首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Short oligonucleotides that can bind to adjacent sites on target mRNA sequences are designed and evaluated for their binding affinity and biological activity. Sequence-specific binding of short tandem oligonucleotides is compared with a full-length single oligonucleotide (21mer) that binds to the same target sequence. Two short oligonucleotides that bind without a base separation between their binding sites on the target bind cooperatively, while oligonucleotides that have a one or two base separation between the binding oligonucleotides do not. The binding affinity of the tandem oligonucleotides is improved by extending the ends of the two oligonucleotides with complementary sequences. These extended sequences form a duplex stem when both oligonucleotides bind to the target, resulting in a stable ternary complex. RNase H studies reveal that the cooperative oligonucleotides bind to the target RNA with sequence specificity. A short oligonucleotide (9mer) with one or two mismatches does not bind at the intended site, while longer oligonucleotides (21mers) with one or two mismatches still bind to the same site, as does a perfectly matched 21mer, and evoke RNase H activity. HIV-1 inhibition studies reveal an increase in activity of the cooperative oligonucleotide combinations as the length of the dimerization domain increases.  相似文献   

2.
Synthetic oligodeoxyribonucleotides containing CpG-dinucleotides (CpG DNA) in specific sequence contexts activate the vertebrate immune system. We have examined the effect of 3′-deoxy-2′–5′-ribonucleoside (3′-deoxynucleoside) incorporation into CpG DNA on the immunostimulatory activity. Incorporation of 3′-deoxynucleosides results in the formation of 2′5′-internucleotide linkages in an otherwise 3′–5′-linked CpG DNA. In studies, both in vitro and in vivo, CpG DNA containing unnatural 3′-deoxynucleoside either within the CpG-dinucleotide or adjacent to the CpG-dinucleotide failed to induce immunostimulatory activity, suggesting that the modification was not recognized by the receptors. Incorporation of the same modification distal to the CpG-dinucleotide in the 5′-flanking sequence potentiated the immunostimulatory activity of the CpG DNA. The same modification when incorporated in the 3′-flanking sequence had an insignificant effect on immunostimulatory activity of CpG DNA. Interestingly, substitution of a 3′-deoxynucleoside in the 5′-flanking sequence distal to the CpG-dinucleotide resulted in increased IL-6 and IL-10 secretion with similar levels of IL-12 compared with parent CpG DNA. The incorporation of the same modification in the 3′-flanking sequence resulted in lower IL-6 and IL-10 secretion with similar levels of IL-12 compared with parent CpG DNA. These results suggest that site-specific incorporation of 3′-deoxynucleotides in CpG DNA modulates immunostimulatory properties.  相似文献   

3.
Bicyclic oxazaphospholidine monomers were used to prepare a series of phosphorothioate (PS)-modified gapmer antisense oligonucleotides (ASOs) with control of the chirality of each of the PS linkages within the 10-base gap. The stereoselectivity was determined to be 98% for each coupling. The objective of this work was to study how PS chirality influences biophysical and biological properties of the ASO including binding affinity (Tm), nuclease stability, activity in vitro and in vivo, RNase H activation and cleavage patterns (both human and E. coli) in a gapmer context. Compounds that had nine or more Sp-linkages in the gap were found to be poorly active in vitro, while compounds with uniform Rp-gaps exhibited activity very similar to that of the stereo-random parent ASOs. Conversely, when tested in vivo, the full Rp-gap compound was found to be quickly metabolized resulting in low activity. A total of 31 ASOs were prepared with control of the PS chirally of each linkage within the gap in an attempt to identify favorable Rp/Sp positions. We conclude that a mix of Rp and Sp is required to achieve a balance between good activity and nuclease stability.  相似文献   

4.
Oligonucleotides containing 3'-O-methyl ribonucleosides were synthesized, and their thermal stabilities and global conformations with RNA and DNA have been studied. The duplexes displayed lower T(m) values as compared to the unmodified ones, and adopted A-conformations. Furthermore, they are not a substrate for RNase H, are slightly resistant to snake venom phosphodiesterase, and are not cleaved by nuclease S 1.  相似文献   

5.
Conformational properties of trimeric and tetrameric 2′,5′-linked oligonucleotides, 3′-MOE-A32′,5′ (1) and 3′-MOE-A42′,5′ (2), and their 3′,5′-linked analogs, 2′-MOE-A33′,5′ (3) and 2′-MOE-A43′,5′ (4), were examined with the use of heteronuclear NMR spectroscopy. The temperature-dependent 3JHH, 3JHP and 3JCP coupling constants, acquired in the range of 273–343 K, gave insight into the conformation of sugar rings in terms of a two-state North ↔ South (N ↔ S) pseudorotational equilibrium and into the conformation of the sugar–phosphate backbone in the model antisense oligonucleotides 1–4. 2′,5′-linked oligomers 3′-MOE-A32′,5′ (1) and 3′-MOE-A42′,5′ (2) show preference for N-type conformers and indication of A-type conformational features, which is prerequisite for antisense hybridization. The drive of N ↔ S equilibrium in 1–4 has been rationalized with the competing gauche effects of 2′/3′-phosphodiester and 3′/2′-MOE groups, anomeric and steric effects. Furthermore, the pairwise comparisons of 3′-MOE with 3′-OH and 3′-deoxy 2′,5′-linked adenine trimers emphasized the fine tuning of N ↔ S equilibrium in 3′-MOE-A32′,5′ (1) and 3′-MOE-A42′,5′ (2) by the steric effects of 3′-MOE group and the possibility of water-mediated H-bonds with vicinal phosphodiester functionality. In full correspondence, the drive of N ↔ S equilibrium towards N by 2′-MOE in 3′,5′-linked analogs 2′-MOE-A33′,5′ (3) and 2′-MOE-A43′,5′ (4) is weaker in comparison with 3′-OH group in the corresponding ribo analogs. βt, γ+ and ε rotamers are preferred in both 2′,5′- and in 3′,5′-linked oligonucleotides 1–4.  相似文献   

6.
Oligodeoxynucleotides modified at both 5'- and 3'-ends with inverted thymidine (5'-,3'-inverted T) were introduced as new reagents for antisense strategies. These modifications were performed to make the oligodeoxynucleotides resistant to nucleases. The effectiveness of these oligodeoxynucleotides was evaluated in terms of inhibition of synthesis of midkine (MK), a heparin-binding growth factor, and consequent inhibition of growth of CMT-93 mouse rectal carcinoma cells. 5'-,3'-Inverted T antisense MK suppressed synthesis of MK by CMT-93 cells and their growth in culture. Furthermore, 5'-,3'-inverted T oligodeoxynucleotides exhibited less cytotoxicity and better stability than phosphorothioate oligodeoxynucleotides. When 5'-,3'-inverted T antisense MK was mixed with atelocollagen, and injected into CMT-93 tumors pregrown in nude mice, tumor growth was markedly suppressed as compared with tumors injected with sense controls. The suppressive effect of 5'-,3'-inverted T antisense MK on tumor growth was stronger than that of phosphorothioate antisense MK. These findings indicated the usefulness of inverted thymidine-modified antisense oligodeoxynucleotides as a new reagent instead of phosphorothioate-modified oligodeoxynucleotides.  相似文献   

7.
The influence of the secondary structure of oligonucleotides having a natural phosphodiester backbone on their ability to interact with DNA and RNA targets and on their resistance to the nucleolytic digestion is investigated. Oligonucleotides having hairpin, looped and snail-like structure are found to be much more stable to nuclease degradation in different biological media and inside cells than the linear ones. The structured oligonucleotides can also hybridise with their DNA and RNA targets.  相似文献   

8.
2'-5'-Linked oligoadenylic acid 5'-triphosphates (2-5A) having chain lengths of 2-4 have been synthesized by polymerization of 3'-O-(o-nitrobenzyl)-N-benzoyladenosine 5'-phosphate followed by 5'-triphosphorylation via the imidazolidates. A large scale preparation of 5'-O-phosphoryladenylyl-(2'-5')-adenylyl-(2'-5')-adenosine was performed by the phosphotriester method using 5'-O-monomethoxytrityl-3'-O-(o-nitrobenzyl)-N-benzoyladenosine 2'-O-p-chlorophenylphosphate and 5'-O-phosphorodianilido-3'-O-(o-nitrobenzyl)-N-benzoyladenosine 2'-O-p-chlorophenylphosphate as intermediates. The trimer was also triphosphorylated by the imidazolide method. CD spectra for 5'-mono and triphosphorylated 2'-5' adenylates were measured as well as their UV hypochromicities. This triester method was also applied to the synthesis of 3',5'-bisphosphorylated protected oligoadenylic acids with natural 3'-5' linkages which could be used for further condensations to yield 5'-phosphorylated polynucleotides.  相似文献   

9.
The synthesis, binding and fluorescence properties of oligonucleotides containing the uridine modified at the 2'-position by a pyrene group using different length of linker arm have been described. It is demonstrated that the oligonucleotides possessing a C3-amide group at the 2'-position display an enhanced signal of the pyrene monomer fluorescence upon binding to DNA segments.  相似文献   

10.
11.
New methods to synthesize 2'-O-methyl-2-thiouridine and its phosphoramidite building block for incorporation into oligonucleotides were developed. Oligonucleotides containing 2'-O-methyl-2-thiouridine were expected to be favorable as antisense agents in several respects, i.e., nuclease resistance, stable RNA duplex formation, and exact base recognition. Therefore, to make them clear, we synthesized oligonucleotides having 2'-O-methyl-2-thiouridine and analyzed their properties in detail.  相似文献   

12.
C Boiziau  J J Toulmé 《Biochimie》1991,73(11):1403-1408
We have investigated the behaviour of antisense oligonucleotides in rabbit reticulocytes. Both backbone-modified oligomers (methyl-phosphonate and phosphorothioate analogues), anomers of nucleotide units (alpha) and oligonucleotides linked to various ligands (intercalator, polylysine, dodecanol) were tested with respect to cellular uptake and inhibition of protein synthesis. Oligonucleotides added at an external concentration of 10 microM slowly entered the cell up to a concentration of a few hundred nanomolars. A large fraction of phosphorothioate analogues was found to be associated with the membrane. alpha-, methylphosphonate and phosphorothioate analogues remained intact during the incubation with reticulocytes although the latter were partly dephosphorylated. Antisense oligonucleotides were targeted against three different sites of the rabbit beta-globin mRNA: the 5' end of the message, the initiator AUG or the coding sequence. No specific effect on beta-globin synthesis was observed with any of the investigated compounds.  相似文献   

13.
Two series of alternating ODNs containing 5-n.alkyl-, alkenyl- and alkynyl-dU and -dC units have been prepared in order to study the kinetics of their hydrolysis by SV PDE and human serum, respectively. Both in (r5dUpdA)10 and (r5dCpdG)6 series the rate of hydrolysis decreased with increasing length of side-chain. Replacement of thymidines by 5-hexynyl-dU in different antisense oligomers resulted in considerably higher biological activity relative to that of the thymidine-containing counterparts.  相似文献   

14.
15.
The preparation of synthetic oligonucleotides containing 2'-deoxynebularine (dN) and 2'-deoxyxanthosine (dX) is described. The thermal stabilities of duplexes containing dX, dN, and 2'-deoxyinosine (dI) base-paired with the four natural bases have been measured. Xanthine base pairs have stabilities at pH 5.5 that are similar to those of dI-containing duplexes at neutral pH. When xanthine is paired with adenine or cytosine an unusual stabilization of the duplex structure is observed at acid pH. Incorporation of base mispairs opposite template xanthine sites were measured using Drosophila DNA polymerase alpha. The relative nucleoside incorporation rates are in the order: T greater than C much greater than A approximately equal to G. These rates do not correlate with relative thermodynamic stabilities of base mispairs with xanthine obtained from Tm measurements: T greater than G greater than A approximately equal to C. We suggest that DNA polymerase misinsertion rates are greatest when the base mispair can be formed in accordance with Watson-Crick as opposed to other base pairing geometries even though other geometries, e.g. wobble, may result in a more stable final DNA product.  相似文献   

16.
In continued studies to elucidate the requirements for binding to and activation of the 2',5'-oligoadenylate (2-5A) dependent endoribonuclease (RNase L), four 2-5A trimer analogs were examined to evaluate the effect of chirality of phosphorothioate substitution on biological activity. The chemical syntheses and purification of the four isomers of P-thio-3'-deoxyadenylyl-(2'-5')-P-thio-3'- deoxyadenylyl-(2'-5')-3'-deoxyadenosine, by the phosphoramidite approach, is described. The isolated intermediates were characterized by elemental and spectral analyses. The fully deblocked compounds were characterized by 1H and 31P NMR and HPLC analyses. The 2',5'-(3'dA)3 cores with either Rp or Sp chirality in the 2',5'-internucleotide linkages will bind to but will not activate RNase L. This is in contrast to 2',5'-A3 core analogs with either RpRp or SpRp phosphorothioate substitution in the 2',5'-internucleotide linkages which can bind to and activate RNase L. There are also marked differences in the ability of the 2',5'-A3 analogs to activate RNase L following introduction of the 5'-monophosphate. For example, the 5'monophosphates of 2',5'-(3'dA)3-RpRp and 2',5'-(3'dA)3-SpRp can bind to and activate RNase L, whereas the 5'-monophosphates of 2',5'-(3'dA)3-RpSp and 2',5'-(3'dA)3-SpSp can bind to but can not activate RNase L.  相似文献   

17.
We have designed a new class of oligonucleotides, "dumbbell RNA/DNA chimeric phosphodiesters", containing two alkyl loop structures with RNA/DNA base pairs (sense (RNA) and antisense (DNA) in the double helical stem. The reaction of nicked (NDRDON) and circular (CDRDON) dumbbell RNA/DNA chimeric oligonucleotides with RNaseH gave the corresponding antisense phosphodiester oligonucleotide together with the sense RNA cleavage products. The liberated antisense phosphodiester oligodeoxynucleotide was bound to the target 35mer RNA, which gave 35mer RNA cleavage products by treatment with RNaseH. The circular dumbbell RNA/DNA chimeric oligonucleotide showed more nuclease resistance than the linear antisense phosphodiester oligodeoxynucleotide(anti-ODN) and the nicked dumbbell RNA/DNA chimeric oligonucleotide.  相似文献   

18.
A versatile, general way is described for the introduction of different functional groups into oligonucleotides by means of a simple linker at the 2'-position of the sugar. Nucleotide building blocks carrying lipophilic, intercalating or tertiary amino groups can be placed deliberately at any desired position of oligonucleotides by standard automated oligonucleotide synthesis. Thermal denaturation studies with these oligonucleotides reveal the following general trends: i) Modification with lipophilic n-octyl groups has little if any effect on duplex stability; a destabilizing (lipophilic) substituent is better tolerated at or near the ends than in the middle of the oligo. ii) An intercalating substituent (2-aminoanthraquinone) substantially increases duplex stability. iii) N,N-Dimethyl amino residues also increase duplex stability though to a smaller extent than intercalating residues. iv) Modifications at the 5'-end have a more pronounced influence on the TM than the corresponding 3'-modifications. v) Oligonucleotides modified in such a way show little or no loss in sequence specificity.  相似文献   

19.
The synthesis of 8-methyladenosine-substituted 2-5A tetramers with hydroxyalkyl groups at the 5'-phosphates and the corresponding 2-5A-antisense chimeras is described. These oligonucleotides were synthesized by the phosphoramidite method with a DNA/RNA synthesizer. These 2-5A tetramers with hydroxyethyl and hydroxybutyl groups at their 5'-phosphates were more resistant to hydrolysis by alkaline phosphatase than those without the hydroxyalkyl groups. Incorporation of the hydroxyethyl group into the 2-5A tetramer and 2-5A-antisense chimera slightly reduced the abilities of their analogues to activate recombinant human RNase L, but the abilities of the 2-5A tetramer and the 2-5A-antisense chimera both with the hydroxyethyl group and 8-methyladenosine returned to 80 and 50% relative to those of the oligonucleotides without the hydroxyethyl group and 8-methyladenosine, respectively. Furthermore, the enzyme activated by 8-methyladenosine-substituted 2-5A-antisense chimera with the hydroxyethyl group cleaved the complementary RNA as efficiently as that activated by 2-5A-antisense chimera without the hydroxyethyl group and 8-methyladenosine. Thus, the 2-5A-antisense chimera carrying the hydroxyethyl group and 8-methyladenosine will be a candidate for a novel antisense molecule.  相似文献   

20.
Several researches have been devoted to structure-activity relationship and to post-SELEX modifications of the thrombin binding aptamer (TBA), one of the first aptamers discovered by the SELEX methodology. However, no studies on TBA dealing with the effects of introduction of inversion of polarity sites have been reported yet. In this frame, we have undertaken the synthesis and the study of a mini-library composed of several TBA analogues containing a 3'-3' or a 5'-5' inversion of polarity site at different positions into the sequence. Particularly, in this article, we present preliminary results about their structural and biological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号