mg2+-ATP and did not occur in the presence of other nucleotides. Thus alpha-toxin is a convenient tool to permeabilize chromaffin cells, and has the advantage of keeping intracellular structures, specifically the exocytotic machinery, intact.  相似文献   

3.
Conditions are described for controlled plasma membrane permeabilization of rat pheochromocytoma cells (PC12) and cultured bovine adrenal chromaffin cells by streptolysin O (SLO). The transmembrane pores created by SLO invoke rapid efflux of intracellular 86Rb+ and ATP, and also permit passive diffusion of proteins, including immunoglobulins, into the cells. SLO-permeabilized PC12 cells release [3H]dopamine in response to micromolar concentrations of free Ca2+. Permeabilized adrenal chromaffin cells present a similar exocytotic response to Ca2+ in the presence of Mg2+/ATP. Permeabilized PC12 cells accumulate antibodies against synaptophysin and calmodulin, but neither antibody reduces the Ca2+-dependent secretory response. Reduced tetanus toxin, although ineffective when applied to intact chromaffin cells, inhibits Ca2+-induced exocytosis by both types of permeabilized cells studied. Omission of dithiothreitol, toxin inactivation by boiling, or preincubation with neutralizing antibodies abolishes the inhibitory effect. The data indicate that plasma membrane permeabilization by streptolysin O is a useful tool to probe and define cellular components that are involved in the final steps of exocytosis.  相似文献   

4.
The membrane-permeabilizing effects of streptolysin O, staphylococcal alpha-toxin, and digitonin on cultured rat pheochromocytoma cells were studied. All three agents perturbed the plasma membrane, causing release of intracellular 86Rb+ and uptake of trypan blue. In addition, streptolysin O and digitonin also damaged the membranes of secretory vesicles, including a parallel release of dopamine. In contrast, the effects of alpha-toxin appeared to be strictly confined to the plasma membrane, and no dopamine release was observed with this agent. The exocytotic machinery, however, remained intact and could be triggered by subsequent introduction of micromolar concentrations of Ca2+ into the medium. Dopamine release was entirely Ca2+ specific and occurred independent of the presence or absence of other cations or anions including K+ glutamate, K+ acetate, or Na+ chloride. Ca2+-induced exocytosis did not require the presence of Mg2+-ATP in the medium. The process was insensitive to pH alterations in the range pH 6.6-7.2, and appeared optimal at an osmolarity of 300 mosm/kg. Toxin permeabilization seems to be an excellent method for studying the minimal requirements for exocytosis.  相似文献   

5.
The aminosteroid U73122 has been established as potent, selective, and cell-permeable inhibitor C-type phosphatidylinositol-specific phospholipases (PI-PLCs), and has been used to define a contribution of PI-PLCs as part of exocytotic signalling pathways in rat peritoneal mast cells (RPMCs). However, doubts have been raised regarding its PI-PLC selectivity of action. Therefore, in the present study, U73122 was tested in RPMCs under experimental conditions allowing to elicit exocytosis PI-PLC independently (streptolysin O [SLO]-permeabilised cells; stimulated by GTPgammaS; in the presence of low concentrations of free Ca2+). The release of [3H]5-hydroxytryptamine ([3H]5-HT) from [3H]5-HT-loaded RPMCs served as measure of secretion. U73122 potently inhibited the exocytotic response induced by 10 microM GTPgammaS (Ca2+: 10(-6) M) in permeabilised cells (IC50: 0.6 microM, n=5) in an insurmountable manner. In intact RPMCs, with a nearly equal potency (IC50: 4 microM, n=4), U73122 also inhibited the PI-PLC-dependent exocytotic response induced by concomitant application of nerve growth factor and lyso-phosphatidylserine (NGF/lyso-PS). CONCLUSION: U73122 exerts potent PI-PLC-independent secretostatic effects, limiting its use to define PI-PLC function within exocytotic processes.  相似文献   

6.
Mast cells permeabilized by streptolysin O secrete histamine and lysosomal enzymes in response to provision of a dual effector system comprising Ca2+ and a guanine nucleotide (e.g., GTP-gamma-S2) at concentrations in the micromolar range. These are both necessary and together they are sufficient. There is no requirement for adenosine triphosphate (ATP) and hence no obligatory phosphorylation reaction in the terminal stages of the exocytotic pathway. When exocytosis is induced by Ca2(+)-plus-GTP-gamma-S (i.e., no ATP) added at times after permeabilization (the permeabilization interval), cellular responsiveness declines so that there is no response to provision of the two effectors (both at 10(-5)M) if they are initially withheld and then added after 5 min. Here we show that this decline in responsiveness is characterized by a time-dependent reduction in the effective affinity for Ca2+. Affinity for Ca2+ and hence secretory competence can then be restored if ATP is added alongside the stimulus. Unlike cells stimulated to secrete at the time of permeabilization, exocytosis from cells that have undergone the cycle of permeabilization-induced refractoriness followed by ATP-induced restoration can be triggered by Ca2+ alone: after such conditioning there is no requirement for guanine nucleotide. In contrast, dependence on guanine nucleotide remains mandatory in cells that have been pretreated (i.e., before permeabilization) with okadaic acid (understood to be an inhibitor of protein phosphatases 1 and 2A) or phorbol myristate acetate (an activator of protein kinase C). These results indicate that obligatory dependence on guanine nucleotide is retained when the cells are treated under conditions conducive to maintained phosphorylation. It is concluded that the exocytotic mechanism of permeabilized mast cells is enabled by a dephosphorylation reaction and that the effector of the guanosine triphosphate (GTP)-binding protein (G epsilon) that mediates exocytosis is likely to be a protein phosphate.  相似文献   

7.
Exocytosis in permeabilised mast cells requires only that the concentrations of Ca2+ and GTP-gamma-S (the essential effectors) are elevated into the micromolar range of concentrations. These act through an unidentified Ca2(+)-binding protein and an uncharacterized G-protein (GE). There is no requirement for ATP in the final stages of the secretory pathway. However, mast cells permeabilised in the absence of ATP rapidly become refractory to stimulation due to a reduction in the affinity for the essential effectors. Here, we show that responsiveness may be restored by the addition of ATP. The characteristics of such ATP-dependent secretion have been examined. Preincubation (prior to permeabilization) of the cells with phorbol ester enhances affinity to Ca2+, and introduction of neomycin reduces Ca2+ affinity. AMG.C16, an ether-linked analogue of diglyceride, inhibits secretion in a manner which can be partially reversed by elevating the concentration of ATP. These observations indicate that while protein phosphorylation does not comprise a step in the triggering of exocytosis, a primed condition most likely involving a state of protein phosphorylation, and maintained by reactions catalysed by protein kinase C, is essential.  相似文献   

8.
The secretory process is a coordinated cellular response, initiated by occupation of surface receptors and comprising an ordered sequence of biochemical steps subject to multiple controls. Conceptually we can divide the sequence into two main sections comprising early, receptor-mediated events leading to generation of intracellular second messengers, and later events leading to membrane fusion and exocytosis. With the discovery that occupation of Ca2+ mobilising receptors leads to activation of polyphosphoinositide phosphodiesterase (PPI-pde) through the mediation of a G-protein (Gp), all the early events can be ascribed to the plasma membrane. Investigation of the exocytotic stage of secretion has been simplified by the use of permeabilised cells in which the composition of the cytosol can be precisely controlled. We have used streptolysin-O, a bacterial cytolysin which generates protein-sized pores in the plasma membrane, to investigate the exocytotic mechanism of rat mast cells. We find that in addition to the activation of PPI-dpe, GTP also acts in concert with Ca2+ at, or close to, the exocytotic site. Exocytosis can occur after substantial depletion of cytosol lactate dehydrogenase and 3-phosphoglycerate kinase indicating that soluble cytosol proteins are unlikely to play any role. There is no absolute requirement for ATP or phosphorylating nucleotide in exocytosis though when present the effective affinities of the two obligatory effectors (i.e. Ca2+ and GTP) are substantially enhanced.  相似文献   

9.
We have used a digitonin-permeabilized cell system to study the signal transduction pathways responsible for stimulus-secretion coupling in the rat peritoneal mast cell. Conditions were established for permeabilizing the mast cell plasma membrane without disrupting secretory vesicles. Exocytotic release of histamine from digitonin-permeabilized cells required a combination of micromolar concentrations of Ca2+ and the stable guanine nucleotide analogue guanosine 5'-[gamma-thio]triphosphate (GTP[S]), but was independent of exogenous ATP. In the presence of 40 microM-GTP[S], exocytosis was half-maximal at 1.3 microM-Ca2+ and maximal at 10 microM-Ca2+; GTP[S] alone (100 microM) had no effect on histamine release in the absence of added Ca2+. In the presence of 10 microM free Ca2+, 5 microM-GTP[S] was required for half-maximal exocytosis. To examine the possible role of protein kinase C (PKC) in exocytosis, we utilized 12-O-tetradecanoylphorbol 13-acetate (TPA) to activate PKC and studied its effect on histamine release from permeabilized mast cells. Cells that had been incubated with TPA (25 nM for 5 min) exhibited increased sensitivity to both GTP[S] and Ca2+. The PKC inhibitor staurosporine blocked the effect of TPA without inhibiting normal exocytosis in response to the combination of GTP[S] and Ca2+. In addition, down-regulation of mast-cell PKC by long-term TPA treatment (25 nM for 20 h) blocked the ability of the cells to respond to TPA and inhibited exocytosis in response to Ca2+ and GTP[S] by 40-50%. These results suggest that the sensitivity of the exocytotic machinery of the mast cell can be altered by PKC-catalysed phosphorylation events, but that activation of PKC is not required for exocytosis to occur.  相似文献   

10.
The possible involvement of chemiosmotic lysis of secretory granules in the exocytosis of insulin from pancreatic beta cells was investigated by comparing insulin release from isolated secretory granules, from intact islets of Langerhans, and from electrically permeabilised islets. Lysis of isolated granules was stimulated by ATP in the presence of Mg2+. ATP-induced granule lysis was pH and temperature dependent and was inhibited by collapsing the pH gradient across the granule membrane by removal of permeant anions, or by increasing the extragranular osmolarity. However, insulin secretion from intact islets in response to glucose, a phosphodiesterase inhibitor or a Ca2+ ionophore was only partially inhibited by anion replacement, while Ca2+ -induced insulin release from electrically permeabilised islets was not affected by altering the extragranular or intragranular pH. These results suggest that studies of the stability of isolated granules in vitro do not necessarily relate to insulin release from whole cells, and do not support a major role for chemiosmotic lysis of secretory granules in the exocytotic release of insulin.  相似文献   

11.
Digitonin-permeabilized chromaffin cells secrete catecholamines by exocytosis in response to micromolar Ca2+ concentrations, but lose the ability to secrete in response to Ca2+ as the cells lose soluble proteins through the plasma membrane pores. Such secretory run-down can be retarded by cytosolic fractions, thus providing an assay for proteins potentially involved in the exocytotic process. We have used this assay to investigate the role of N-ethylmaleimide-sensitive fusion protein (NSF) and soluble NSF attachment proteins (SNAPs) in regulated exocytosis. Recombinant alpha- and gamma-SNAP stimulated Ca(2+)-dependent exocytosis, although recombinant NSF was ineffective, despite the fact that NSF and alpha-SNAP leak from the permeabilized cells with similar time courses. However, around one third of cellular NSF was found to be present in a non-cytosolic form and so it is possible that this is sufficient for exocytosis and that exogenous SNAPs stimulate the exocytotic mechanism by acting on the leakage-insensitive NSF. The stimulatory effect of alpha-SNAP displayed a biphasic dose-response curve and was maximal at 20 micrograms/ml. The effect of alpha-SNAP was Ca(2+)- and MgATP-dependent and was inhibited by N-ethylmaleimide and botulinum A neurotoxin, indicating a bona fide action on the exocytotic mechanism. Furthermore, Ca2+ concentrations which trigger catecholamine secretion acted to prevent the leakage of NSF and alpha-SNAP from permeabilized cells. These findings provide functional evidence for a role of SNAPs in regulated exocytosis in chromaffin cells.  相似文献   

12.
We studied the molecular mechanism of noradrenaline release from the presynaptic terminal and the involvement of the protein kinase C substrate B-50 (GAP-43) in this process. To gain access to the interior of the presynaptic terminal, we searched for conditions to permeate rat brain synaptosomes by the bacterial toxin streptolysin O. A crude synaptosomal/mitochondrial preparation was preloaded with [3H]noradrenaline. After permeation with 0.8 IU/ml streptolysin O, noradrenaline efflux could be induced in a concentration-dependent manner by elevating the free Ca2+ concentration from 10(-8) to 10(-5) M. Efflux of the cytosolic marker protein lactate dehydrogenase was not affected by this increase in Ca2+. Ca2(+)-induced efflux of noradrenaline was largely dependent on the presence of exogenous ATP. Changing the Na+/K+ ratio in the buffer did not affect Ca2(+)-induced noradrenaline release. Release of noradrenaline could also be evoked by phorbol esters, indicating the involvement of protein kinase C. Ca2(+)- and phorbol ester-induced release were not additive at higher phorbol ester concentrations (greater than 10(-7) M). We compared the sensitivities of Ca2(+)- and phorbol ester-induced release of noradrenaline to the protein kinase inhibitors H-7 and polymyxin B and to antibodies raised against synaptic protein kinase C substrate B-50. Ca2(+)-induced release was inhibited by B-50 antibodies and polymyxin B, but not by H-7; phorbol ester-induced release was inhibited by polymyxin B and by H-7, but only marginally by antibodies to B-50.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Adrenal medullary chromaffin cells were permeabilized by treatment with a streptococcal cytotoxin streptolysin O (SLO) which generates pores of macromolecular dimensions in the plasma membrane. SLO did not provoke spontaneous release of catecholamines or chromogranin A, a protein marker of the secretory granule, showing the integrity of the secretory vesicle membrane. However, the addition of micromolar free calcium concentration induced the corelease of noradrenaline and chromogranin A, indicating that secretory products are liberated by exocytosis. Calcium-dependent exocytosis from SLO-permeabilized cells required Mg-ATP and could not occur in the presence of other nucleotides. The pores generated by the toxin were large enough to introduce proteins, e.g., immunoglobulins, but also caused efflux of the cytosolic marker lactate dehydrogenase. Despite this, the cells remained responsive to calcium for up to 30 min after permeabilization, indicating that they retained their secretory machinery. In the search for a functional role of cytoskeletal proteins in the secretory process, we used SLO-permeabilized cells to examine the localization of filamentous actin, using rhodamine-phalloidin, and that of the actin-severing protein, gelsolin, using specific antibodies. It was found that both F-actin and gelsolin were exclusively localized in the subplasmalemmal region of the cell. We examined the relationship between actin disassembly, the elevation of intracellular calcium and secretion in SLO-treated cells. F-Actin destabilizing agents such as cytochalasin D or DNase I were found to potentiate calcium-stimulated release. The maximal effect was observed at low calcium concentrations (1-4 microM) and at the later stages of the secretory response (after 10 min stimulation). In addition, using rhodamine-phalloidin, we observed that calcium provoked simultaneously both cortical actin disassembly and catecholamine release in SLO-permeabilized cells. These results demonstrate that a close relationship exists between the secretory response and actin disassembly and provide further evidence that intracellular calcium controls the subplasmalemmal cytoskeletal actin organization and thereby the access of secretory granules to exocytotic sites.  相似文献   

14.
The magainins are basic 23 amino acid peptides with a broad spectrum of antimicrobial activity. Their bactericidal effect has been attributed to their capacity to interact with lipid bilayer membranes. We observed histamine release by magainin-2 amide from rat peritoneal mast cells (ED50 = 13 micrograms/ml) but not from human basophils. This histamine-releasing reaction from peritoneal mast cells was due to a secretory rather than cytolytic effect, i.e., release occurred without concomitant liberation of lactic dehydrogenase. Furthermore, the pretreatment of mast cells with magainin-2 amide did not desensitize cells against subsequent challenge with other secretagogues. Maximum histamine release occurred in less than a minute at 25 and 37 degrees C. The addition of Ca2+ was not required for histamine release, although release was enhanced by the addition of 0.3-1 mM Ca2+. The addition of 3 mM Ca2+ or Mg2+ was markedly inhibitory. The presence of Na+ or Cl- ions in the medium was not required for release. Therefore, histamine release is not due to the formation of anion-selective channels in the membrane of mast cells. The results indicated that the characteristics of histamine secretion induced by magainin-2 amide were unlike IgE-mediated release but were similar to the mechanism of release attributed to some other basic peptides and to compound 48/80.  相似文献   

15.
Calcium-independent phospholipase A2 (iPLA2beta) has recently been suggested to regulate Ca2+ entry by activating store-operated Ca2+ channels. These studies have been conducted in mast cells using thapsigargin to deplete intracellular stores. In RBL 2H3 and bone marrow-derived mast cells (BMMCs), Ca2+ entry is critical for exocytosis and therefore we have examined whether the proposed mechanism would be relevant when a physiological stimulus is applied to these cells. Using an iPLA2beta antibody, we demonstrate that the 84kDa iPLA2beta is expressed in these mast cells. As bromoenol lactone (BEL) is a suicide-based irreversible inhibitor of iPLA2beta it was used to probe this potential mechanism. We observe inhibition of exocytosis stimulated either with antigen or with thapsigargin. However, BEL also inhibits exocytosis when stimulated using a Ca2+ ionophore A23187, which passively transports Ca2+ down a concentration gradient and also in permeabilised mast cells where Ca2+ entry is no longer relevant. Moreover, BEL has only a minor effect on antigen- or thapsigargin-stimulated Ca2+ signalling, both the release from internal stores and sustained elevation due to Ca2+ influx. These results cast doubt on the proposed mechanism involving iPLA2beta required for Ca2+ entry. Although inhibition of exocytosis by BEL could imply a requirement for iPLA2beta activation for exocytosis, an alternative explanation is that BEL inactivates other target proteins required for exocytosis.  相似文献   

16.
Using rat mast cells permeabilized with streptolysin O we show that release of arachidonate generally occurs under similar but not identical conditions to those that cause exocytosis of beta-N-acetylglucosaminidase (hexosaminidase). Thus, hexosaminidase secretion and arachidonate release both require provision of Ca2+ together with a guanine nucleotide but exocytosis occurs at lower concentrations of both effectors. The kinetics of both processes are similar, with a delay in onset only when ATP is present. Arachidonate release occurs largely from a pool of arachidonyl phosphatidylcholine which appears to represent less than 1% of the total phosphatidylcholine of the cells. Despite the general similarity of the conditions causing exocytosis and arachidonate release, our results show that under some circumstances it is possible to obtain exocytosis without measurable release of arachidonate and that therefore phospholipase A2 activation is not an essential precursor of secretion.  相似文献   

17.
During exocytosis, vesicles in secretory cells fuse with the cellular membrane and release their contents in a Ca2+-dependent process. Release occurs initially through a fusion pore, and its rate is limited by the dissociation of the matrix-associated contents. To determine whether this dissociation is promoted by osmotic forces, we have examined the effects of elevated osmotic pressure on release and extrusion from vesicles at mast and chromaffin cells. The identity of the molecules released and the time course of extrusion were measured with fast scan cyclic voltammetry at carbon fiber microelectrodes. In external solutions of high osmolarity, release events following entry of divalent ions (Ba2+ or Ca2+) were less frequent. However, the vesicles appeared to be fused to the membrane without extruding their contents, since the maximal observed concentrations of events were less than 7% of those evoked in isotonic media. Such an isolated, intermediate fusion state, which we term "kiss-and-hold," was confirmed by immunohistochemistry at chromaffin cells. Transient exposure of cells in the kiss and hold state to isotonic solutions evoked massive release. These results demonstrate that an osmotic gradient across the fusion pore is an important driving force for exocytotic extrusion of granule contents from secretory cells following fusion pore formation.  相似文献   

18.
The effects of Na+ deprivation on local calcium signal decay and the rate of exocytotic secretion were measured in single bovine chromaffin cells to determine whether Na-Ca exchange influences the local cytosolic Ca2+ signal for neurohormone release. Na+ replacement with N-methylglucamine caused a marked slowing of the decay of the local Ca2+ signal near points of its initiation, as measured by high-resolution fluorescent Ca2+ imaging in the confocal laser scanning microscope. Na+ replacement also resulted in a doubling of the rate and magnitude of exocytotic secretion measured in single cells by high-resolution microamperometry. Release rates provide an independent measure of local active zone Ca2+. Five repetitive stimulations of the same cell in Na+-free, but not in Na+-containing, medium resulted in a progressively increasing rate of catecholamine release, suggesting an increasing level of active zone Ca2+ and a role of Na-Ca exchange activity in Ca2+ clearance between stimulations. As secretory activity and its triggering Ca2+ signals are known to be co-localized in active zones along the plasma membrane, the results suggest that Na-Ca exchange may influence the decay of the local Ca2+ signal for exocytotic secretion. This would be consistent with a contribution to local Ca2+ clearance by a novel mechanism utilizing the insertion of secretory vesicle Na-Ca exchangers into the plasma membrane during exocytosis.  相似文献   

19.
K Ito  Y Miyashita    H Kasai 《The EMBO journal》1997,16(2):242-251
Agonists induce Ca2+ spikes, waves and oscillations initiating at a trigger zone in exocrine acinar cells via Ca2+ release from intracellular Ca2+ stores. Using a low affinity ratiometric Ca2+ indicator dye, benzothiazole coumarin (BTC), we found that high concentrations of agonists transiently increased Ca2+ concentrations to the micromolar range (>10 microM) in the trigger zone. Comparison with results obtained with a high affinity Ca2+ indicator dye, fura-2, indicated that fura-2 was in fact saturated with Ca2+ during the agonist-induced Ca2+ spikes in the trigger zone. We further revealed that the micromolar Ca2+ spikes were necessary for inducing exocytosis of zymogen granules investigated using capacitance measurements. In contrast, submicromolar Ca2+ spikes selectively gave rise to sequential activation of luminal and basal ion channels. These results suggest new functional diversity in Ca2+ spikes and a critical role for the micromolar Ca2+ spikes in exocytotic secretion from exocrine acinar cells. Our data also emphasize the value of investigating the Ca2+ signalling using low affinity Ca2+ indicators.  相似文献   

20.
Rat mast cells, pretreated with metabolic inhibitors and permeabilized by streptolysin-O, secrete histamine when provided with Ca2+ (buffered in the micromolar range) and nucleoside triphosphates. We have surveyed the ability of various exogenous nucleotides to support or inhibit secretion. The preferred rank order in support of secretion is ITP greater than XTP greater than GTP much greater than ATP. Pyrimidine nucleotides (UTP and CTP) are without effect. Nucleoside diphosphates included alongside Ca2+ plus ITP inhibit secretion in the order 2'-deoxyGDP greater than GDP greater than o-GDP greater than ADP approximately equal to 2'deoxyADP approximately equal to IDP. Secretion from the metabolically inhibited and permeabilized cells can also be induced by stable analogues of GTP (GTP-gamma-S greater than GppNHp greater than GppCH2p) which synergize with Ca2+ to trigger secretion in the absence of phosphorylating nucleotides. ATP enhances the effective affinity for Ca2+ and GTP analogues in the exocytotic process but does not alter the maximum extent of secretion. The results suggest that the presence of Ca2+ combined with activation of events controlled by a GTP regulatory protein provide a sufficient stimulus to exocytotic secretion from mast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号