首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: A γ-aminobutyric acidA (GABAA) receptor (GABAAR) γ2 subunit (short form) was cloned from an adult human cerebral cortex cDNA library in bacteriophage λgt11. The 261-bp intracellular loop (IL) located between M3 and M4 was amplified using the polymerase chain reaction and inserted into the expression vectors λgt11 and pGEX-3X. Both γ-galactosidase (LacZ) and glutathione-S-transferase (GST) fusion proteins containing the γ2IL were purified, and a rabbit antibody to the LacZ–γ2IL was made. The antibody reacted with the γ2IL of both LacZ and GST fusion proteins and immunoprecipitated the GABAAR/ benzodiazepine receptor (GABAAR/BZDR) from bovine and rat brain. The antibody reacted in affinity-purified GABAAR/BZDR immunoblots with a wide peptide band of 44,000–49,000 Mr. Immunoprecipitation studies with the anti-γ2IL antibody suggest that in the cerebral cortex, 87% of the GABAARs with high affinity for benzodiazepines and 70% of the GABAARs with high affinity for muscimol contain at least a γ subunit, probably a γ2. These results indicate that there are [3H]muscimol binding GABAARs that do not bind [3H]flunitrazepam with high affinity. Immunoprecipitations with this and other anti-GABAAR/BZDR antibodies indicate that the most abundant combination of GABAAR subunits in the cerebral cortex involves α1, γ2 (or other γ), and β2 and/or β3 subunits. These subunits coexist in >60% of the GABAAR/BZDRs in the cerebral cortex. The results also show that a considerable proportion (20–25%) of the cerebellar GABAAR/BZDRs is clonazepam insensitive. At least 74% of these cerebellar receptors, which likely contain α6, also contain γ2 (or other γ) subunit(s). The α1 and β2 or β3 subunits are also frequently associated with γ2 (or other γ) and α6 in these cerebellar receptors.  相似文献   

2.
3.
To determine whether genetic differences in development of ethanol dependence are related to changes in gamma-aminobutyric acidA (GABAA) receptor function, we measured 36Cl- uptake by brain cortical membrane vesicles from withdrawal seizure prone and withdrawal seizure resistant (WSP/WSR) mice treated chronically with ethanol. Muscimol-stimulated chloride flux was not different between WSP and WSR mice before or after ethanol treatment. Also, augmentation of muscimol action by flunitrazepam or inhibition of muscimol action by the inverse agonists Ro 15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5a]- [1,4]benzodiazepine-3-carboxylate) and methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) was not different for ethanol-naive WSP and WSR mice. However, chronic ethanol administration enhanced the inhibitory actions of DMCM and Ro 15-4513 on membranes from WSP but not WSR mice. Conversely, chronic ethanol treatment attenuated the action of flunitrazepam on membranes from WSR but not WSP mice, suggesting that the actions of benzodiazepine agonists and inverse agonists are under separate genetic control. These genetic differences in actions of DMCM and Ro 15-4513 indicate that sensitization to benzodiazepine inverse agonists produced by chronic ethanol treatment may be related to development of withdrawal seizures and suggest that differences in the GABA/benzodiazepine receptor complex represent alleles that have segregated during the selection of the WSP/WSR mice.  相似文献   

4.
The postnatal development of the gamma-aminobutyric acidA/benzodiazepine receptor (GABAR/BZDR) complex of the rat brain has been investigated using the monoclonal antibody 62-3G1 and the polyclonal rabbit antiserum A, specific for the 57,000 and 51,000 Mr receptor subunits, respectively. Both GABAR and BZDR binding activities co-precipitated during all postnatal ages. Adult rats showed a main 51,000 Mr[3H]flunitrazepam photoaffinity-labeled peptide, whereas newborn rats showed several photolabeled peptides of higher Mr. All the photolabeled peptides could be immunoprecipitated with each antibody regardless of the age of the rats. These results suggest that the physical coupling between the GABAR and the BZDR is already present in newborn animals and it is maintained afterwards during development. Glycosidase and peptidase treatments of the immunoprecipitated GABAR/BZDR complex indicated that all the [3H]flunitrazepam-photolabeled subunits are different peptides, although they seem to conserve a high degree of homology. In addition to the age-dependent heterogeneity, the results also suggest that for each age, there is heterogeneity in the subunit composition of the GABAR/BZDR complex.  相似文献   

5.
A cDNA encoding a protein with 70% amino acid identity to the previously characterized gamma-aminobutyric acidA (GABAA) receptor alpha-subunits was isolated from a rat brain cDNA library by homology screening. As observed for alpha 1-, alpha 2-, and alpha 3-subunits, coexpression of this new alpha-subunit (alpha 5) with a beta- and gamma 2-subunit in cultured cells produces receptors displaying high-affinity binding sites for both muscimol, a GABA agonist, and benzodiazepines. Characteristic of GABAA/benzodiazepine type II sites, receptors containing alpha 2-, alpha 3- or alpha 5-subunits have low affinities for several type I-selective compounds. However, alpha 5-subunit-containing receptors have lower affinities for zolpidem (30-fold) and Cl 218 872 (three-fold) than measured previously using recombinantly expressed type II receptors containing either alpha 2- or alpha 3-subunits. Based on these findings, a reclassification of the GABAA/benzodiazepine receptors is warranted.  相似文献   

6.
The bovine gamma-aminobutyric acidA/benzodiazepine receptor complex has been purified by a novel immunoaffinity chromatography method on immobilized monoclonal antibody 62-3G1. Immunopurification of the complex was achieved in a single step with an improved yield over affinity chromatography on the benzodiazepine Ro 7-1986/1. High-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the immunoaffinity-purified receptor revealed three major peptide bands of 51,000, 55,000, and 57,000 Mr which were also present in the Ro 7-1986/1 affinity-purified receptor. Peptide mapping, immunoblotting with subunit specific antibodies, and photoaffinity labeling with [3H]flunitrazepam and [3H]muscimol have been used for the identification of receptor subunits, including several which comigrated in a single band in SDS-PAGE.  相似文献   

7.
Polyclonal antibodies have been raised against synthetic peptides whose sequences correspond to the N-terminal 15 amino acids and the C-terminal 17 amino acids of the bovine gamma-aminobutyric acidA (GABAA) receptor alpha 1 subunit. These antibodies were shown to react with the denatured GABAA receptor alpha subunit, Mr 53,000, in Western blots with both purified receptor and brain membranes as antigens. Also, both antibodies recognised both the purified and detergent-solubilised GABAA receptor as demonstrated by dose-dependent specific immunoprecipitation of the GABA and benzodiazepine binding sites from solution. Evidence is also presented to show brain-regional distribution of the expression of the alpha 1 subunit.  相似文献   

8.
Equilibrium binding interactions at the gamma-aminobutyric acid (GABA) and benzodiazepine recognition sites on the GABAA receptor-Cl- ionophore complex were studied using a vesicular synaptoneurosome (microsacs) preparation of rat brain in a physiological HEPES buffer similar to that applied successfully in recent GABAergic 36Cl- flux measurements. NO 328, a GABA reuptake inhibitor, was included in the binding assays to prevent the uptake of [3H]muscimol. Under these conditions, the equilibrium dissociation constant (KD) values for [3H]muscimol and [3H]diazepam bindings are 1.9 microM and 40 nM, respectively. Binding affinities for these and other GABA and benzodiazepine agonists and antagonists correlate well with the known physiological doses required to elicit functional activity. This new in vitro binding protocol coupled with 36Cl- flux studies should prove to be of value in reassessing the pharmacology of the GABAA receptor complex in a more physiological environment.  相似文献   

9.
Antibodies raised against the synthetic peptide NH2-QKSDDDYEDYASNKTC-COOH (gamma 2 1-15 Cys), which corresponds to the N-terminal amino acid sequence with a C-terminal cysteine of the human gamma 2 subunit of the gamma-aminobutyric acidA (GABAA) receptor, were used to study the quantitative immunoprecipitation of agonist benzodiazepine binding sites from bovine brain. Anti-gamma 2 1-15 Cys antibodies were found to immunoprecipitate specifically in parallel [3H]flunitrazepam- and [3H]muscimol-reversible binding sites in a dose-dependent manner. The maximum percentages of [3H]flunitrazepam binding sites immunoprecipitated from detergent extracts of bovine cerebral cortex, cerebellum, and hippocampus were 68, 77, and 83%, respectively. Immunoprecipitation studies with anti-alpha 1 324-341 antibodies carried out in parallel with anti-gamma 2 1-15 Cys antibodies provided evidence for the promiscuity of the gamma 2 subunit within native GABAA receptors. These results substantiate the association of the gamma 2 polypeptide with native GABAA receptors.  相似文献   

10.
The hydrodynamic behaviour of both the soluble and purified gamma-aminobutyric acidA (GABAA) receptor of bovine or rat cerebral cortex has been investigated in solution in Triton X-100 or in 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulphonate (CHAPS). In all the hydrodynamic separations made, it was found that the binding activities for GABA, benzodiazepine, and (where detectable) t-butylbicyclophosphorothionate comigrated. Conditions were established for gel exclusion chromatography and for sucrose density gradient velocity sedimentation that maintain the GABAA receptor in a nonaggregated form. Using these conditions, the molecular weight of the bovine GABAA receptor in the above-mentioned detergents was calculated using the H2O/2H2O method. A value of Mr 230,000-240,000 was calculated for the bovine pure GABAA receptor purified in sodium deoxycholate/Triton X-100 media. A value of Mr 284,000-290,000 was calculated for the nonaggregated bovine or rat cortex receptor in CHAPS, but the Stokes radius is smaller in the latter than in the former medium and the detergent binding in CHAPS is underestimated. Thus the deduced Mr, 240,000, is the best estimate by this method.  相似文献   

11.
12.
gamma-Aminobutyric acidA (GABAA) receptors are multisubunit ligand-gated ion channels which mediate neuronal inhibition by GABA and are composed of at least four subunit types (alpha, beta, gamma, and delta). The gamma 2-subunit appears to be essential for benzodiazepine modulation of GABAA receptor function. In cloning murine gamma 2-subunits, we isolated cDNAs encoding forms of the subunit that differ by the insertion of eight amino acids. LLRMFSFK, in the major intracellular loop between proposed transmembrane domains M3 and M4. The two forms of the gamma 2-subunit are generated by alternative splicing, as demonstrated by cloning and partial sequencing of the corresponding gene. The eight-amino-acid insertion encodes a potential consensus serine phosphorylation site for protein kinase C. These results suggest a novel mechanism for the regulation of the GABAA receptor by protein phosphorylation.  相似文献   

13.
Abstract: Polyclonal antibodies were raised to synthetic peptides having amino acid sequences corresponding with the N- or C-terminal part of the γ-aminobutyric acidA (GABAA) receptor α5-subunit. These anti-peptide α5(2–10) or anti-peptide α5(427–433) antibodies reacted specifically with GABAA receptors purified from the brains of 5–10-day-old rats in an enzyme-linked immunosorbent assay and were able to dose-dependently immunoprecipitate up to 6.3 or 13.1% of the GABAA receptors present in the incubation, respectively. In immunoblots, each of these antibodies reacted with the same two protein bands with apparent molecular mass of 53 or 57 kDa. After exhaustive treatment of purified GABAA receptors with N -Glycanase, each of these antibodies identified two proteins with apparent molecular masses of 46 and 48 kDa. Additional treatment of GABAA receptors with neuraminidase and O -Glycanase resulted in an apparently single protein with molecular mass of 47 kDa, which again was identified by both the anti-peptide α5(2–10) and the anti-peptide α5(427–433) antibody. These results indicate the existence of at least two different α5-sub-units of the GABAA receptor that differ in their carbohydrate content. In contrast to other α- or β-subunits of GABAA receptors so far investigated, at least one of these two α5-subunits contains O-linked carbohydrates.  相似文献   

14.
Abstract: Some data on the concentration range of response and the concentration for half-response (EC50) of γ-aminobutyric acid (GABA) for the GABAA receptor are reviewed and compared. An analysis of the 36CI flux assay demonstrates that both the EC50 and the slope of a Hill plot depend on the ion influx or efflux assay time. The effects of depletion of the 36CI concentration gradient during the assay and of receptor desensitization on the result for a range of assay times are considered. The EC50 can be decreased by orders of magnitude by increasing the assay time. The EC50 measured in a finite time is less than the half-response concentration for the response(s) of the receptor. The extent of this difference depends on the receptor concentration per internal volume. The maximal decrease of EC50 depends on the rate of receptor desensitization. The computer simulations showed that a GABAA receptor with a half-response concentration of 100 μ M GABA can give 36CI flux measurements with an EC50 value 100-fold lower.  相似文献   

15.
The gamma-aminobutyric acidA/benzodiazepine receptor complexes from bovine cerebral cortex were purified by immunoaffinity chromatography, and the main component peptide subunits were characterized. The peptide band originally thought to be a single beta subunit [57,000 Mr band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)] is composed of at least four different peptides of 54,000-57,000 Mr. Two peptides of 55,000 and 57,000 Mr were recognized by the beta subunit-specific monoclonal antibody 62-3G1. Peptides in the range of 54,000-57,000 Mr were photoaffinity-labeled with [3H]muscimol. A different 57,000 Mr peptide was photoaffinity-labeled by [3H]flunitrazepam, but neither was recognized by the monoclonal antibody 62-3G1 nor photoaffinity-labeled with [3H]muscimol. Some peptides could be identified by their differential mobility shift in SDS-PAGE after treatment with endoglycosidase H. Two additional subunit peptides of 51,000 and 53,000 Mr were also photoaffinity-labeled by [3H]flunitrazepam and reacted with antiserum A. However, the 57,000 Mr peptide that also was photoaffinity-labeled by [3H]flunitrazepam did not react with antiserum A.  相似文献   

16.
Neuroactive steroids, in particular 3 alpha-hydroxypregnanes, are allosteric modulators of the gamma-aminobutyric acidA (GABAA) receptor. Regionally selective expression of receptor subunit subtypes may account for differential responsiveness of tissues to GABAergic inhibition and neurosteroid modulatory effects. The effect of 5 alpha-pregnan-3 alpha-ol-20-one (epiallopregnanolone) on heterotropic cooperativity on the GABAA receptor complex has been studied in three subtypes of expressed recombinant human receptors and in rat brain and spinal cord. Steroid potentiation of [3H]flunitrazepam binding was greatest for the alpha 3 beta 1 gamma 2 receptor complex, whereas alpha 1 beta 1 gamma 2 and alpha 2 beta 1 gamma 2 complexes showed less than 100% enhancement in binding. Previous studies suggest that the spinal cord is devoid of alpha 1, whereas cerebellum is rich in alpha 1 subunits. Correspondingly, a differential enhancement of [3H]flunitrazepam binding in spinal cord (51%) versus cerebellum (28%) was also observed. The structure of neuroactive steroids is important in determinikng the extent of neuromodulatory activity. The 5 beta-pregnanes,5 beta-pregnan-3 alpha-ol-20-one (epipregnanolone) and 5 beta-pregnan-3 alpha,21-diol-20-one (5 beta-tetrahydrodeoxycorticosterone), were both less potent than their corresponding 5 alpha derivatives. A 3 alpha hydroxyl group is essential for neuromodulatory activity in the expressed receptors, as demonstrated by the observation that 5 alpha-pregnan-3 beta-ol-20-one (allopregnanolone) and 4-pregnen-3, 20-dione (progesterone) were both inactive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The mechanism by which ethanol affects the gamma-aminobutyric acid (GABA)/benzodiazepine complex is not clear. It is known that ethanol enhances the Cl- influx mediated by the GABAA receptor complex, and although chronic ethanol administration does not change the KD or Bmax for [3H]flunitrazepam binding, some reports have suggested that it could modify the modulation of benzodiazepine binding produced by GABA. In the present work, we studied the effect of chronic ethanol treatment on the modulation by GABA of [3H]flunitrazepam binding, using light microscopic autoradiography. This technique allows the measurement of densities of benzodiazepine receptors in different brain areas, the visual cortex and hippocampus, which appear to constitute the anatomical support for the behavioral and physiological responses affected by ethanol. We found enhancement of benzodiazepine binding by GABA at concentrations of greater than 10(-6) M for the various cortical and hippocampal areas studied from both control and ethanol-treated animals; this enhancement peaked at 10(-4) M GABA but decreased at 10(-3) M GABA. We found a clear effect of ethanol treatment on the modulatory properties of GABAA receptor, in both cortex and hippocampus, although only in cortex were the differences statistically significant between control and ethanol-treated animals.  相似文献   

18.
Antibodies were prepared against a synthetic peptide corresponding to amino acid sequences 174-203 of the bovine gamma-aminobutyric acidA (GABAA) receptor alpha 1-subunit. The antibodies recognized this synthetic alpha 1-peptide, but failed to react with the homologous peptide sequence, 170-199, of the bovine beta 1-subunit. On Western blots, anti-alpha 1-subunit antibody recognized a 50-kilodalton (kDa) protein in affinity-purified receptor preparations from adult rat cortex and cerebellum. In receptor purified from neonatal cortex, the anti-alpha 1-antibody reacted with 50-kDa, 53-54-kDa, and 59-kDa proteins. After digestion with endoglycosidase F, these three protein bands retained differing electrophoretic mobilities. The 50-kDa and 59-kDa subunits of affinity-purified neonatal receptor, which were photoaffinity-labeled with [3H]flunitrazepam, were immunoprecipitated to different extents by alpha-subunit antibody. These data suggest the existence in GABAA receptor from neonatal cortex of three proteins (50 kDa, 53 kDa, and 59 kDa) which have immunological homology to alpha 1-subunit of bovine GABAA receptor. The presence of an alpha- and a beta-like subunit with similar mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis may account for the relatively high concentration of protein in the 53-54-kDa band which has been observed in receptor purified from neonatal cortex. The presence of multiple alpha-like subunits may be related to the presence of a relatively high concentration of type II GABA receptor in this tissue.  相似文献   

19.
The effect of 4 weeks of spontaneous chronic ethanol intake in drinking water and then ethanol withdrawal on the gamma-aminobutyric acid (GABA) steady-state levels and turnover rates was investigated in 15 brain areas of C57 Bl/6J alcohol-preferring mice. These mice did not display typical ethanol withdrawal convulsions. There was no statistically significant difference in the brain GABA steady-state levels among the control group, chronic ethanol-treated mice, and mice after ethanol withdrawal. In contrast, chronic ethanol treatment induced significant variations in GABA turnover rate, as measured by gabaculine-induced accumulation of GABA, in eight of 15 areas examined versus a decrease in seven brain areas [cerebellum (-29%), amygdala (-28%), olfactory tubercles (-24%), septum (-24%), striatum (-53%), frontal cortex (-21%), and hippocampus (-24%)]; an increase in turnover rate in the posterior colliculus (100%) was observed. At 26 h after ethanol withdrawal, in the seven areas in which GABA turnover rate decreased after spontaneous chronic ethanol intake, a return to the initial control value was observed; in the posterior colliculus, the turnover rate did not change, remaining higher than the control value. This persisting alteration of GABA turnover rate may be related to the absence of the ethanol withdrawal syndrome in the C57 mouse strain.  相似文献   

20.
Synaptosomes and synaptoneurosomes were prepared from rat cerebral cortex. Comparison of the amino acid levels in the two types of organelles and of the effects of gabaculine thereon indicated that the neurosome portion of synaptoneurosomes constituted the major influencing component of the organelles. Administration to rats of inhibitors of gamma-aminobutyric acid (GABA) degradation, such as gabaculine and L-cycloserine, resulted in elevated GABA levels in synaptoneurosomes and a decrease in muscimol-stimulated Cl- up-take by the organelles. Addition of gabaculine directly to the incubation medium for the uptake assay had no effect on the Cl- transport. In contrast, administration to rats of isonicotinic acid hydrazide, an inhibitor of GABA synthesis, decreased the GABA level in synaptoneurosomes and increased the muscimol-stimulated Cl- uptake by the organelles. Although the evidence is not unequivocal, it does support the concept of GABA released from nerve endings being taken up by the postsynaptic cell, from where it exerts a regulatory influence on the functioning of the GABA receptor/ion channel complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号