首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
Xanthomonas encounters highly toxic reactive oxygen species (ROS) from many sources, such as those generated by plants against invading bacteria, other soil bacteria and from aerobic respiration. Thus, conditions that alter intracellular ROS levels such as exposure to toxic metalloids would have profound effects on bacterial physiology. Here, we report that exposure of Xanthomonas campestris pv. phaseoli (Xp) to low levels of arsenic induces physiological cross-protection against killing by H(2)O(2) and organic hydroperoxide but not a superoxide generator. Cross-protection against H(2)O(2) and organic hydroperoxide toxicity was due to increased expression of genes encoding major peroxide-metabolizing enzymes such as alkyl hydroperoxide reductase (AhpC), catalase (KatA) and organic hydroperoxide resistance protein (Ohr). Arsenic-induced protection against H(2)O(2) and organic hydroperoxide requires the peroxide stress response regulators, OxyR and OhrR, respectively. Moreover, analyses of double mutants of the major H(2)O(2) and organic hyproperoxide-scavenging enzymes, Xp ahpC katA and Xp ahpC ohr, respectively, suggested the existence of unidentified OxyR- and OhrR-regulated genes that are involved in arsenic-induced resistance to H(2)O(2) and organic hyproperoxide killing in Xp. These arsenic-induced physiological alterations could play an important role in bacterial survival both in the soil environment and during plant-pathogen interactions.  相似文献   

3.
During plant-microbe interactions and in the environment, Xanthomonas campestris pv. phaseoli is likely to be exposed to high concentrations of multiple oxidants. Here, we show that simultaneous exposures of the bacteria to multiple oxidants affects cell survival in a complex manner. A superoxide generator (menadione) enhanced the lethal effect of an organic peroxide (tert-butyl hydroperoxide) by 1, 000-fold; conversely, treatment of cells with menadione plus H(2)O(2) resulted in 100-fold protection compared to that for cells treated with the individual oxidants. Treatment of X. campestris with a combination of H(2)O(2) and tert-butyl hydroperoxide elicited no additive or protective effect. High levels of catalase alone are sufficient to protect cells against the lethal effect of menadione plus H(2)O(2) and tert-butyl hydroperoxide plus H(2)O(2). These data suggest that H(2)O(2) is the lethal agent responsible for killing the bacteria as a result of these treatments. However, increased expression of individual genes for peroxide (alkyl hydroperoxide reductase, catalase)- and superoxide (superoxide dismutase)-scavenging enzymes or concerted induction of oxidative stress-protective genes by menadione gave no protection against killing by a combination of menadione plus tert-butyl hydroperoxide. However, X. campestris cells in the stationary phase and a spontaneous H(2)O(2)-resistant mutant (X. campestris pv. phaseoli HR) were more resistant to killing by menadione plus tert-butyl hydroperoxide. These findings give new insight into oxidant killing of Xanthomonas spp. that could be generally applied to other bacteria.  相似文献   

4.
A spontaneous Xanthomonas campestris pv. phaseoli H(2)O(2)-resistant mutant emerged upon selection with 1 mM H(2)O(2). In this report, we show that growth of this mutant under noninducing conditions gave high levels of catalase, alkyl hydroperoxide reductase (AhpC and AhpF), and OxyR. The H(2)O(2) resistance phenotype was abolished in oxyR-minus derivatives of the mutant, suggesting that elevated levels and mutations in oxyR were responsible for the phenotype. Nucleotide sequence analysis of the oxyR mutant showed three nucleotide changes. These changes resulted in one silent mutation and two amino acid changes, one at a highly conserved location (G197 to D197) and the other at a nonconserved location (L301 to R301) in OxyR. Furthermore, these mutations in oxyR affected expression of genes in the oxyR regulon. Expression of an oxyR-regulated gene, ahpC, was used to monitor the redox state of OxyR. In the parental strain, a high level of wild-type OxyR repressed ahpC expression. By contrast, expression of oxyR5 from the X. campestris pv. phaseoli H(2)O(2)-resistant mutant and its derivative oxyR5G197D with a single-amino-acid change on expression vectors activated ahpC expression in the absence of inducer. The other single-amino-acid mutant derivative of oxyR5L301R had effects on ahpC expression similar to those of the wild-type oxyR. However, when the two single mutations were combined, as in oxyR5, these mutations had an additive effect on activation of ahpC expression.  相似文献   

5.
Agrobacterium tumefaciens is an aerobic plant pathogenic bacterium that is exposed to reactive oxygen species produced either as by-products of aerobic metabolism or by the defense systems of host plants. The physiological function of the bifunctional catalase-peroxidase (KatA) in the protection of A. tumefaciens from reactive oxygen species other than H(2)O(2) was evaluated in the katA mutant (PB102). Unexpectedly, PB102 was highly sensitive to the superoxide generator menadione. The expression of katA from a plasmid vector complemented the menadione-hypersensitive phenotype. A. tumefaciens possesses an additional catalase gene, a monofunctional catalase encoded by catE. Neither inactivation nor high-level expression of the catE gene altered the menadione resistance level. Moreover, heterologous expression of the catalase-peroxidase-encoding gene katG from Burkholderia pseudomallei, but not the monofunctional catalase gene katE from Xanthomonas campestris could restore normal levels of menadione resistance to PB102. A recent observation suggests that the menadione resistance phenotype involves increased activities of organic peroxide-metabolizing enzymes. Heterologous expression of X. campestris alkyl hydroperoxide reductase from a plasmid vector failed to complement the menadione-sensitive phenotype of PB102. The level of menadione resistance shows a direct correlation with the level of peroxidase activity of KatA. This is a novel role for KatA and suggests that resistance to menadione toxicity is mediated by a new, and as yet unknown, mechanism in A. tumefaciens.  相似文献   

6.
7.
Vibrio harveyi is a causative agent of destructive luminous vibriosis in farmed black tiger prawn (Penaeus monodon). V. harveyi peroxide and superoxide stress responses toward elevated levels of a superoxide generated by menadione were investigated. Exposure of V. harveyi to sub-lethal concentrations of menadione induced high expression of genes in both the OxyR regulon (e.g., a monofunctional catalase or KatA and an alkyl hydroperoxide reductase subunit C or AhpC), and the SoxRS regulon (e.g., a superoxide dismutase (SOD) and a glucose-6-phosphate dehydrogenase). V. harveyi expressed two detectable, differentially regulated SOD isozymes, [Mn]-SOD and [Fe]-SOD. [Fe]-SOD was expressed constitutively throughout the growth phase while [Mn]-SOD was expressed at the stationary phase and could be induced by a superoxide generator. Physiologically, pre-treatment of V. harveyi with menadione induced cross-protection against subsequent exposure to killing concentrations of H(2)O(2). This induced cross-protection required newly synthesized proteins. However, the treatment did not induce significant protection against exposures to killing concentrations of menadione itself or cross-protect against an organic hydroperoxide (tert-butyl hydroperoxide). Unexpectedly, growing V. harveyi in high-salinity media induced protection against menadione killing. This protection was independent of SOD induction. Stationary-phase cells were more resistant to menadione killing than exponential-phase cells. The induction of oxidative stress protective enzymes and stress-altered physiological responses could play a role in the survival of this bacterium in the host marine crustaceans.  相似文献   

8.
Alkyl hydroperoxide reductase subunit C (AhpC) is the catalytic subunit responsible for alkyl peroxide metabolism. A Xanthomonas ahpC mutant was constructed. The mutant had increased sensitivity to organic peroxide killing, but was unexpectedly hyperresistant to H(2)O(2) killing. Analysis of peroxide detoxification enzymes in this mutant revealed differential alteration in catalase activities in that its bifunctional catalase-peroxidase enzyme and major monofunctional catalase (Kat1) increased severalfold, while levels of its third growth-phase-regulated catalase (KatE) did not change. The increase in catalase activities was a compensatory response to lack of AhpC, and the phenotype was complemented by expression of a functional ahpC gene. Regulation of the catalase compensatory response was complex. The Kat1 compensatory response increase in activity was mediated by OxyR, since it was abolished in an oxyR mutant. In contrast, the compensatory response increase in activity for the bifunctional catalase-peroxidase enzyme was mediated by an unknown regulator, independent of OxyR. Moreover, the mutation in ahpC appeared to convert OxyR from a reduced form to an oxidized form that activated genes in the OxyR regulon in uninduced cells. This complex regulation of the peroxide stress response in Xanthomonas differed from that in other bacteria.  相似文献   

9.
10.
Mutations that suppressed the H2O2 sensitivity of Escherichia coli oxyR- strains caused elevated levels of one three enzymes that destroy organic and hydrogen peroxides: catalase-hydroperoxidase I (the katG gene product), catalase-hydroperoxidase II (controlled by katEF) or alkyl hydroperoxide reductase (specified by the ahp genes). The continuous high-level expression of any one of these enzymes also conferred resistance in an oxyR deletion mutant against other compounds such as N-ethylmaleimide and the superoxide-generator menadione. Overproduction of alkyl hydroperoxide reductase, but not of the catalases, gave resistance to the organic oxidant cumene hydroperoxide. The E. coli delta oxyR strains also exhibited a strongly elevated frequency of spontaneous mutagenesis, as reported for such mutants in Salmonella typhimurium. This mutagenesis was greatly diminished by the individual overexpression of these scavenging enzymes. All of these phenotypes--enzyme overproduction, resistance to oxidants and suppression of spontaneous mutagenesis--remained linked upon transduction of the mutant katG or ahp genes. Peroxides thus appear to mediate the toxicity of a variety of redox agents, and are produced in sufficient quantity during normal metabolism to cause a substantial increase in 'spontaneous' mutations in cells that lack adequate antioxidant defenses.  相似文献   

11.
12.
Alkyl hydroperoxide reductase (ahpC) and organic hydroperoxide resistance (ohr) are distinct genes, structurally and regulatory, but have similar physiological functions. In Xanthomonas campestris pv. phaseoli inactivation of either gene results in increased sensitivity to killing with organic peroxides. An ahpC1-ohr double mutant was highly sensitive to both growth inhibition and killing treatment with organic peroxides. High level expression of ahpC or ohr only partially complemented the phenotype of the double mutant, suggesting that these genes function synergistically, but through different pathways, to protect Xanthomonas from organic peroxide toxicity. Functional analyses of Ohr and AhpC abilities to degrade organic hydroperoxides revealed that both Ohr and AhpC could degrade tert-butyl hydroperoxide (tBOOH) while the former was more efficient at degrading cumene hydroperoxide (CuOOH). Expression analysis of these genes in the mutants showed no compensatory alterations in the levels of AhpC or Ohr. However, CuOOH induced expression of these genes in the mutants was affected. CuOOH induced ahpC expression was higher in the ohr mutant than in the parental strain; in contrast, the ahpC mutation has no effect on the level of induced ohr expression. These analyses reveal complex physiological roles and expression patterns of seemingly functionally similar genes.  相似文献   

13.
In the gastric pathogen Helicobacter pylori, catalase (KatA) and alkyl hydroperoxide reductase (AhpC) are two highly abundant enzymes that are crucial for oxidative stress resistance and survival of the bacterium in the host. Here we report a connection unidentified previously between the two stress resistance enzymes. We observed that the catalase in ahpC mutant cells in comparison with the parent strain is inactivated partially (approximately 50%). The decrease of catalase activity is well correlated with the perturbation of the heme environment in catalase, as detected by electron paramagnetic resonance spectroscopy. To understand the reason for this catalase inactivation, we examined the inhibitory effects of hydroperoxides on H. pylori catalase (either present in cell extracts or added to the purified enzyme) by monitoring the enzyme activity and the EPR signal of catalase. H. pylori catalase is highly resistant to its own substrate, without the loss of enzyme activity by treatment with a molar ratio of 1:3000 H2O2. However, it inactivated is by lower concentrations of organic hydroperoxides (the substrate of AhpC). Treatment with a molar ratio of 1:400 t-butyl hydroperoxide resulted in an inactivation of catalase by approximately 50%. UV-visible absorption spectra indicated that the catalase inactivation by organic hydroperoxides is caused by the formation of a catalytically incompetent compound II species. To further support the idea that organic hydroperoxides, which accumulate in the ahpC mutant cells, are responsible for the inactivation of catalase, we compared the level of lipid peroxidation found in ahpC mutant cells with that found in wild type cells. The results showed that the total amount of extractable lipid hydroperoxides in the ahpC mutant cells is approximately three times that in the wild type cells. Our findings reveal a novel role of the organic hydroperoxide detoxification system in preventing catalase inactivation.  相似文献   

14.
Mycobacterium tuberculosis is a natural mutant with inactivated oxidative stress regulatory gene oxyR. This characteristic has been linked to the exquisite sensitivity of M. tuberculosis to isonicotinic acid hydrazide (INH). In the majority of mycobacteria tested, including M. tuberculosis, oxyR is divergently transcribed from ahpC, a gene encoding a homolog of the subunit of alkyl hydroperoxide reductase that carries out substrate peroxide reduction. Here we compared ahpC expression in Mycobacterium smegmatis, a mycobacterium less sensitive to INH, with that in two highly INH sensitive species, M. tuberculosis and Mycobacterium aurum. The ahpC gene of M. smegmatis was cloned and characterized, and the 5' ends of ahpC mRNA were mapped by S1 nuclease protection analysis. M. smegmatis AhpC and eight other polypeptides were inducible by exposure to H2O2 or organic peroxides, as determined by metabolic labeling and Western blot (immunoblot) analysis. In contrast, M. aurum displayed differential induction of only one 18-kDa polypeptide when exposed to organic peroxides. AhpC could not be detected in this organism by immunological means. AhpC was also below detection levels in M. tuberculosis H37Rv. These observations are consistent with the interpretation that ahpC expression and INH sensitivity are inversely correlated in the mycobacterial species tested. In further support of this conclusion, the presence of plasmid-borne ahpC reduced M. smegmatis susceptibility to INH. Interestingly, mutations in the intergenic region between oxyR and ahpC were identified and increased ahpC expression observed in deltakatG M. tuberculosis and Mycobacterium bovis INH(r) strains. We propose that mutations activating ahpC expression may contribute to the emergence of INH(r) strains.  相似文献   

15.
During plant-microbe interactions and in the environment, Xanthomonas campestris pv. phaseoli is likely to be exposed to high concentrations of multiple oxidants. Here, we show that simultaneous exposures of the bacteria to multiple oxidants affects cell survival in a complex manner. A superoxide generator (menadione) enhanced the lethal effect of an organic peroxide (tert-butyl hydroperoxide) by 1,000-fold; conversely, treatment of cells with menadione plus H2O2 resulted in 100-fold protection compared to that for cells treated with the individual oxidants. Treatment of X. campestris with a combination of H2O2 and tert-butyl hydroperoxide elicited no additive or protective effect. High levels of catalase alone are sufficient to protect cells against the lethal effect of menadione plus H2O2 and tert-butyl hydroperoxide plus H2O2. These data suggest that H2O2 is the lethal agent responsible for killing the bacteria as a result of these treatments. However, increased expression of individual genes for peroxide (alkyl hydroperoxide reductase, catalase)- and superoxide (superoxide dismutase)-scavenging enzymes or concerted induction of oxidative stress-protective genes by menadione gave no protection against killing by a combination of menadione plus tert-butyl hydroperoxide. However, X. campestris cells in the stationary phase and a spontaneous H2O2-resistant mutant (X. campestris pv. phaseoli HR) were more resistant to killing by menadione plus tert-butyl hydroperoxide. These findings give new insight into oxidant killing of Xanthomonas spp. that could be generally applied to other bacteria.  相似文献   

16.
17.
Vattanaviboon P  Mongkolsuk S 《Gene》2000,241(2):259-265
Analysis of the Xanthomonas campestris pv. phaseoli (Xp) catalase profile using an activity gel revealed at least two distinct monofunctional catalase isozymes denoted Kat1 and Kat2. Kat1 was expressed throughout growth, whereas Kat2 was expressed only during the stationary phase of growth. The nucleotide sequence of a previously isolated monofunctional catalase gene, Xp katE, was determined. The deduced amino acid sequence of Xp KatE showed a high percentage identity to an atypical group of monofunctional catalases that includes the well-characterized E. coli katE. Expression of Xp katE was growth phase-dependent but was not inducible by oxidants. In addition, growth of Xp in a carbon-starvation medium induced expression of the gene. An Xp katE mutant was constructed, and analysis of its catalase enzyme pattern showed that Xp katE coded for the Kat2 isozyme. Xp katE mutant had resistance levels similar to the parental strain against peroxide and superoxide killing at both exponential and stationary phases of growth. Interestingly, the level of total catalase activity in the mutant was similar to that of the parental strain even in stationary phase. These results suggest the existence of a novel compensatory mechanism for the activity of Xp catalase isozymes.  相似文献   

18.
Singlet oxygen ((1)O(2)) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. The oxyR gene product regulates the expression of the enzymes and proteins that are needed for cellular protection against oxidative stress. In this study, the role of oxyR in cellular defense against a singlet oxygen was investigated using Escherichia coli oxyR mutant strains. Upon exposure to methylene blue and visible light, which generates singlet oxygen, the oxyR overexpression mutant was much more resistant to singlet oxygen-mediated cellular damage when compared to the oxyR deletion mutant in regard to growth kinetics, viability and protein oxidation. Induction and inactivation of major antioxidant enzymes, such as superoxide dismutase and catalase, were observed after their exposure to a singlet oxygen generating system in both oxyR strains. However, the oxyR overexpression mutant maintained significantly higher activities of antioxidant enzymes than did the oxyR deletion mutant. These results suggest that the oxyR regulon plays an important protective role in singlet oxygen-mediated cellular damage, presumably through the protection of antioxidant enzymes.  相似文献   

19.
The plant pathogen Ralstonia solanacearum, which causes bacterial wilt disease, is exposed to reactive oxygen species (ROS) during tomato infection and expresses diverse oxidative stress response (OSR) genes during midstage disease on tomato. The R. solanacearum genome predicts that the bacterium produces multiple and redundant ROS-scavenging enzymes but only one known oxidative stress response regulator, OxyR. An R. solanacearum oxyR mutant had no detectable catalase activity, did not grow in the presence of 250 μM hydrogen peroxide, and grew poorly in the oxidative environment of solid rich media. This phenotype was rescued by the addition of exogenous catalase, suggesting that oxyR is essential for the hydrogen peroxide stress response. Unexpectedly, the oxyR mutant strain grew better than the wild type in the presence of the superoxide generator paraquat. Gene expression studies indicated that katE, kaG, ahpC1, grxC, and oxyR itself were each differentially expressed in the oxyR mutant background and in response to hydrogen peroxide, suggesting that oxyR is necessary for hydrogen peroxide-inducible gene expression. Additional OSR genes were differentially regulated in response to hydrogen peroxide alone. The virulence of the oxyR mutant strain was significantly reduced in both tomato and tobacco host plants, demonstrating that R. solanacearum is exposed to inhibitory concentrations of ROS in planta and that OxyR-mediated responses to ROS during plant pathogenesis are important for R. solanacearum host adaptation and virulence.  相似文献   

20.
Legionella pneumophila expresses two catalase-peroxidase enzymes that exhibit strong peroxidatic but weak catalatic activities, suggesting that other enzymes participate in decomposition of hydrogen peroxide (H2O2). Comparative genomics revealed that L. pneumophila and its close relative Coxiella burnetii each contain two peroxide-scavenging alkyl hydroperoxide reductase (AhpC) systems: AhpC1, which is similar to the Helicobacter pylori AhpC system, and AhpC2 AhpD (AhpC2D), which is similar to the AhpC AhpD system of Mycobacterium tuberculosis. To establish a catalatic function for these two systems, we expressed L. pneumophila ahpC1 or ahpC2 in a catalase/peroxidase mutant of Escherichia coli and demonstrated restoration of H2O2 resistance by a disk diffusion assay. ahpC1::Km and ahpC2D::Km chromosomal deletion mutants were two- to eightfold more sensitive to H2O2, tert-butyl hydroperoxide, cumene hydroperoxide, and paraquat than the wild-type L. pneumophila, a phenotype that could be restored by trans-complementation. Reciprocal strategies to construct double mutants were unsuccessful. Mutant strains were not enfeebled for growth in vitro or in a U937 cell infection model. Green fluorescence protein reporter assays revealed expression to be dependent on the stage of growth, with ahpC1 appearing after the exponential phase and ahpC2 appearing during early exponential phase. Quantitative real-time PCR showed that ahpC1 mRNA levels were approximately 7- to 10-fold higher than ahpC2D mRNA levels. However, expression of ahpC2D was significantly increased in the ahpC1 mutant, whereas ahpC1 expression was unchanged in the ahpC2D mutant. These results indicate that AhpC1 or AhpC2D (or both) provide an essential hydrogen peroxide-scavenging function to L. pneumophila and that the compensatory activity of the ahpC2D system is most likely induced in response to oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号