首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homocysteine thiolactone is a product of an error-editing reaction, catalyzed by Escherichia coli methionyl-tRNA synthetase, which prevents incorporation of homocysteine into tRNA and protein, both in vitro and in vivo. Here, the thiolactone is also shown to occur in cultures of the yeast Saccharomyces cerevisiae. In yeast, the thiolactone is made from homocysteine in a reaction catalyzed by methionyl-tRNA synthetase. One molecule of homocysteine is edited as thiolactone per 500 molecules of methionine incorporated into protein. Homocysteine, added exogenously to the medium or overproduced by some yeast mutants, is detrimental to cell growth. The cost of homocysteine editing in yeast is minimized by the presence of a pathway leading from homocysteine to cysteine, which keeps intracellular homocysteine at low levels. These results not only directly demonstrate that editing of errors in amino acid selection by methionyl-tRNA synthetase operates in vivo in yeast but also establish the importance of proofreading mechanisms in a eukaryotic organism.  相似文献   

2.
The methionyl-transfer ribonucleic acid (tRNA) synthetase of Escherichia coli K-12 eductants carrying P2-mediated deletions in the region of the structural gene of this enzyme was investigated. No structural alteration of this enzyme was observed in three eductants examined. These were isolated from strain AB311, which had a threefold higher level of methionyl-tRNA synthetase than most haploid strains examined. In two of the three eductants studied, the level of this enzyme was twofold higher than in their parental strain regardless of growth conditions used. In contrast, isoleucyl-, leucyl-, and valyl-tRNA synthetases had similar levels in all strains examined. Like valyl-tRNA synthetase, but to a lesser extent, methionyl-tRNA synthetase was subject to metabolic regulation. Coupling between the level of methionyl-tRNA synthetase and growth rate was observed even in strains that had an enhanced level of methionyl-tRNA synthetase. These results suggest that the formation of methionyl-tRNA synthetase remains subject to metabolic regulation even when the repression-like mechanism that controls the synthesis of this enzyme is altered. In addition, we report that in the merodiploid strain EM20031, which was haploid for the valyl-tRNA synthetase structural gene and diploid for the structural genes of methionyl-tRNA synthetase and D-serine deaminase, the levels of these latter two enzymes varied to a minor yet significant extent with the phosphate concentration of the culture medium; under the same conditions, the level of valyl-tRNA synthetase remained unchanged. Moreover, no variation of the levels of these three enzymes in response to phosphate was observed in the haploid strain HfrH. These results indicate that in the merodiploid strain EM20031, which carries the episome F32, the number of episomes per chromosome varies to some extent according to the phosphate concentration of the culture medium.  相似文献   

3.
Hyaluronic acid synthesis in cultured cells usually occurs during the growth phase. The relation between hyaluronic acid synthetase activity and cell proliferation is studied. The synthetase activity in rat fibroblasts is high during the growth phase, but low in the stationary phase. When the old medium of stationary cultures is renewed with fresh medium containing 20% calf serum, DNA synthesis occurs synchronously between 12 and 20 hours, followed by cell division. Under these conditions, the hyaluronic acid synthetase activity is significantly induced within two hours, reaching a maximum level at 5–8 hours, and then decreases gradually. This induction of the synthetase, which shows a high turnover rate, requires continued synthesis of both RNA and protein. Furthermore, the induction of both DNA and hyaluronic acid synthesis is found to be caused by calf serum added in the medium. However, dialysis and ultrafiltration of the serum permit us to concentrate an active fraction with a high molecular weight, which induces the synthetase activity, but not DNA synthesis.  相似文献   

4.
A decrease in the in vivo acylation level of methionine transfer ribonucleic acid (tRNAmet) induced by methioninyl adenylate led to a specific derepression of methionyl-transfer ribonucleic acid (tRNA) synthetase formation. This derepression required de novo protein synthesis and was reflected by overproduction of unaltered enzyme. Two different strains of Escherichia coli K-12 that have normal levels of methionyl-tRNA synthetase were examined and the derepression of methionyl-tRNA synthetase was observed in both. Moreover, for one of these strains, the relation between the level of methionyl-tRNA synthetase and deacylation level of tRNAmet was established; under the growth conditions used, when more than 25% of tRNAmet was deacylated, methionyl-tRNA synthetase formation was derepressed and the level of derepression became proportional to the amount of tRNAmet deacylated. Concomitantly, the enzyme was subject to specific inactivation as a consequence of which the true de novo rate of derepression of the formation of this enzyme was higher than that determined by measurements of enzyme activity. These studies were extended to strains AB311 and ed2, which had a constitutive enhanced level of methionyl-tRNA synthetase. In these strains no derepression of enzyme formation was observed on reducing the acylation level of tRNAmet by use of methioninyl adenylate.  相似文献   

5.
The initiation of protein synthesis by Streptococcus faecalis R grown in folate-free culture occurs without N-formylation or N-acylation of methionyl-tRNA(f) (Met). Methionyl-tRNA synthetase and methionyl-tRNA formyltransferase were partially purified from S. faecalis grown under normal culture conditions in the presence of folate (plus-folate); the general properties of the enzymes were determined and compared with the properties of the enzymes purified from wild-type cells grown in the absence of folate (minus-folate). S. faecalis methionyl-tRNA synthetase displays optimal activity at pH values between 7.2 and 7.8, requires Mg(2+), and has an apparent molecular weight of 106,000, as determined by gel filtration, and 127,000, as determined by sucrose density gradient centrifugation. The K(m) values of plus-folate methionyl-tRNA synthetase for each of the three substrates in the aminoacylation reaction (l-methionine, adenosine triphosphate, and tRNA) are nearly identical to the respective substrate Michaelis constants of minus-folate methionyl-tRNA synthetase. Furthermore, both plus- and minus-folate S. faecalis methionyl-tRNA synthetases catalyze, at equal rates, the aminoacylation of tRNA(f) (Met) and tRNA(m) (Met) isolated from either plus-folate or minus-folate cells. S. faecalis methionyl-tRNA formyltransferase displays optimal activity at pH values near 7.0, is stimulated by Mg(2+), and has an apparent molecular weight of approximately 29,900 when estimated by sucrose density gradient centrifugation. The K(m) value of plus-folate formyltransferase for plus-folate Met-tRNA(f) (Met) does not differ significantly from that of minus-folate formyltransferase for minus-folate Met-tRNA(f) (Met). Both enzymes can utilize either 10-formyltetrahydrofolate or 10-formyltetrahydropteroyltriglutamate as the formyl donor; the Michaelis constant for the monoglutamyl pteroyl coenzyme is slightly less than that of the triglutamyl pteroyl coenzyme for both transformylases. Tetrahydrofolate and uncharged tRNA(f) (Met) are competitive inhibitors of both plus- and minus-folate S. faecalis formyltransferase; folic acid, pteroic acid, aminopterin, and Met-tRNA(m) (Met) are not inhibitory. These results indicate that the presence or absence of folic acid in the culture medium of S. faecalis has no apparent effect on either methionyl-tRNA synthetase or methionyl-tRNA formyltransferase, the two enzymes directly involved in the formation of formylmethionyl-tRNA(f) (Met). Therefóre, the lack of N-formylation of Met-tRNA(f) (Met) in minus-folate S. faecalis is due to the absence of the formyl donor, a 10-formyl-tetrahydropteroyl derivative. Although the general properties of S. faecalis methionyl-tRNA synthetase are similar to those of other aminoacyl-tRNA synthetases, S. faecalis methionyl-tRNA formyltransferase differs from other previously described transformylases in certain kinetic parameters.  相似文献   

6.
The mode of action of the antibiotic pseudomonic acid has been studied in Escherichia coli. Pseudomonic acid strongly inhibits protein and RNA synthesis in vivo. The antibiotic had no effect on highly purified DNA-dependent RNA polymerase and showed only a weak inhibitory effect on a poly(U)-directed polyphenylalanine-forming ribosomal preparation. Chloramphenicol reversed inhibition of RNA synthesis in vivo. Pseudomonic acid had little effect on RNA synthesis in a regulatory mutant, E. coli B AS19 RC(rel), whereas protein synthesis was strongly inhibited. In pseudomonic acid-treated cells, increased concentrations of ppGpp, pppGpp and ATP were observed, but the GTP pool size decreased, suggesting that inhibition of RNA synthesis is a consequence of the stringent control mechanism imposed by pseudomonic acid-induced deprivation of an amino acid. Of the 20 common amino acids, only isoleucine reversed the inhibitory effect in vivo. The antibiotic was found to be a powerful inhibitor of isoleucyl-tRNA synthetase both in vivo and in vitro. Of seven other tRNA synthetases assayed, only a weak inhibitory effect on phenylalanyl-tRNA synthetase was observed; this presumably accounted for the weak effect on polyphenylalanine formation in a ribosomal preparation. Pseudomonic acid also significantly de-repressed threonine deaminase and transaminase B activity, but not dihydroxyacid dehydratase (isoleucine-biosynthetic enzymes) by decreasing the supply of aminoacylated tRNA(Ile). Pseudomonic acid is the second naturally occurring inhibitor of bacterial isoleucyl-tRNA synthetase to be discovered, furanomycin being the first.  相似文献   

7.
A 3300-base segment of Escherichia coli chromosomal DNA, cloned into pBR322, will complement a methionine auxotroph in which the lesion is a defective methionyl-tRNA synthetase with a much reduced affinity for methionine. Crude extracts of these transformants contain elevated levels of a protein which has a subunit molecular weight of 66 000, methionyl-tRNA synthetase aminoacylation activity in vitro and which cross-reacts with anti-(methionyl-tRNA synthetase) antibodies. This polypeptide is very slightly larger than the well-characterised and crystallised tryptic fragment of methionyl-tRNA synthetase. A DNA sequence of 1750 residues at one end of the cloned insert codes for a non-terminated open reading frame in which we can locate a large number of methionyl-tRNA synthetase tryptic and chymotryptic peptides. We have also sequenced 300 nucleotides upstream of this coding segment where we find a large invert repeat in the putative methionyl-tRNA synthetase promoter region.  相似文献   

8.
Respiratory-deficient mutants of Saccharomyces cerevisiae assigned to pet complementation group G72 are impaired in mitochondrial protein synthesis. The loss of this activity has been correlated with the inability of the mutants to acylate the two methionyl-tRNAs of yeast mitochondria. A nuclear gene (MSM1) capable of complementing the respiratory deficiency has been cloned by transformation of the G72 mutant C122/U3 with a yeast genomic library. In situ disruption of the MSM1 gene in a wild-type haploid strain of yeast induces a respiratory-deficient phenotype but does not affect the ability of the mutant to grow on fermentable substrates indicating that the product of MSM1 functions only in mitochondrial protein synthesis. Mitochondrial extracts prepared from the mutant with the disrupted copy of MSM1 were found to be defective in acylation of the two mitochondrial methionyl-tRNAs thereby confirming the identity of MSM1 as the structural gene for the mitochondrial methionyl-tRNA synthetase. The sequence of the protein encoded by MSM1 is similar to the Escherichia coli and yeast cytoplasmic methionyl-tRNA synthetases. Based on the primary-sequence similarities of the three proteins, the mitochondrial enzyme appears to be more related to the bacterial than to the yeast cytoplasmic methionyl-tRNA synthetase.  相似文献   

9.
Proline- and threonine-restricted growth caused a three- to fourfold derepression of the differential rate of synthesis of the prolyl- and threonyl-transfer ribonucleic acid (tRNA) synthetases, respectively. Similarly, there was approximately a 24-fold derepression in the rate of synthesis of methionyl-tRNA synthetase during methionine restriction. Addition of the respective amino acids to such derepressed cultures resulted in a repression of synthesis of their cognate synthetases. These results support previous findings and further strengthen the idea that the formation of aminoacyl-tRNA synthetases is regulated by some mechanism which is mediated by the cognate amino acids.  相似文献   

10.
11.
An enzyme that plays an important role in the repair of oxidative DNA damage is the 3'-phosphodiesterase. This activity, which repairs damaged DNA 3'-termini,can be detected using several available biochemical assays. We present a method to detect 3'-phosphodiesterase activity of renatured proteins immobilized in polyacrylamide gels. The model substrate, labeled with [alpha-32P]dCTP, contains 3'-phosphoglycolate termini produced by bleomycin-catalyzed cleavage of the self-complementary alternating copolymer poly(dGdC). The DNA substrate is incorporated into the gel matrix during standard SDS-PAGE. Active 3'-phosphodiesterase enzymes are detected visibly by the loss of radioactivity at a position corresponding to the mobility of the enzyme during SDS-PAGE. Using this procedure, two Escherichia coli 3'-phosphodiesterases, exonuclease III and endonuclease IV, are readily detected in crude cell extracts or as homogeneous purified proteins. Extracts of mutant cells lack activity at the positions of exonuclease III and endonuclease IV but retain activity in the position of a much larger protein (Mr approximately 100 kDa). The identification of this novel 100 kDa E.coli 3'-phosphodiesterase demonstrates the potential value of the activity gel method described here.  相似文献   

12.
Cysteinyl- and methionyl-tRNA synthetases (EC 6.11.-) were purified 1200- and 1000-fold, respectively, from sonic extracts of Paracoccus denitrificans strain 8944, and kinetics, substrate specificity and regulatory properties were determined using the ATP-PPi exchange reaction. Both enzymes had pH optima of approx. 8 and were inhibited by sulphydryl-group reagents. Cysteinyl-tRNA synthetase catalysed L-selenocysteine- and alpha-aminobutyric acid-dependent ATP-PPi exchange and methionyl-tRNA synthetase catalysed L-homocysteine-, L-selenomethionine- and norleucine-dependent ATP-PPi exchange. Both enzymes were inhibited by O-acetylserine. Cysteinyl-tRNA synthetase activity was stimulated by methionine and methionyl-tRNA synthetase activity was stimulated by sulphide, cysteine, and cysteic acid.  相似文献   

13.
Methionyl-tRNA synthetase occurs free and as high-molecular-weight multi-enzyme complexes in rat liver. The free form is purified to near homogeneity by conventional column chromatography and affinity chromatography on tRNA-Sepharose. The native molecular weight of free methionyl-tRNA synthetase is 64 500, based on its sedimentation coefficient of 4.5 S and Stokes radius of 33 A. The free methionyl-tRNA synthetase apparently belongs to alpha-type subunit structure, since the subunit molecular weight is 68 000, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Methionyl-tRNA synthetase is dissociated from the high-molecular-weight synthetase complex by controlled trypsinization, according to Kellermann, O., Viel, C. and Waller, J.P. (Eur. J. Biochem. 88 (1978) 197-204). The dissociated, free methionyl-tRNA synthetase is subsequently purified to near homogeneity. The subunit structure of dissociated methionyl-tRNA synthetase is identical to that of endogenous free methionyl-tRNA synthetase. Anti-serum raised against Mr 104 000 protein in the synthetase complex, specifically inhibited methionyl-tRNA synthetase in both the free and the high-molecular-weight forms to the same extent. These results suggest that the occurrence of multiple forms of methionyl-tRNA synthetases in mammalian cells may, in part, be due to proteolytic cleavage.  相似文献   

14.
Thymidine kinase was induced after infection of an established strain of green monkey kidney cells (CV-1) with simian adenovirus SV15. Increased levels of thymidine kinase were first observed 8 to 10 hr postinoculation (PI), and the levels increased four- to eightfold by 16 to 24 hr PI. A transient increase (1.5- to 3-fold) of deoxyribonucleic acid (DNA) polymerase activity was also observed about 18 hr PI, but the level of deoxycytidylic deaminase was not enhanced. The inductions of thymidine kinase and DNA polymerase were not obtained when protein synthesis was inhibited with 10−5 M cycloheximide. However, the enzyme increases did take place when infected cultures were treated with 1-β-D-arabinofuranosylcytosine (ara-C), an inhibitor of DNA synthesis and SV15 replication. The incorporation of tritium-labeled thymidine (H3-dT) into DNA was also stimulated 8 to 24 hr after infection with SV15.  相似文献   

15.
B Q Ferguson  D C Yang 《Biochemistry》1986,25(21):6572-6578
Conformations of tRNAfMet, free and methionyl-tRNA synthetase bound forms, are analyzed by using singlet-singlet energy transfer as a spectroscopic ruler. tRNAfMet(8-13,3'-Flc), tRNAfMet(8-13,D-Etd), and tRNAfMet(3'-Flc,D-Etd) are prepared by sequential chemical modifications. The methionyl-tRNA synthetase binding affinity of these double-labeled tRNAfMets is similar to those of unmodified tRNAfMet. The fluorescence properties of the individual fluorophore in these tRNAs, including emission spectra, anisotropy, and quenching by methionyl-tRNA synthetase, are similar to those of single-labeled tRNAfMet. The transfer efficiencies of double-labeled tRNAfMets, as determined by both donor quenching and sensitized emission, showed efficient energy transfer in all cases. Random orientation being assumed, the apparent distances are 25 A between 8-13 and D20, 44 A between 8-13 and the 3'-terminus, and 49 A between the 3'-terminus and D20, respectively, in free tRNAfMet. Upon binding of methionyl-tRNA synthetase, the apparent distances are 25 A between 8-13 and D20, 45 A between 8-13 and the 3'-terminus, and 54 A between the 3'-terminus and D20, respectively. These results provide topographic models of these specific locations in free and methionyl-tRNA synthetase bound tRNAfMet and suggest that the immobilized 3'-terminal arm in the amino acid acceptor stem bends toward the inner loop of the L-shaped tRNA upon binding of methionyl-tRNA synthetase.  相似文献   

16.
B Q Ferguson  D C Yang 《Biochemistry》1986,25(10):2743-2748
Conformational transition in methionyl-tRNA synthetase upon binding of tRNAfMet, whose binding shows strong negative cooporativity, was analyzed by fluorescence spectroscopy. The fluorescent probe N-[[(iodoacetyl)amino]ethyl]-5-naphthylamine-1-sulfonic acid (1,5-I-AEDANS) reacts with native methionyl-tRNA synthetase in a nearly stoichiometric amount (2 per dimer) without affecting enzyme activity. The probe is shown by controlled trypsinization to be located in a 130 amino acid fragment at the C-terminus joining the subunits. The emission and excitation spectra, rotational freedom, and solvent accessibility of the fluorophore in AEDANS-methionyl-tRNA synthetase are analyzed. The results suggest that the probe is localized in a nonpolar environment, nearly immobile relative to methionyl-tRNA synthetase yet fully accessible to the solvent. Upon binding of tRNAfMet, the fluorescence intensity in AEDANS-methionyl-tRNA synthetase was appreciably reduced without a shift in the emission or excitation spectra. Lifetime measurement shows that a static mechanism accounts for the observed quenching. Furthermore, the remaining emitting AEDANS becomes effectively shielded from solvent molecules. These results suggest an unsymmetric conformational transition at the intersubunit domains of the two subunits in methionyl-tRNA synthetase upon binding one molecule of tRNAfMet.  相似文献   

17.
Staurosporine, a microbial-derived protein kinase inhibitor, reversibly blocked non-synchronized, replicating cultures of the human lung epithelial cell line EKVX in the G1 phase of cell cycle and inhibited DNA synthesis and cell replication. The mechanism of this cell-cycle arrest in EKVX cells by staurosporine was likely due to inhibition of protein kinase C (PKC) because: 1) dose-dependent inhibition of DNA synthesis occurred at levels of staurosporine that inhibit phosphorylation of PKC substrate, 2) inhibition of DNA synthesis was also seen after treatment with another PKC inhibitor H7, but not by the chemically similar HA1004, which has a relative inhibitory specificity for cAMP-dependent protein kinase, and 3) the DNA synthesis was not inhibited by specific tyrosine kinase inhibitors Genistein and Lavendustin A at concentrations that inhibit tyrosine kinase activity. Removal of staurosporine from cell culture media resulted in a rebound in PKC activity and synchronized DNA synthesis in EKVX cultures. The reversibility of the inhibition was noted even after 5 days of treatment with staurosporine, and DNA synthesis remained synchronized for at least two rounds of cell replication after removal of staurosporine. Flow cytometric analysis confirmed that more than 90% of the cell population was blocked in the G1 phase after cells were treated with staurosporine for 24 h. Agents such as staurosporine may be useful for synchronizing cell populations to study cell-cycle specific biochemical events important for the regulation of cell replication in the EKVX cell line.  相似文献   

18.
MESI, the structural gene for methionyl-tRNA synthetase from Saccharomyces cerevisiae encodes an amino-terminal extension of 193 amino acids, based on the comparison of the encoded protein with the Escherichia coli methionyl-tRNA synthetase. We examined the contribution of this polypeptide region to the activity of the enzyme by creating several internal deletions in MESI which preserve the correct reading frame. The results show that 185 amino acids are dispensable for activity and stability. Removal of the next 5 residues affects the activity of the enzyme. The effect is more pronounced on the tRNA aminoacylation step than on the adenylate formation step. The Km for ATP and methionine are unaltered indicating that the global structure of the enzyme is maintained. The Km for tRNA increased slightly by a factor of 3 which indicates that the positioning of the tRNA on the surface of the molecule is not affected. There is, however, a great effect on the Vmax of the enzyme. Examination of the three-dimension structure of the homologous E. coli methionyl-tRNA synthetase indicates that the amino acid region preceding the mononucleotide-binding fold does not participate directly in the catalytic cleft. It could, however, act at a distance by propagating a mutational alteration to the catalytic residues.  相似文献   

19.
Thermostable valyl-tRNA, isoleucyl-tRNA and methionyl-tRNA synthetases have been purified from an extreme thermophile, Thermus thermophilus HB8. Valyl-tRNA and isoleucyl-tRNA synthetases are found to be monomer proteins (Mr 108000 and 129000, respectively), while methionyl-tRNA synthetase is a dimer protein (Mr 150000). These enzymes are very similar with respect to amino acid compositions and alpha-helix contents as estimated by circular dichroism analyses. Furthermore, two Zn2+ are tightly bound to each of these synthetases. These data suggest that valyl-tRNA and isoleucyl-tRNA synthetases consist of two domains, each corresponding to the subunit of methionyl-tRNA synthetase.  相似文献   

20.
The activity of cAMP-dependent protein kinase was found to increase continuously in the NIH 3T3 cells, deepening into the resting state. The increase correlated with intracellular level of heat-stable protein inhibitor of the protein kinase rather than with the cAMP content. The elevation of 2',5'-oligo(A) synthetase activity and the decrease in 2'-phosphodiesterase activity were also observed in the cells sinking into the resting state. The variations in enzyme activities were similar to those caused by the increase in the intracellular cAMP content described elsewhere. These results agree with the idea that the cAMP-dependent protein kinase is involved in the regulation of the enzymes of 2',5'-oligo(A) metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号