首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Fisher AC  DeLisa MP 《PloS one》2008,3(6):e2351
Green fluorescent protein (GFP) has undergone a long history of optimization to become one of the most popular proteins in all of cell biology. It is thermally and chemically robust and produces a pronounced fluorescent phenotype when expressed in cells of all types. Recently, a superfolder GFP was engineered with increased resistance to denaturation and improved folding kinetics. Here we report that unlike other well-folded variants of GFP (e.g., GFPmut2), superfolder GFP was spared from elimination when targeted for secretion via the SecYEG translocase. This prompted us to hypothesize that the folding quality control inherent to this secretory pathway could be used as a platform for engineering similar 'superfolded' proteins. To test this, we targeted a combinatorial library of GFPmut2 variants to the SecYEG translocase and isolated several superfolded variants that accumulated in the cytoplasm due to their enhanced folding properties. Each of these GFP variants exhibited much faster folding kinetics than the parental GFPmut2 protein and one of these, designated superfast GFP, folded at a rate that even exceeded superfolder GFP. Remarkably, these GFP variants exhibited little to no loss in specific fluorescence activity relative to GFPmut2, suggesting that the process of superfolding can be accomplished without altering the proteins' normal function. Overall, we demonstrate that laboratory evolution combined with secretory pathway quality control enables sampling of largely unexplored amino-acid sequences for the discovery of artificial, high-performance proteins with properties that are unparalleled in their naturally occurring analogues.  相似文献   

3.
 Embryogenic soybean [Glycine max (L.) Merrill.] suspension cultures were bombarded with five different gene constructions encoding the jellyfish (Aequorea victoria) green fluorescent protein (GFP). These constructions had altered codon usage compared to the native GFP gene and mutations that increased the solubility of the protein and/or altered the native chromophore. All of the constructions produced green fluorescence in soybean cultures upon blue light excitation, although a soluble modified red-shifted GFP (smRS-GFP) was the easiest to detect based on the brightness and number of foci produced. Expression of smRS-GFP was visible as early as 1.5 h after bombardment, with peak expression at approximately 6.5 h. Large numbers of smRS-GFP-expressing areas were visible for 48 h postbombardment and declined rapidly thereafter. Stably transformed cultures and plants exhibited variation in the intensity and location of GFP expression. PCR and Southern hybridization analyses confirmed the presence of introduced GFP genes in stably transformed cultures. Received: 23 September 1998 / Revision received: 4 January 1999 / Accepted: 15 January 1999  相似文献   

4.
ZM13 is a pollen-specific maize gene which is expressed in the late stages of pollen development. We wished to utilize the ZM13 promoter to examine the expression of a synthetic green fluorescent protein (SGFP) in germinating pollen. The usefulness of the SGFP expression product is that its appearance and distribution can be monitored non-destructively in vivo. A plasmid containing the SGFP coding region under the control of the ZM13 promoter was constructed and then transiently transformed into pollen of Tradescantia paludosa and Nicotiana tabacum by the use of microprojectile bombardment. The expression of the green fluorescent protein was analyzed by fluorescence microscopy using a fluorescein filter. Expression began about 3 h post-bombardment, and all parts of the pollen grain and tube fluoresced. High levels of fluorescence were observed for several days following treatment. Received: 15 February 1998 / Revision accepted: 22 April 1998  相似文献   

5.
Green fluorescent protein (GFP) was successfully used as a visual reporter at various stages of carrot (Daucus carota L.) transformation. GFP-fluorescence was non-invasively observed in protoplasts, callus and plants after the delivery of mgfp5-er gene using two transformation methods: direct DNA transfer into polyethylene glycol (PEG) -treated protoplasts and inoculation of root discs with Agrobacterium rhizogenes. Transient GFP-expression was detected in the treated protoplasts and monitored during the first week of the cell culture until the stable level of expression was observed. It was useful for the comparison of protoplast susceptibility to DNA uptake and the transgene expression as the fluorescence declined with various rates depending on the used carrot genotype and PEG-concentration. GFP-monitoring in callus enabled the selection of stably expressing lines. It also allowed verification of the homogeneous tissue composition with regard to the expression of the transgene. In plants, GFP-performance depended on the assayed tissue and organ despite of the constitutive 35S promoter. The expression was visually detected in both vegetative and generative parts, but particularly strong fluorescence was observed in leaf marginal meristems, petioles, stems, and styles. Those tissues can be convenient for examination of the transgenic plants during their growth. The results encourage that GFP is a valuable reporter and can be routinely used for optimization of transformation protocol, selection of transformants and monitoring transgenic carrot.  相似文献   

6.
Membrane proteins are challenging targets for structural biologists. Finding optimal candidates for such studies requires extensive and laborious screening of protein expression and/or stability in detergent. The use of green fluorescent protein (GFP) as a reporter has enormously facilitated these studies; however, its 238 residues can potentially alter the intrinsic properties of the target (e.g., expression or stability). With the aim of minimizing undesired effects of full-length GFP, here we describe the utility of a split GFP reporter during precrystallization studies of membrane proteins. GFP fluorescence appeared by complementation of the first 15 residues of GFP (GFP(11)) (fused to the C terminus of a membrane protein target) with the remaining nonfluorescent GFP (GFP(1-10)). The signal obtained after sequential expression of SteT (l-serine/l-threonine exchanger of Bacillus subtilis) fused to GFP(11) followed by GFP(1-10) specifically measured the protein fraction inserted into the Escherichia coli cytoplasmic membrane, thereby discarding protein aggregates confined as inclusion bodies. Furthermore, in vitro complementation of purified SteT-GFP(11) with purified GFP(1-10) was exploited to rapidly assess the stability of wild-type and G294V mutant versions of SteT-GFP(11) following detergent solubilization and purification. This method can be applied in a medium- to high-throughput manner with multiple samples.  相似文献   

7.
Summary Data presented here shows a time course analysis of E. coli shake flask cultures expressing the reporter gene green fluorescent protein (GFP) with simultaneous comparison of microbial fluorescence intensity measurements and GFP concentration measured by Western blot. There is an apparent lag between the presence of GFP and its fluorescence due to the time required for formation of the chromophore. We demonstrate that GFP fluorescence can be used as a quantifiable reporter gene, provided the cyclization time for chromophore formation is considered.  相似文献   

8.
目的研究外源绿色荧光蛋白(green fluorescent protein,简称GFP)基因在BALB/c绿色荧光裸鼠主要器官组织中的表达及其差异。方法小动物成像系统和RT-PCR方法检测GFP的组织分布以及荧光表达水平情况。结果经活体荧光影像系统观察及PCR方法检测发现GFP可以在裸鼠多个器官组织中表达,其中在胰腺、心脏、全脑、皮肤、睾丸中表达量较高。结论外源绿色荧光蛋白可以在模型动物体内成功表达且稳定遗传,其中在胰腺组织中高表达。  相似文献   

9.
The secretory pathway is important in actively transporting proteins into the extracellular environment of eucaryotic cells. In this study a green fluorescent protein (GFP) mutant engineered to contain a secretion signal was used as a model protein in order to visualize the secretion process inside insect cells. Fluorescent microscopy indicated that significant amounts of secreted green fluorescent protein (sGFP) accumulated in High-Five, Trichoplusia ni, cells following infection with a baculovirus vector containing the gene under the polyhedrin promoter. Laser scanning confocal microscopy was used to reconstruct whole cell images of the infected High-Five cells at multiple days postinfection. While the protein was widely distributed at 2 days postinfection, certain intracellular regions appeared to contain higher or lower concentrations of the sGFP. A layer by layer examination indicated pockets in which sGFP was absent, and these appear to be vesicles that have recently released the sGFP or are not yet accumulating sGFP. By 3 days postinfection, the sGFP in some cells was concentrated in a number of widely dispersed globules, which may represent the vesicle remnants of a deteriorating secretory pathway. In contrast, nonsecreted GFP was more uniformly distributed in the cells than sGFP and did not accumulate in vesicles. In addition to GFP, the lectins wheat germ agglutinin (WGA) and concanavalin A (ConA), which have affinities for sugar residues, were used to examine the secretory pathway. The WGA, which is a Golgi marker, was distributed around the nucleus prior to infection but then was found to be polarized in one region of the cell following the baculovirus infection. The expansion of other cellular compartments following the baculovirus infection may have caused a change in intracellular distribution of the Golgi. While some of the sGFP was found to colocalize with the WGA label, much of the sGFP was outside this Golgi region. In contrast, ConA labeling, which was not as specific as WGA, was found throughout the cell both before and after infection similar to the sGFP distribution. These studies demonstrate that confocal visualization of fluorescent proteins can be used as an in vivo tool for examining secretory processing in insect cells.  相似文献   

10.
Modified forms of genes encoding green fluorescent protein (GFP) can be macroscopically detected when expressed in whole plants. This technology has opened up new uses for GFP such as monitoring transgene presence and expression in the environment once it is linked or fused to a gene of interest. When whole-plant or whole-organ GFP visualization is required, GFP should be predictably expressed and reliably fluorescent. In this study the whole plant expression and fluorescence patterns of a mGFP5er gene driven by the cauliflower mosaic virus 35S promoter was studied in intact GFP-expressing transgenic tobacco (Nicotiana tabacum cv. Xanthi). It was shown that GFP synthesis levels in single plant organs were similar to GUS activity levels from published data when driven by the same promoter. Under the control of the 35S promoter, high expression of GFP can be used to visualize stems, young leaves, flowers, and organs where the 35S promoter is most active. Modified forms of GFP could replace GUS as the visual marker gene of choice.  相似文献   

11.
We have introduced two disulfide crosslinks into the loop regions on opposite ends of the beta barrel in superfolder green fluorescent protein (GFP) in order to better understand the nature of its folding pathway. When the disulfide on the side opposite the N/C‐termini is formed, folding is 2× faster, unfolding is 2000× slower, and the protein is stabilized by 16 kJ/mol. But when the disulfide bond on the side of the termini is formed we see little change in the kinetics and stability. The stabilization upon combining the two crosslinks is approximately additive. When the kinetic effects are broken down into multiple phases, we observe Hammond behavior in the upward shift of the kinetic m‐value of unfolding. We use these results in conjunction with structural analysis to assign folding intermediates to two parallel folding pathways. The data are consistent with a view that the two fastest transition states of folding are "barrel closing" steps. The slower of the two phases passes through an intermediate with the barrel opening occurring between strands 7 and 8, while the faster phase opens between 9 and 4. We conclude that disulfide crosslink‐induced perturbations in kinetics are useful for mapping the protein folding pathway.  相似文献   

12.
Y W Chu  R Wang  I Schmid  K M Sakamoto 《Cytometry》1999,36(4):333-339
BACKGROUND: The measurement of DNA content with propidium iodide (PI) in cells transfected with expression vectors encoding the green fluorescent protein (GFP) is a useful tool in studying a variety of biological functions of proteins within cells. The purpose of this study was to determine conditions of formaldehyde fixation that permit intracellular GFP fluorescence and adequate DNA histograms to be generated following transient transfection of cells with a GFP-encoding plasmid. Cell cycle analysis was also performed in GFP-positive cells. METHODS: The murine myeloid leukemic cell line, 32Dcl3, was used as the model system. Cells were transfected with a GFP-encoding plasmid (pEGFPC1). Following fixation in different formaldehyde concentrations and permeabilization with 70% ethanol, cells were stained with PI and analyzed by flow cytometry for GFP fluorescence and DNA content. Transfected cells were also analyzed for GFP fluorescence and DNA content following release from nocodazole block. RESULTS: Fixing cells in 0.51-1.75% formaldehyde concentrations prior to ethanol permeabilization resulted in 14-19% of transfected cells being GFP-positive, with acceptable coefficients of variation on the G(1) peak of DNA histograms. Analysis of cells synchronized to and released from the G(2)-M phase by nocodazole suggested that GFP-positive cells, when compared to GFP-negative cells, did not appear to progress out of G(2)-M following release from nocodazole block. Simultaneous detection of GFP fluorescence and DNA content by PI staining is possible following transient transfection of cells with a single expression vector encoding GFP. Our results demonstrate that GFP expression can be detected, using flow cytometry to perform cell cycle analysis in murine leukemic cells.  相似文献   

13.
14.
In this study, we confirmed the ability of the 2-kb promoter fragment of the chicken ovalbumin gene to drive tissue-specific expression of a foreign EGFP gene in chickens. Recombinant lentiviruses containing the EGFP gene were injected into the subgerminal cavity of 539 freshly laid embryos (stage X). Subsequently the embryos were incubated to hatch using phases II and III of the surrogate shell ex vivo culture system. Twenty-four chicks (G0) were hatched and screened for EGFP with PCR. Two chicks were identified as transgenic birds (G1), and these founders were mated with wild-type chickens to generate transgenic progeny. In the generated transgenic hens (G2), EGFP was expressed specifically in the tubular gland of the oviduct. These results show the potential of the chicken ovalbumin promoter for the production of biologically active proteins in egg white.  相似文献   

15.
The putative regulatory CcaR protein, which is encoded in the beta-lactam supercluster of Streptomyces clavuligerus, has been partially purified by ammonium sulfate precipitation and heparin affinity chromatography. In addition, it was expressed in Escherichia coli, purified as a His-tagged recombinant protein (rCcaR), and used to raise anti-rCcaR antibodies. The partially purified CcaR protein from S. clavuligerus was able to bind DNA fragments containing the promoter regions of the ccaR gene itself and the bidirectional cefD-cmcI promoter region. In contrast, CcaR did not bind to DNA fragments with the promoter regions of other genes of the cephamycin-clavulanic acid supercluster including lat, blp, claR, car-cyp, and the unlinked argR gene. The DNA shifts obtained with CcaR were prevented by anti-rCcaR immunoglobulin G (IgG) antibodies but not by anti-rabbit IgG antibodies. ccaR and the bidirectional cefD-cmcI promoter region were fused to the xylE reporter gene and expressed in Streptomyces lividans and S. clavuligerus. These constructs produced low catechol dioxygenase activity in the absence of CcaR; activity was increased 1.7- to 4.6-fold in cultures expressing CcaR. Amplification of the ccaR promoter region lacking its coding sequence in a high-copy-number plasmid in S. clavuligerus ATCC 27064 resulted in a reduced production of cephamycin C and clavulanic acid, by 12 to 20% and 40 to 60%, respectively, due to titration of the CcaR regulator. These findings confirm that CcaR is a positively acting autoregulatory protein able to bind to its own promoter as well as to the cefD-cmcI bidirectional promoter region.  相似文献   

16.
Previous results indicate that apoE (apolipoprotein E) may be associated with the nucleus in specific cell types, particularly under stress conditions such as serum starvation. In addition, nuclear apoE localization in ovarian cancer was recently shown to be correlated with patient survival. In order to better understand the factors associated with apoE nuclear localization, we examined intracellular apoE trafficking using live-cell imaging of CHO (Chinese-hamster ovary) cells that constitutively expressed apoE-GFP (green fluorescent protein). In addition, we used biotinylated apoE (in a lipid-free state and as a lipidated discoidal complex) to track the uptake and potential nuclear targeting of exogenous apoE. Our results indicate that a small proportion of apoE-GFP is detected in the nucleus of living apoE-GFP-expressing CHO cells and that the level of apoE-GFP in the nucleus is increased with serum starvation. Exposure of control CHO cells to exogenous apoE-GFP did not result in nuclear apoE-GFP localization in the recipient cells. Similarly, biotinylated apoE did not reach the nucleus of control CHO cells or SK-N-SH neurons. In contrast, when biotinylated apoE was delivered to recipient cells as a lipidated apoE disc, apoE was detected in the nucleus, suggesting that the lipoprotein complex alters the intracellular degradation or trafficking of apoE. Biotinylated apoE discs containing each of the three common human apoE isoforms (E2, E3 and E4) were also tested for nuclear trafficking. All three apoE isoforms were equally detected in the nucleus. These studies provide new evidence that apoE may be targeted to the nucleus and shed light on factors that regulate this process.  相似文献   

17.
An integrative vector was constructed to allow expression of heterologous proteins into the adhB locus of Zymomonas mobilis. As a reporter gene, the ORF of a bright variant of green fluorescent protein from Aequorea victoria (GFPuv) was fused to the adhB strong promoter from Z. mobilis by using a two-step PCR strategy. Z. mobilis recombinant strains that were stably marked by precise gene replacement at adhB locus with a single chromosomal copy of gfpuv. Protein expression was confirmed by fluorescence microscopy and measured by fluorescence spectroscopy, showing high expression levels (12 to 30 times higher than those obtained in E. coli) without affecting the host growth.  相似文献   

18.
We investigated the applicability of the green fluorescent protein (GFP) of Aequorea victoria as a reporter for gene expression in an extremely halophilic organism: Halobacterium salinarum. Two recombinant GFPs were fused with bacteriorhodopsin, a typical membrane protein of H. salinarum. These fusion proteins preserved the intrinsic functions of each component, bacteriorhodopsin and GFP, were expressed in H. salinarum under conditions with an extremely high salt concentration, and were proved to be properly localized in its plasma membrane. These results suggest that GFP could be used as a versatile reporter of gene expression in H. salinarum for investigations of various halophilic membrane proteins, such as sensory rhodopsin or phoborhodopsin.  相似文献   

19.
Fluorescent proteins have proven to be excellent tools for live-cell imaging. In addition to green fluorescent protein (GFP) and its variants, recent progress has led to the development of monomeric red fluorescent proteins (mRFPs) that show improved properties with respect to maturation, brightness, and the monomeric state. This review considers green and red spectral variants, their paired use for live-cell imaging in vivo, in vitro, and in fluorescence resonance energy transfer (FRET) studies, in addition to other recent “two-color” advances including photoswitching and bimolecular fluorescence complementation (BiFC). It will be seen that green and red fluorescent proteins now exist with nearly ideal properties for dual-color microscopy and FRET.  相似文献   

20.
In beta-lactam producing microorganisms, the first step in the biosynthesis of the beta-lactam ring is the condensation of three amino acid precursors: alpha-aminoadipate, L-cysteine and D-valine. In Nocardia lactamdurans and other cephamycin-producing actinomycetes, alpha-aminoadipate is generated from L-lysine by two sequential enzymatic steps. The first step involves a lysine-6-aminotransferase activity (LAT), considered to be one of the rate-limiting steps for antibiotic biosynthesis. Here, we report the effect of exogenous lysine on antibiotic production by N. lactamdurans MA4213. Lysine-supplemented cultures showed higher titers of cephamycin C, an effect that was more significant at early fermentation times. The increase in cephamycin C production was not quantitatively correlated with specific LAT activity in lysine-supplemented cultures. Observation of a positive effect of lysine on cephamycin C production by N. lactamdurans was dependent on carbon source availability in the culture media. Supplementation of the culture media with exogenous lysine did not affect the mRNA levels of the early biosynthetic genes controlled by the bidirectional promoter. These results indicate that L-lysine is required not only for antibiotic biosynthesis, but particularly as carbon or nitrogen source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号