首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The literature supports a positive correlation between pollen size and style length and that pollen size may be affected by a trade-off with pollen number. A correlation between pollen size and pollinator type has been hypothesized by some authors but not confirmed. To assess these associations, pollen grain number, pollen grain diameter and style length were measured in 53 species of Caryophylloideae that had been classified beforehand as being diurnal, nocturnal or self-pollinated. Surprisingly, many species showed two, and a few even three, distinct pollen grain size classes per individual anther. Therefore, further analyses were based on the different pollen size classes and respective pollen grain numbers. Firstly, we found no indication of a trade-off between pollen size and number. Secondly, a positive linear correlation between style length and pollen grain diameter was found using conventional analysis methods and phylogenetically independent contrasts. Thirdly, when using conventional analysis methods a strong relationship between style length and pollination mode was found, with nocturnal species having significantly longer styles and larger pollen grains than diurnal and selfing species. These results were not supported, however, when calculating comparisons of phylogenetically independent pairs. We discuss our findings in relation to intra-specific pollen polymorphism and pollen degeneration, both of which have been associated with different pollen grain sizes in Caryophylloideae. Furthermore, we discuss the possibility that pollen polymorphism might be a mixed strategy to optimise the success of pollen grains deposited at different pollen–ovule distances on long styles.  相似文献   

2.
Scale is a vital component to consider in ecological research, and spatial resolution or grain size is one of its key facets. Species distribution models (SDMs) are prime examples of ecological research in which grain size is an important component. Despite this, SDMs rarely explicitly examine the effects of varying the grain size of the predictors for species with different niche breadths. To investigate the effect of grain size and niche breadth on SDMs, we simulated four virtual species with different grain sizes/niche breadths using three environmental predictors (elevation, aspect, and percent forest) across two real landscapes of differing heterogeneity in predictor values. We aggregated these predictors to seven different grain sizes and modeled the distribution of each of our simulated species using MaxEnt and GLM techniques at each grain size. We examined model accuracy using the AUC statistic, Pearson's correlations of predicted suitability with the true suitability, and the binary area of presence determined from suitability above the maximum true skill statistic (TSS) threshold. Habitat specialists were more accurately modeled than generalist species, and the models constructed at the grain size from which a species was derived generally performed the best. The accuracy of models in the homogenous landscape deteriorated with increasing grain size to a greater degree than models in the heterogenous landscape. Variable effects on the model varied with grain size, with elevation increasing in importance as grain size increased while aspect lost importance. The area of predicted presence was drastically affected by grain size, with larger grain sizes over predicting this value by up to a factor of 14. Our results have implications for species distribution modeling and conservation planning, and we suggest more studies include analysis of grain size as part of their protocol.  相似文献   

3.
Topographic complexity is a key component of habitat, which has been linked to increased species richness in many ecological communities. It can be measured in various ways and it is unclear whether these different measurements are mutually comparable when they relate to plant species richness at different spatial scales. Using a densely sampled set of observations for Rhododendrons (406 species and 13,126 georeferenced records) as a test case, we calculated eight topographic complexity indices from a 250-m resolution digital elevation model and examined their correlations with Rhododendron species richness in China at seven spatial scales: grain sizes 0.05°, 0.1°, 0.25°, 0.5°, 1.0°, 1.5°, and 2.0°. Our results showed that the eight topographic complexity indices were moderately to highly correlated with each other, and the relations between each pair of indices decreased with increasing grain size. However, with an increase in grain size, there was a higher correlation between topographic complexity indices and Rhododendron species richness. At finer scales (i.e. grain size  1°), the standard deviation of elevation and range of elevation had significantly stronger correlations with Rhododendron species richness than other topographic complexity indices. Our findings indicate that different topographic complexity indices may have positive correlations with plant species richness. Moreover, the topographic complexity–species richness associations could be scale-dependent. In our case, the correlations between topographic complexity and Rhododendron species richness tended to be stronger at coarse-grained macro-habitat scales. We therefore suggest that topographic complexity index may serve as good proxy for studying the pattern of plant species richness at continental to global levels. However, choosing among topographic complexity indices must be undertaken with caution because these indices respond differently to grain sizes.  相似文献   

4.
Accuracy of resource selection functions across spatial scales   总被引:2,自引:0,他引:2  
Resource selection functions (RSFs) can be used to map suitable habitat of a species based on predicted probability of use. The spatial scale may affect accuracy of such predictions. To provide guidance as to which spatial extent or grain is appropriate and most accurate for animals, we used the concept of hierarchical selection orders to dictate extent and grain. We conducted a meta-analysis from 123 RSF studies of 886 species to identify differences in prediction success that might be expected for five selection orders. Many studies do not constrain spatial extent to the grain of the next broader selection order in the hierarchy, mixing scaling effects. Thus, we also compared accuracy of single- vs. multiple-grain RSFs developed at the unconstrained extent of an entire study area. Results suggested that the geographical range of a species was the easiest to predict of the selection orders. At smaller scales within the geographical range, use of a site was easier to predict when environmental variables were measured at a grain equivalent to the home-range size or a microhabitat feature required for reproduction or resting. Selection of patches within home ranges and locations of populations was often more difficult to predict. Multiple-grain RSFs were more predictive than single-grain RSFs when the entire study area was considered available. Models with variables measured at both small and large (> 100 ha) grains were usually most predictive, even for many species with small home ranges. Multiple-grain models may be particularly important for species with moderate dispersal abilities in habitat fragments surrounded by an unsuitable matrix. We recommend studies should no longer address only one grain to map animal species distributions.  相似文献   

5.
While several plant species are initially described as androdioecious, upon more thorough investigation, many of these are found to be cryptically dioecious with functionally male flowers and perfect flowers that produce inaperturate pollen or are otherwise functionally female on separate plants. The change in function of pollen produced by perfect flowers opens up the possibility for the evolution of sexual dimorphism in pollen grain size. We found that Thalictrum macrostylum (Ranunculaceae) is cryptically dioecious, and produces apparently inaperturate pollen in perfect flowers. In four field sites throughout North Carolina, inaperturate grains are larger than grains from staminate flowers and also show a greater variance in size. We also found substantial variation in pollen grain size among plants. The sites with lower soil nutrient content also had smaller pollen grains of both types, although local adaptation or genetic drift may also be causing among-site variation.  相似文献   

6.
Aims: (1) Understanding how the relationship between species richness and its determinants depends on the interaction between scales at which the response and explanatory variables are measured. (2) Quantifying the relative contributions of local, intermediate and large‐scale determinants of species richness in a fragmented agro‐ecosystem. (3) Testing the hypothesis that the relative contribution of these determinants varies with the grain size at which species richness is measured. Location: A fragmented agro‐ecosystem in the Southern Judea Lowland, Israel, within a desert–Mediterranean transition zone. Methods: Plant species richness was estimated using hierarchical nested sampling in 81 plots, positioned in 38 natural vegetation patches within an agricultural matrix (mainly wheat fields) among three land units along a sharp precipitation gradient. Explanatory variables included position along that gradient, patch area, patch isolation, habitat heterogeneity and overall plant density. We used general linear models and hierarchical partitioning of variance to test and quantify the effect of each explanatory variable on species richness at four grain sizes (0.0625, 1, 25 and 225 m2). Results: Species richness was mainly affected by position along a precipitation gradient and overall plant density, and to a lesser extent by habitat heterogeneity. It was also significantly affected by patch area and patch isolation, but only for small grain sizes. The contribution of each explanatory variable to explained variance in species richness varied with grain size, i.e. scale‐dependent. The influence of geographic position and habitat heterogeneity on species richness increased with grain size, while the influence of plant density decreased with grain size. Main conclusions: Species richness is determined by the combined effect of several scale‐dependent determinants. Ability to detect an effect and effect size of each determinant varies with the scale (grain size) at which it is measured. The combination of a multi‐factorial approach and multi‐scale sampling reveals that conclusions drawn from studies that ignore these dimensions are restricted and potentially misleading.  相似文献   

7.
Predictive species distribution modelling (SDM) has become an essential tool in biodiversity conservation and management. The choice of grain size (resolution) of environmental layers used in modelling is one important factor that may affect predictions. We applied 10 distinct modelling techniques to presence-only data for 50 species in five different regions, to test whether: (1) a 10-fold coarsening of resolution affects predictive performance of SDMs, and (2) any observed effects are dependent on the type of region, modelling technique, or species considered. Results show that a 10 times change in grain size does not severely affect predictions from species distribution models. The overall trend is towards degradation of model performance, but improvement can also be observed. Changing grain size does not equally affect models across regions, techniques, and species types. The strongest effect is on regions and species types, with tree species in the data sets (regions) with highest locational accuracy being most affected. Changing grain size had little influence on the ranking of techniques: boosted regression trees remain best at both resolutions. The number of occurrences used for model training had an important effect, with larger sample sizes resulting in better models, which tended to be more sensitive to grain. Effect of grain change was only noticeable for models reaching sufficient performance and/or with initial data that have an intrinsic error smaller than the coarser grain size.  相似文献   

8.
9.
Aim Climate‐based models often explain most of the variation in species richness along broad‐scale geographical gradients. We aim to: (1) test predictions of woody plant species richness on a regional spatial extent deduced from macro‐scale models based on water–energy dynamics; (2) test if the length of the climate gradients will determine whether the relationship with woody species richness is monotonic or unimodal; and (3) evaluate the explanatory power of a previously proposed ‘water–energy’ model and regional models at two grain sizes. Location The Iberian Peninsula. Methods We estimated woody plant species richness on grid maps with c. 2500 and 22,500 km2 cell size, using geocoded data for the individual species. Generalized additive models were used to explore the relationships between richness and climatic, topographical and substrate variables. Ordinary least squares regression was used to compare regional and more general water–energy models in relation to grain size. Variation partitioning by partial regression was applied to find how much of the variation in richness was related to spatial variables, explanatory variables and the overlap between these two. Results Water–energy dynamics generate important underlying gradients that determine the woody species richness even over a short spatial extent. The relationships between richness and the energy variables were linear to curvilinear, whereas those with precipitation were nonlinear and non‐monotonic. Only a small fraction of the spatially structured variation in woody species richness cannot be accounted for by the fitted variables related to climate, substrate and topography. The regional models accounted for higher variation in species richness than the water–energy models, although the water–energy model including topography performed well at the larger grain size. Elevation range was the most important predictor at all scales, probably because it corrects for ‘climatic error’ due to the unrealistic assumption that mean climate values are evenly distributed in the large grid cells. Minimum monthly potential evapotranspiration was the best climatic predictor at the larger grain size, but actual evapotranspiration was best at the smaller grain size. Energy variables were more important than precipitation individually. Precipitation was not a significant variable at the larger grain size when examined on its own, but was highly significant when an interaction term between itself and substrate was included in the model. Main conclusions The significance of range in elevation is probably because it corresponds to several aspects that may influence species diversity, such as climatic variability within grid cells, enhanced surface area, and location for refugia. The relative explanatory power of energy and water variables was high, and was influenced by the length of the climate gradient, substrate and grain size of the analysis. Energy appeared to have more influence than precipitation, but water availability is also determined by energy, substrate and topographic relief.  相似文献   

10.
Donax trunculus (Linnaeus, 1758) is one of the most common bivalve molluscs inhabiting the sandy shores of the Mediterranean Sea. This species, which is preferentially distributed on sediments at depths between 0 and about 2 m, is considered to be a substrate-sensitive organism because of its sensitivity to sediment grain size variations during its life cycle, in particular during its early growth stages. This study aims at investigating the relationship between D. trunculus’ density distributions and sediment grain size, in order to evaluate its use as a biological indicator of grain-size variations in beach sediment. For this purpose, a specific environmental study was performed by ISPRA (Italian National Institute for Environmental Protection and Research) along six beaches located in the Central Tyrrhenian Sea between Ladispoli and Anzio (Rome, Italy). On each beach, samples of D. trunculus and superficial sediments were collected in the infra-littoral zone at 3 different depths (0, 0.5, and 1 m) between June 2002 and March 2004. The results pointed out that the distribution of D. trunculus populations is strongly influenced by the sediment's grain size variations. A significant positive correlation was found between species density and the 2.00-phi and 2.50-phi grain size classes; but, in particular, the predominance of the 2.00-phi grain size class in the beach's sediment seems to positively influence the species density and distribution.This study suggests that sediment grain size is the chief factor controlling the distribution of D. trunculus populations; suitable grain sizes allow the settlement and the subsequent growth of well-structured populations. Generally, species density declined in areas subjected to grain-size variations in beach sediments, suggesting a predictable biological response to both natural and human-caused stressors. The present study also highlighted that where nourishment was carried out using suitable sediments, the species reappears on the beach after a few months, as it finds an optimal substrate for settlement. In this case, finding D. trunculus specimens a few months after replenishment indicates that the nourishment operations have been successful from an environmental point of view. As reported by Carignan and Villard (2002), a species that is strongly associated with particular habitat features could be a useful indicator; in particular, a species – like D. trunculus – that is negatively associated with human disturbances could be considered a “positive” indicator of ecological integrity.Long-term monitoring of D. trunculus abundance or density on sandy beaches (adequately carried out during the species’ recruitment period, e.g. between July and September), could help pinpoint the presence of natural or human-made phenomena that are leading to grain-size variations in the sediment. In conclusion, we can assume that D. trunculus can be used as a practical biological indicator to detect grain size variations on sandy beaches in coastal monitoring programmes; it could be a useful tool for researchers, managers and administrators to assess erosion phenomena while minimizing times and costs, also in view of an integrated coastal zone management.  相似文献   

11.
Despite two centuries of exploration, our understanding of factors determining the distribution of life on Earth is in many ways still in its infancy. Much of the disagreement about governing processes of variation in species richness may be the result of differences in our perception of species‐richness patterns. Until recently, most studies of large‐scale species‐richness patterns assumed implicitly that patterns and mechanisms were scale invariant. Illustrated with examples and a quantitative analysis of published data on altitudinal gradients of species richness (n = 204), this review discusses how scale effects (extent and grain size) can influence our perception of patterns and processes. For example, a hump‐shaped altitudinal species‐richness pattern is the most typical (c. 50%), with a monotonic decreasing pattern (c. 25%) also frequently reported, but the relative distribution of patterns changes readily with spatial grain and extent. If we are to attribute relative impact to various factors influencing species richness and distribution and to decide at which point along a spatial and temporal continuum they act, we should not ask only how results vary as a function of scale but also search for consistent patterns in these scale effects. The review concludes with suggestions of potential routes for future analytical exploration of species‐richness patterns.  相似文献   

12.
Using data from 46 sites in southern Finland and ordination methods, we examined plant-environment relationships in boreal mesic semi-natural grasslands at two spatial scales (grain sizes), using plots of 0.25 ha and 1 × 1 m. We applied the variation partitioning approach to determine the pure fractions of environmental variable groups and their joint effects on plant species compositional variation in the studied grasslands. The variables related to land-use intensity and high nutrient level (especially phosphorus) had a major role in explaining the species composition at both scales, although soil heterogeneity and habitat characteristics also accounted for a notable amount of the species compositional variation at the 0.25 ha grain size. At the 1 × 1 m grain size, the majority of the species compositional variation was related to the “pure” spatial differences between the studied grasslands (i.e. the site identity (dummy 0/1) variable), whereas the impacts of within-site variation of local environmental factors were considerably smaller. High nutrient levels and variables related to low land-use intensity, e.g. litter accumulation, were also significantly correlated with floristic variation at the 1 × 1 m grain size. Rare and declining grassland species are associated with low-nutrient grassland sites and patches. The main recommendation for the management planning of boreal semi-natural grasslands is that the first restoration attempts should be targeted to areas where nutrient levels, particularly that of phosphorus, are relatively low. Soil properties and plant species composition can provide useful guidelines for defining the correct management procedures for different sites.  相似文献   

13.
Eucharis, Caliphruria, and Urceolina form a monophyletic group of petiolate-leaved, Neotropical Amaryllidaceae ecologically specialized to the understory of primary tropical rain forest below 2,000 m elevation. Pollen morphology of the three genera is surveyed. Pollen grains of all species of Eucharis, Caliphruria, and Urceolina are boat-shaped elliptic, monosulcate, heteropolar, and bilateral in symmetry. Exine sculpturing is semitectate-columellate and reticulate in all species examined. A transformation series in reticulum coarseness and pollen grain size is described. The large pollen grain with coarse reticulum of most Eucharis species is considered ancestral. The fine reticulation of Caliphruria is considered derived and the exine morphology of Urceolina is intermediate. Both of these genera have medium-sized pollen grains. Exine dimorphism common to all Urceolina, but rare in Eucharis and Caliphruria, may be symplesiomorphous among those taxa exhibiting this morphology. The three genera are largely uniform in pollen grain ultrastructure, with completely ektexinous exines. Pollen grain size in Eucharis is not closely correlated with style length. Several wide-ranging species show considerable intraspecific variation in pollen size. Parallelisms in pollen grain evolution among related tribes of Neotropical Amaryllidaceae are discussed.  相似文献   

14.
Subfossil pollen from two co‐existing Betula species in Iceland, B. nana and B. pubescens, is frequently found in sediments and peat. Interpretation of the findings often depends on the ability to differentiate between the two species according to pollen size and structure. Fresh pollen samples were prepared from 70 individual trees/shrubs which had been identified to species by chromosome number. Grain diameters and pore depths were measured and ratios of grain diameter to pore depth (D/P ratios) were calculated. The mean grain diameters of pollen from diploid B. nana and tetraploid B. pubescens were 20.42 and 24.20?µm, whereas mean pore depths were 2.20 and 2.81?µm respectively. Mean D/P ratios were therefore 9.55 for B. nana and 8.85 for B. pubescens. The difference between species was statistically significant for all three pollen parameters. Grain diameter appeared to be the most useful parameter, as only about 20% of the samples were in the overlapping region of the species distributions. Pollen size (grain diameter) was also positively correlated to tree morphology, which was evaluated using species‐specific botanical characters. Pollen samples from different locations/populations in Iceland varied slightly in mean size and ratio. The size difference between pollen of B. nana and B. pubescens in this study is less than other papers have reported, which may be due to the effect of introgressive hybridisation between the two birch species in Iceland.  相似文献   

15.
Two parasitoids,Pteromalus cerealellae (Ashmead) andAnisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae), were compared for their ability to parasitize two important internally-developing insect pests of stored maize (Zea mays L.). Parasitism byP. cerealellae was greater on Angoumois grain moth,Sitotroga cerealella (Olivier), than on maize weevil,Sitophilus zeamais Motschulsky, in no-choice experiments.Anisopteromalus calandrae parasitized more maize weevils than didP. cerealellae. The former parasitoid parasitized only a few Angoumois grain moths successfully in maize, but parasitized many in wheat if the hosts were younger than 3 weeks old. Thus, both host age and type of grain affect suitability for parasitism. The effects of parental host (species on which the female developed) and experimental host (species exposed to parasitism) on parasitism rate ofP. cerealellae were tested in a host-switching experiment. Parasitism by parasitoids reared on maize weevils was 23% lower than that of parasitoids reared on Angoumois grain moth. This effect was independent of which host the filial generation of parasitoids was tested on. However, the experimental host species had a much greater effect on parasitoid fecundity than the parental host species. Female progeny had smaller body sizes when emerging from maize weevil than from Angoumois grain moth, which may explain the parental host effect on fecundity. There was also a slight intergenerational effect of host species on parasitoid body size.  相似文献   

16.
We describe Terrestricythere proboscidis sp. nov. from a littoral interstitial habitat at Orito Beach, Matsumae, southern Hokkaido, Japan, a site characterized by coarse sand with many pebbles. This is the fifth known species of the ostracod superfamily Terrestricytheroidea, the first interstitial species of the superfamily, and the first record of the superfamily from Japan. The new species is clearly distinguished from its four known congeners by its small carapace with a transversely flat ventral margin, and the seventh limb consisting of four podomeres; its hemipenis has a long, S-curved process. We also report here the habitat, microdistribution, and locomotory behavior of the new species. Quantitative sampling revealed that the species lives in an interstitial environment. T. proboscidis is euryhaline. Behavioral observations showed that T. proboscidis cannot swim, but uses its appendages to push itself among sediment grains. An analysis of variance showed temperature and grain size, as well as temperature-depth and temperature-grain size interactions, to be significant influences on variation in population density. Sediment moisture content is correlated with these variables and likely is a primary factor in this species’ microdistribution.  相似文献   

17.
Among the angiosperms, features of pollen morphology such as grain size, aperture number and surface ornamentation display striking variation. It is less well appreciated that pollen morphology may vary within and among populations of the same species as well as within individual plants. In some species, individual plants produce multiple types of fertile pollen grains (called pollen heteromorphism). Aspects of pollen morphology, such as aperture number, are likely to affect fertilization success with different morphologies favored in different local competitive and ecological environments. This study surveys variation in pollen grain morphology among species throughout the genus Thalictrum. Pollen from individuals of 36 species was rehydrated from herbarium specimens, and light microscopy was used to quantify pollen grain aperture number and size. I find that pollen aperture-number heteromorphism is present within all Thalictrum species studied, and distributions of aperture-number morphs vary both within and among species. This study provides an example of significant pollen heteromorphism within a genus that also varies widely for pollination mode and sexual system.  相似文献   

18.
We investigated the relationship between site productivity and diversity of vascular plants, bryophytes, lichens, and polypore fungi in forests based on species richness data in 0.25 ha forest plots (grain size), selected from six 150–200 ha study areas (focus), and spanning over a latitudinal distance of 1350 km (extent) in Norway. We 1) searched for prevailing productivity-diversity relationships (PDRs), 2) compared PDRs among taxonomic groups and species found in different micro-habitats, and 3) investigated the effect of increasing plot (grain) size on PDRs. Using vegetation types as a surrogate for site productivity, we found a general pattern of increasing species richness with site productivity. On average total species richness doubled with a ten-fold increase in productivity. Lichens PDRs stood out as less pronounced and more variable than for other species groups investigated. PDRs of species associated with downed logs tended to level off at high-productive sites, a pattern interpreted as an effect of disturbance. Increasing the grain size >10-fold did not change the proportional difference in species richness between sites with high and low productivity.  相似文献   

19.
The intra- and interspecific relations between the size and number of pollen grains were examined for 21 species of papilionaceous legumes to test for the trade-off expected from the subdivision of limited resources. We observed a tradeoff between pollen grain diameter and the number of grains produced per flower within 17 of the 21 species examined. For 12 of these species, the observed partial regression coefficient for In (pollen grain diameter) equaled -3, as expected. The remaining five species exhibited more negative partial regression coefficients than expected. Relations between pollen grain size and number that are more negative than expected may result from a decelerating relation between pollen grain size and the resource investment per grain. Flower production significantly influenced pollen production for only eight species so that pollen production seems to be determined primarily on a per flower basis. Interspecifically, pollen size also varied inversely with pollen number for the 21 species even after the effect of phylogenetic relatedness was removed. Pollen size varies relatively little compared to the number of pollen grains produced per flower and therefore may be the primary target of natural selection. The presence of a trade-off in pollen production probably constrains the evolutionary options by which flowering plants can maximize male success.  相似文献   

20.
A Genetic Framework for Grain Size and Shape Variation in Wheat   总被引:1,自引:0,他引:1  
Grain morphology in wheat (Triticum aestivum) has been selected and manipulated even in very early agrarian societies and remains a major breeding target. We undertook a large-scale quantitative analysis to determine the genetic basis of the phenotypic diversity in wheat grain morphology. A high-throughput method was used to capture grain size and shape variation in multiple mapping populations, elite varieties, and a broad collection of ancestral wheat species. This analysis reveals that grain size and shape are largely independent traits in both primitive wheat and in modern varieties. This phenotypic structure was retained across the mapping populations studied, suggesting that these traits are under the control of a limited number of discrete genetic components. We identified the underlying genes as quantitative trait loci that are distinct for grain size and shape and are largely shared between the different mapping populations. Moreover, our results show a significant reduction of phenotypic variation in grain shape in the modern germplasm pool compared with the ancestral wheat species, probably as a result of a relatively recent bottleneck. Therefore, this study provides the genetic underpinnings of an emerging phenotypic model where wheat domestication has transformed a long thin primitive grain to a wider and shorter modern grain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号