首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GRP94, the endoplasmic reticulum paralog of Hsp90, is regulated by adenosine nucleotides that bind to its N-terminal regulatory domain. Because of its weak affinity for nucleotides, the functionally relevant transition in GRP94 is likely to be between the unliganded and nucleotide-bound states. We have determined the structure of the unliganded GRP94 N-domain. The helix 1-4-5 subdomain of the unliganded protein adopts the closed conformation seen in the structure of the protein in complex with inhibitors. This conformation is distinct from the open conformation of the subdomain seen when the protein is bound to ATP or ADP. ADP soaked into crystals of the unliganded protein reveals an intermediate conformation midway between the open and closed states and demonstrates that in GRP94 the conversion between the open and closed states is driven by ligand binding. The direction of the observed movement in GRP94 shows that nucleotides act to open the subdomain elements rather than close them, which is contrary to the motion proposed for Hsp90. These observations support a model where ATP binding dictates the conformation of the N-domain and regulates its ability to form quaternary structural interactions.  相似文献   

2.
GRP94, an essential endoplasmic reticulum chaperone, is required for the conformational maturation of proteins destined for cell-surface display or export. The extent to which GRP94 and its cytosolic paralog, Hsp90, share a common mechanism remains controversial. GRP94 has not been shown conclusively to hydrolyze ATP or bind cochaperones, and both activities, by contrast, result in conformational changes and N-terminal dimerization in Hsp90 that are critical for its function. Here, we report the 2.4 A crystal structure of mammalian GRP94 in complex with AMPPNP and ADP. The chaperone is conformationally insensitive to the identity of the bound nucleotide, adopting a "twisted V" conformation that precludes N-terminal domain dimerization. We also present conclusive evidence that GRP94 possesses ATPase activity. Our observations provide a structural explanation for GRP94's observed rate of ATP hydrolysis and suggest a model for the role of ATP binding and hydrolysis in the GRP94 chaperone cycle.  相似文献   

3.
The Hsp90 dimer is a molecular chaperone with an unusual N-terminal ATP binding site. The structure of the ATP binding site makes it a member of a new class of ATP-hydrolyzing enzymes, known as the GHKL family. While for some of the family members structural data on conformational changes occurring after ATP binding are available, these are still lacking for Hsp90. Here we set out to investigate the correlation between dimerization and ATP hydrolysis by Hsp90. The dimerization constant of wild type (WT) Hsp90 was determined to be 60 nm. Heterodimers of WT Hsp90 with fragments lacking the ATP binding domain form readily and exhibit dimerization constants similar to full-length Hsp90. However, the ATPase activity of these heterodimers was significantly lower than that of the wild type protein, indicating cooperative interactions in the N-terminal part of the protein that lead to the activation of the ATPase activity. To further address the contribution of the N-terminal domains to the ATPase activity, we used an Hsp90 point mutant that is unable to bind ATP. Since heterodimers between the WT protein and this mutant showed WT ATPase activity, this mutant, although unable to bind ATP, still has the ability to stimulate the activity in its WT partner domain. Thus, contact formation between the N-terminal domains might not depend on ATP bound to both domains. Together, these results suggest a mechanism for coupling the hydrolysis of ATP to the opening-closing movement of the Hsp90 molecular chaperone.  相似文献   

4.
Hsp90 is an abundant molecular chaperone involved in a variety of cellular processes ranging from signal transduction to viral replication. The function of Hsp90 has been shown to be dependent on its ability to hydrolyze ATP, and in vitro studies suggest that the dimeric nature of Hsp90 is critical for this activity. ATP binding occurs at the N-terminal domains of the Hsp90 dimer, whereas the main dimerization site resides in the very C-terminal domain. ATP hydrolysis is performed in a series of conformational changes. These include the association of the two N-terminal domains, which has been shown to stimulate the hydrolysis reaction. In this study, we set out to identify regions in the N-terminal domain that are important for this interaction. We show that N-terminal deletion variants of Hsp90 are severely impaired in their ability to hydrolyze ATP. However, nucleotide binding of these constructs is similar to that of the wild type protein. Heterodimers of the Hsp90 deletion mutants with wild type protein showed that the first 24 amino acids play a crucial role during the ATPase reaction, because their deletion abolishes the trans-activation between the two N-terminal domains. We propose that the turnover rate of Hsp90 is decisively controlled by intermolecular interactions between the N-terminal domains.  相似文献   

5.
X-ray crystallographic studies of the N-terminal domain of Hsp90 have identified an unconventional ATP binding fold, thereby inferring a role for ATP in the regulation of the Hsp90 activity. In this report, N-ethylcarboxamidoadenosine (NECA) was used to investigate the nucleotide binding properties of GRP94, the endoplasmic reticulum paralog of Hsp90. Whereas Hsp90 did not bind NECA, GRP94 bound NECA in a saturable manner with a K(d) of 200 nm. NECA binding to GRP94 was efficiently blocked by geldanamycin and radicicol. Analysis of ligand binding stoichiometries by radioligand and calorimetric techniques indicated that GRP94 bound 1 mol of NECA/mol of GRP94 dimer. In contrast, GRP94 bound radicicol at a stoichiometry of 2 mol of radicicol/mol of GRP94 dimer. In [(3)H]NECA displacement assays, GRP94 displayed binding interactions with ATP, dATP, ADP, AMP, cAMP, and adenosine, but not GTP, CTP, or UTP. To accommodate the 0.5 mol of NECA:mol of GRP94 binding stoichiometry observed for the native GRP94 dimer, a model for allosteric regulation (negative cooperativity) of ligand binding is proposed. A hypothesis on the regulation of GRP94 conformation and activity by adenosine-based ligand(s) other than ATP and ADP is presented.  相似文献   

6.
GRP94, the endoplasmic reticulum (ER) paralog of the chaperone Hsp90, plays an essential role in the structural maturation or secretion of a subset of proteins destined for transport to the cell surface, such as the Toll-like receptors 2 and 4, and IgG, respectively. GRP94 differs from cytoplasmic Hsp90 by exhibiting very weak ATP binding and hydrolysis activity. GRP94 also binds selectively to a series of substituted adenosine analogs. The high resolution crystal structures at 1.75-2.1 A of the N-terminal and adjacent charged domains of GRP94 in complex with N-ethylcarboxamidoadenosine, radicicol, and 2-chlorodideoxyadenosine reveals a structural mechanism for ligand discrimination among hsp90 family members. The structures also identify a putative subdomain that may act as a ligand-responsive switch. The residues of the charged region fold into a disordered loop whose termini are ordered and continue the twisted beta sheet that forms the structural core of the N-domain. This continuation of the beta sheet past the charged domain suggests a structural basis for the association of the N-terminal and middle domains of the full-length chaperone.  相似文献   

7.
The N-terminal domain of eukaryotic Hsp90 proteins contains a conserved adenosine nucleotide binding pocket that also serves as the binding site for the Hsp90 inhibitors geldanamycin and radicicol. Although this domain is essential for Hsp90 function, the molecular basis for adenosine nucleotide-dependent regulation of GRP94, the endoplasmic reticulum paralog of Hsp90, remains to be established. We report that bis-ANS (1,1'-bis(4-anilino-5-napthalenesulfonic acid), an environment sensitive fluorophore known to interact with nucleotide-binding domains, binds to the adenosine nucleotide-binding domain of GRP94 and thereby activates its molecular chaperone and peptide binding activities. bis-ANS was observed to elicit a tertiary conformational change in GRP94 similar to that occurring upon heat shock, which also activates GRP94 function. bis-ANS activation of GRP94 function was efficiently blocked by radicicol, an established inhibitory ligand for the adenosine nucleotide binding pocket. Confirmation of the N-terminal nucleotide binding pocket as the bis-ANS-binding site was obtained following covalent incorporation of bis-ANS into GRP94, trypsinolysis, and sequencing of bis-ANS-labeled limit digestion products. These data identify a ligand dependent regulation of GRP94 function and suggest a model whereby GRP94 function is regulated through a ligand-dependent conversion of GRP94 from an inactive to an active conformation.  相似文献   

8.
The molecular chaperone heat shock protein 90 (Hsp90) serves essential roles in the regulation of signaling protein function, trafficking, and turnover. Hsp90 function is intimately linked to intrinsic ATP binding and hydrolysis activities, the latter of which is under the regulatory control of accessory factors. Glucose-regulated protein of 94 kDa (GRP94), the endoplasmic reticulum Hsp90, is highly homologous to cytosolic Hsp90. However, neither accessory factors nor adenosine nucleotides have been clearly implicated in the regulation of GRP94-client protein interactions. In the current study, the structural and regulatory consequences of adenosine nucleotide binding to GRP94 were investigated. We report that apo-GRP94 undergoes a time- and temperature-dependent tertiary conformational change that exposes a site(s) of protein-protein interaction; ATP, ADP, and radicicol markedly suppress this conformational change. In concert with these findings, ATP and ADP act identically to suppress GRP94 homooligomerization, as well as both local and global conformational activity. To identify a role(s) for ATP or ADP in the regulation of GRP94-client protein interactions, immunoglobulin (Ig) heavy chain folding intermediates containing bound GRP94 and immunoglobulin binding protein (BiP) were isolated from myeloma cells, and the effects of adenosine nucleotides on chaperone-Ig heavy chain interactions were examined. Whereas ATP elicited efficient release of BiP from both wild-type and mutant Ig heavy chain intermediates, GRP94 remained in stable association with Ig heavy chains in the presence of ATP or ADP. On the basis of these data, we propose that structural maturation of the client protein substrate, rather than ATP binding or hydrolysis, serves as the primary signal for dissociation of GRP94-client protein complexes.  相似文献   

9.
Recruitment of protein kinase clients to the Hsp90 chaperone involves the cochaperone p50(cdc37) acting as a scaffold, binding protein kinases via its N-terminal domain and Hsp90 via its C-terminal region. p50(cdc37) also has a regulatory activity, arresting Hsp90's ATPase cycle during client-protein loading. We have localized the binding site for p50(cdc37) to the N-terminal nucleotide binding domain of Hsp90 and determined the crystal structure of the Hsp90-p50(cdc37) core complex. Dimeric p50(cdc37) binds to surfaces of the Hsp90 N-domain implicated in ATP-dependent N-terminal dimerization and association with the middle segment of the chaperone. This interaction fixes the lid segment in an open conformation, inserts an arginine side chain into the ATP binding pocket to disable catalysis, and prevents trans-activating interaction of the N domains.  相似文献   

10.
Heat shock protein 90 (Hsp90) plays a central role in signal transduction and has emerged as a promising target for anti-cancer therapeutics, but its molecular mechanism is poorly understood. At physiological concentration, Hsp90 predominantly forms dimers, but the function of full-length monomers in cells is not clear. Hsp90 contains three domains: the N-terminal and middle domains contribute directly to ATP binding and hydrolysis and the C domain mediates dimerization. To study the function of Hsp90 monomers, we used a single-chain strategy that duplicated the C-terminal dimerization domain. This novel monomerization strategy had the dual effect of stabilizing the C domain to denaturation and hindering intermolecular association of the ATPase domain. The resulting construct was predominantly monomeric at physiological concentration and did not function to support yeast viability as the sole Hsp90. The monomeric construct was also defective at ATP hydrolysis and the activation of a kinase and steroid receptor substrate in yeast cells. The ability to support yeast growth was rescued by the addition of a coiled-coil dimerization domain, indicating that the parental single-chain construct is functionally defective because it is monomeric.  相似文献   

11.
The activation of molecular chaperone heat-shock protein 90 (Hsp90) is dependent on ATP binding and hydrolysis, which occurs in the N-terminal domains of protein. Here, we have determined three crystal structures of the N-terminal domain of human Hsp90 in native and in complex with ATP and ATP analog, providing a clear view of the catalytic mechanism of ATP hydrolysis by Hsp90. Additionally, the binding of ATP leads the N-terminal domains to be an intermediate state that could be used to partially explain why the isolated N-terminal domain of Hsp90 has very weak ATP hydrolytic activity.  相似文献   

12.
GRP94 is the endoplasmic reticulum paralog of cytoplasmic Hsp90. Models of Hsp90 action posit an ATP-dependent conformational switch in the N-terminal ligand regulatory domain of the chaperone. However, crystal structures of the isolated N-domain of Hsp90 in complex with a variety of ligands have yet to demonstrate such a conformational change. We have determined the structure of the N-domain of GRP94 in complex with ATP, ADP, and AMP. Compared with the N-ethylcarboxamidoadenosine and radicicol-bound forms, these structures reveal a large conformational rearrangement in the protein. The nucleotide-bound form exposes new surfaces that interact to form a biochemically plausible dimer that is reminiscent of those seen in structures of MutL and DNA gyrase. Weak ATP binding and a conformational change in response to ligand identity are distinctive mechanistic features of GRP94 and suggest a model for how GRP94 functions in the absence of co-chaperones and ATP hydrolysis.  相似文献   

13.
The tetratricopeptide repeat domain (TPR)-containing co-chaperone Hsp-organising protein (Hop) plays a critical role in mediating interactions between Heat Shock Protein (Hsp)70 and Hsp90 as part of the cellular assembly machine. It also modulates the ATPase activity of both Hsp70 and Hsp90, thus facilitating client protein transfer between the two. Despite structural work on the individual domains of Hop, no structure for the full-length protein exists, nor is it clear exactly how Hop interacts with Hsp90, although it is known that its primary binding site is the C-terminal MEEVD motif. Here, we have undertaken a biophysical analysis of the structure and binding of Hop to Hsp90 using a variety of truncation mutants of both Hop and Hsp90, in addition to mutants of Hsp90 that are thought to modulate the conformation, in particular the N-terminal dimerisation of the chaperone. The results establish that whilst the primary binding site of Hop is the C-terminal MEEVD peptide of Hsp90, binding also occurs at additional sites in the C-terminal and middle domain. In contrast, we show that another TPR-containing co-chaperone, CyP40, binds solely to the C-terminus of Hsp90.Truncation mutants of Hop were generated and used to investigate the dimerisation interface of the protein. In good agreement with recently published data, we find that the TPR2a domain that contains the Hsp90-binding site is also the primary site for dimerisation. However, our results suggest that residues within the TPR2b may play a role. Together, these data along with shape reconstruction analysis from small-angle X-ray scattering measurements are used to generate a solution structure for full-length Hop, which we show has an overall butterfly-like quaternary structure.Studies on the nucleotide dependence of Hop binding to Hsp90 establish that Hop binds to the nucleotide-free, ‘open’ state of Hsp90. However, the Hsp90-Hop complex is weakened by the conformational changes that occur in Hsp90 upon ATP binding. Together, the data are used to propose a detailed model of how Hop may help present the client protein to Hsp90 by aligning the bound client on Hsp70 with the middle domain of Hsp90. It is likely that Hop binds to both monomers of Hsp90 in the form of a clamp, interacting with residues in the middle domain of Hsp90, thus preventing ATP hydrolysis, possibly by the prevention of association of N-terminal and middle domains in individual Hsp90 monomers.  相似文献   

14.
Hsp90 is an essential molecular chaperone required for the folding and activation of many hundreds of cellular "client" proteins. The ATP-dependent chaperone cycle involves significant conformational rearrangements of the Hsp90 dimer and interaction with a network of cochaperone proteins. Little is known about the mechanism of client protein binding or how cochaperone interactions modulate Hsp90 conformational states. We have determined the cryo-EM structure of the human Hsp90:Hop complex that receives client proteins from the Hsp70 chaperone. Hop stabilizes an alternate Hsp90 open state, where hydrophobic client-binding surfaces have converged and the N-terminal domains have rotated and match the closed, ATP conformation. Hsp90 is thus simultaneously poised for client loading by Hsp70 and subsequent N-terminal dimerization and ATP hydrolysis. Upon binding of a single Hsp70, the Hsp90:Hop conformation remains essentially unchanged. These results identify distinct functions for the Hop cochaperone, revealing an asymmetric mechanism for Hsp90 regulation and client loading.  相似文献   

15.
Hsp90 is a dimeric, ATP-regulated molecular chaperone. Its ATPase cycle involves the N-terminal ATP binding domain (amino acids (aa) 1-272) and, in addition, to some extent the middle domain (aa 273-528) and the C-terminal dimerization domain (aa 529-709). To analyze the contribution of the different domains and the oligomeric state on the progression of the ATPase cycle of yeast Hsp90, we created deletion constructs lacking either the C-terminal or both the C-terminal and the middle domain. To test the effect of dimerization on the ATPase activity of the different constructs, we introduced a Cys residue at the C-terminal ends of the constructs, which allowed covalent dimerization. We show that all monomeric constructs tested exhibit reduced ATPase activity and a decreased affinity for ATP in comparison with wild type Hsp90. The covalently linked dimers lacking only the C-terminal domain hydrolyze ATP as efficiently as the wild type protein. Furthermore, this construct is able to trap the ATP molecule similar to the full-length protein. This demonstrates that in the ATPase cycle, the C-terminal domain can be replaced by a cystine bridge. In contrast, the ATPase activity of the artificially linked N-terminal domains remains very low and bound ATP is not trapped. Taken together, we show that both the dimerization of the N-terminal domains and the association of the N-terminal with the middle domain are important for the efficiency of the ATPase cycle. These reactions are synergistic and require Hsp90 to be in the dimeric state.  相似文献   

16.
Activation of client proteins by the Hsp90 molecular chaperone is dependent on binding and hydrolysis of ATP, which drives a molecular clamp via transient dimerization of the N-terminal domains. The crystal structure of the middle segment of yeast Hsp90 reveals considerable evolutionary divergence from the equivalent regions of other GHKL protein family members such as MutL and GyrB, including an additional domain of new fold. Using the known structure of the N-terminal nucleotide binding domain, a model for the Hsp90 dimer has been constructed. From this structure, residues implicated in the ATPase-coupled conformational cycle and in interactions with client proteins and the activating cochaperone Aha1 have been identified, and their roles functionally characterized in vitro and in vivo.  相似文献   

17.
The Hsp90 family of proteins in mammalian cells consists of Hsp90 alpha and beta, Grp94, and Trap-1 (Hsp75). Radicicol, an antifungal antibiotic that inhibits various signal transduction proteins such as v-src, ras, Raf-1, and mos, was found to bind to Hsp90, thus making it the prototype of a second class of Hsp90 inhibitors, distinct from the chemically unrelated benzoquinone ansamycins. We have used two novel methods to immobilize radicicol, allowing for detailed analyses of drug-protein interactions. Using these two approaches, we have studied binding of the drug to N-terminal Hsp90 point mutants expressed by in vitro translation. The results point to important drug contacts with amino acids inside the N-terminal ATP/ADP-binding pocket region and show subtle differences when compared with geldanamycin binding. Radicicol binds more strongly to Hsp90 than to Grp94, the Hsp90 homolog that resides in the endoplasmic reticulum. In contrast to Hsp90, binding of radicicol to Grp94 requires both the N-terminal ATP/ADP-binding domain as well as the adjacent negatively charged region. Radicicol also specifically binds to yeast Hsp90, Escherichia coli HtpG, and a newly described tumor necrosis factor receptor-interacting protein, Trap-1, with greater homology to bacterial HtpG than to Hsp90. Thus, the radicicol-binding site appears to be specific to and is conserved in all members of the Hsp90 family of molecular chaperones from bacteria to mammals, but is not present in other molecular chaperones with nucleotide-binding domains.  相似文献   

18.
Hsp90 chaperones contain an N-terminal ATP binding site that has been effectively targeted by competitive inhibitors. Despite the myriad of inhibitors, none to date have been designed to bind specifically to just one of the four mammalian Hsp90 paralogs, which are cytoplasmic Hsp90α and β, endoplasmic reticulum GRP94, and mitochondrial Trap-1. Given that each of the Hsp90 paralogs is responsible for chaperoning a distinct set of client proteins, specific targeting of one Hsp90 paralog may result in higher efficacy and therapeutic control. Specific inhibitors may also help elucidate the biochemical roles of each Hsp90 paralog. Here, we present side-by-side comparisons of the structures of yeast Hsp90 and mammalian GRP94, bound to the pan-Hsp90 inhibitors geldanamycin (Gdm) and radamide. These structures reveal paralog-specific differences in the Hsp90 and GRP94 conformations in response to Gdm binding. We also report significant variation in the pose and disparate binding affinities for the Gdm-radicicol chimera radamide when bound to the two paralogs, which may be exploited in the design of paralog-specific inhibitors.  相似文献   

19.
分子伴侣热休克蛋白90(Hsp90)对于许多涉及细胞周期调控、信号转导以及细胞生长调控蛋白质的折叠、成熟及稳定是必需的.Hsp90的N端结构高度保守,包含一个ATP结合口袋并具有ATP酶活性,Hsp90的功能依赖于ATP与Hsp90结合后诱导的构象重排及之后的ATP水解.为了深入研究ATP与Hsp90结合后N端的结构及其功能状态,使用悬滴法共结晶了Hsp90的N端与ATP类似物AMPPNP及ATPγS的复合物,并利用分子置换法对其结构进行了解析.两个复合物晶体结构都捕获到了核苷酸的电子密度,尤其是γ-磷酸的电子密度,从而观察到γ-磷酸与蛋白质之间的相互作用.ATPγS中γ-磷酸的捕获证实了之前报道的结构中没有捕获到γ-磷酸是其处于无序状态而非被水解.单体状态下的人源Hsp90N- AMPPNP与处于二聚体化的酵母Hsp90-AMPPNP结构对比可见S1和ATP lid的位置有明显区别,结构分析表明,E18-K100和N40-D127之间形成的氢键相互作用,在一定程度上阻碍了S1和ATP lid的摆动,很可能阻止了二聚体的形成.  相似文献   

20.
The molecular chaperone Hsp90 is required for the folding and activation of a large number of substrate proteins. These are involved in essential cellular processes ranging from signal transduction to viral replication. For the activation of its substrates, Hsp90 binds and hydrolyzes ATP, which is the key driving force for conformational conversions within the dimeric chaperone. Dimerization of Hsp90 is mediated by a C-terminal dimerization site. In addition, there is a transient ATP-induced dimerization of the two N-terminal ATP-binding domains. The resulting ring-like structure is thought to be the ATPase-active conformation. Hsp90 is a slow ATPase with a turnover number of 1 ATP/min for the yeast protein. A key question for understanding the molecular mechanism of Hsp90 is how ATP hydrolysis is regulated and linked to conformational changes. In this study, we analyzed the activation process structurally and biochemically with a view to identify the conformational limitations of the ATPase reaction cycle. We showed that the first 24 amino acids stabilize the N-terminal domain in a rigid state. Their removal confers flexibility specifically to the region between amino acids 98 and 120. Most surprisingly, the deletion of this structure results in the complete loss of ATPase activity and in increased N-terminal dimerization. Complementation assays using heterodimeric Hsp90 show that this rigid lid acts as an intrinsic kinetic inhibitor of the Hsp90 ATPase cycle preventing N-terminal dimerization in the ground state. On the other hand, this structure acts, in concert with the 24 N-terminal amino acids of the other N-terminal domain, to form an activated ATPase and thus regulates the turnover number of Hsp90.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号