首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. The involvement of cysteine residues in the catalytic mechanism of UDP-glucose pyrophosphorylase was suggested by the rapid inactivation of the enzyme by N-ethylmaleimide, even at 1:1 reagent/enzyme stoichiometric ratios. 2. The inactivation is largely prevented by uridine substrates (UDP-glucose and UTP) in agreement with the assumption that the reactive cysteine is located at the active site.  相似文献   

2.
UDP-glucose pyrophosphorylase from potato tuber was purified 243-fold to a nearly homogeneous state with a recovery of 30%. The purified enzyme utilized UDP-glucose, but not ADP-glucose, as the substrate, and was not activated by 3-phosphoglyceric acid. Product inhibition studies revealed the sequential binding of UDP-glucose and MgPPi and the sequential release of glucose-1-phosphate and MgUTP, in this order. Analyses of the effects of Mg2+ on the enzyme activity suggest that the MgPPi and MgUTP complexes are the actual substrates for the enzyme reaction, and that free UTP acts as an inhibitor. The enzyme exists probably as the monomer of an approximately 50-kDa polypeptide with a blocked amino terminus. For structural comparison, 29 peptides isolated from a tryptic digest of the S-carboxymethylated enzyme were sequenced. The results show that the potato tuber enzyme is homologous to UDP-glucose pyrophosphorylase from slime mold, but not to ADP-glucose pyrophosphorylase from Escherichia coli, and provide structural evidence that UDP-glucose and ADP-glucose pyrophosphorylase are two different protein entities.  相似文献   

3.
UDP glucose is an important intermediate in numerous metabolic pathways (1). It is therefore not surprising that the enzyme which catalyses its formation, UDP-glucose pyrophosphorylase is ubiquitous (see (2) for references). The reaction catalysed by UDP-glucose pyrophosphorylase is:
glucose-1-P + UTP ? UDP glucose + PPi
and the enzyme has been assayed either in the direction of pyrophosphorolysis of the nucleoside diphosphate sugar or in the direction of UDP-glucose formation.Spectrophotometric assays of UDP-glucose pyrophosphorylase in the direction of pyrophosphorolysis are often nonspecific by virtue of the nature of the coupling enzymes (3), whereas similar assays in the direction of UDPG formation may lack the expected stoichiometry of reaction (3,4). Radioisotopic techniques for the assay of UDP-glucose pyrophosphorylase (5,6) are to be preferred to spectrophotometric assays both for their increased sensitivity and specificity. However, these methods depend upon the specific isolation of the radioactive UDP glucose formed, either by a somewhat tedious adsorption to and elution from charcoal (5) or a hazardous precipitation using mercuric acetate. For routine assay of a large number of samples it would be advantageous to replace these techniques with one involving a safer, more rapid method of radioactive UDP-glucose isolation. The radiochemical assay described in this note utilises the binding of UDP glucose to commercially available, anion-exchange filter-paper discs for this purpose. Although the technique was designed to assay UDP-glucose pyrophosphorylase in cell extracts of the cellular slime mould, Dictyostelium discoideum, it should be applicable to most sources of the enzyme.  相似文献   

4.
Potato tuber UDP-glucose pyrophosphorylase (EC 2.7.7.9) catalyzes the reversible uridylyl transfer from UDP-glucose to MgPPi forming glucose 1-phosphate and MgUTP, according to an ordered bi-bi mechanism in which UDP-glucose and MgPPi bind in this order. To probe the active site of this enzyme, we have applied pyridoxal 5'-diphosphate, a reactive PPi analogue. The enzyme was rapidly inactivated when incubated with the reagent in the presence of Mg2+ followed by sodium borohydride reduction. The degree of the inactivation was decreased by MgUTP, MgPPi, and glucose 1-phosphate, but enhanced by UDP-glucose. The enhancement was prevented by co-addition of Pi, the competitive inhibitor with respect to PPi. The complete inactivation corresponded to the incorporation of 0.9-1.1 mol of reagent/mol of enzyme monomer. In the presence of UDP-glucose, labels were almost exclusively incorporated into Lys-329. Thus, this residue may be located near the bound MgPPi and its modification is promoted, probably through conformational changes, by the binding of UDP-glucose to the enzyme. The results of the modification by the same reagent of the mutant enzymes in which Lys-329 and Lys-263 are individually replaced by Gln suggest the roles of these lysyl residues in the binding of MgPPi and in the UDP-glucose-induced conformational changes, respectively.  相似文献   

5.
Genetic transformation using Agrobacterium rhizogenes   总被引:1,自引:0,他引:1  
UDP-glucose pyrophosphorylase (EC 2.7.7.9) has been highly purified from the plant fraction of soybean ( Glycine max L. Merr. cv Williams) nodules. The purified enzyme gave a single polypeptide band following sodium docecyl sulphate polyacryla-mide gel electrophoresis, but was resolved into three bands of activity in non-denaturing gels. The enzyme appeared to be a monomer of molecular weight between 30 and 40 kDa. UDP-glucose pyrophosphorylase had optimum activity at pH 8.5 and displayed typical hyperbolic kinetics. The enzyme had a requirement for divalent metal ions, and was highly specific for the substrates pyrophosphate and UDP-glucose in the pyrophosphorolysis direction, and glucose-1-phosphate and UTP in the direction of UDP-glucose synthesis. The Km values were 0.19 m M and 0.07 m M for pyrophosphate and UDP-glucose, respectively, and 0.23 m M and 0.11 m M for glucose-1-phosphate and UTP. The maximum velocity in the pyrophosphorolysis direction was almost double that for the reverse reaction. UDP-glucose pyrophosphorylase did not appear to be subject to a high degree of fine control, and activity in vivo may be regulated mainly by the availability of the substrates.  相似文献   

6.
The K+-dependent ATPase and p-nitrophenyl phosphatase activity of, and formation of phosphoenzyme by, hog parietal cell membranes were inhibited in a time- and concentration-dependent manner by the carboxyl-activating reagent, N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ). The kinetics of inactivation was pseudo first order and was similar to the EEDQ-catalyzed incorporation of [14C]glycine ethyl ester. The most likely mechanism is the EEDQ-dependent formation of inter- and intramolecular amide bonds. Cross-linking between the subunits of the ATPase occurs with EEDQ treatment. The presence of K+ on the luminal face of the enzyme is able to prevent EEDQ inhibition of K+ ATPase activity (but not intermolecular cross-linking), whereas ATP enhanced the rate of inactivation. EEDQ reaction with the enzyme therefore allows investigation of K+- and ATP-dependent states of the enzyme.  相似文献   

7.
An optimized coupled enzyme assay for UDP-glucose pyrophosphorylase (EC 2.7.7.9) using UDP-glucose dehydrogenase (EC 1.1.1.22) is presented. This optimized assay was developed by a detailed investigation of the kinetics of the UDP-glucose dehydrogenase reaction. In addition the data provide a basis for the enzymatic synthesis of UDP-glucuronic acid. The results demonstrate that the two binding sites of the dehydrogenase differ since a different modulation of the enzyme activity and stability is observed after preincubation with UDP-glucose or NAD+ at various pH values. This is of general interest for the preparation of assay mixtures where UDP-glucose dehydrogenase is used as an auxiliary enzyme.  相似文献   

8.
Amoebae of the slime mould Dictyostelium discoideum AX2 possess only low UDP-glucose pyrophosphorylase activity when grown on autoclaved Klebsiella aerogenes (approx. 30 units/mg of protein), but accumulate the enzyme to approx. 150-200 units/mg of protein during vegetative growth in axenic medium. The vegetative accumulation of UDP-glucose pyrophosphorylase by axenically grown cells is prevented if autoclaved K. aerogenes are included in the axenic medium, suggesting the absence of a specific inducer. Affinity chromatography using anti-(UDP-glucose pyrophosphorylase) antibody and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis indicate that the enzyme accumulated during axenic growth and that normally accumulated during development are immunologically cross-reactive and that both are composed of two subunits with mol.wts. 55,600 and 57,500 present in approximately equal amounts in the active enzyme.  相似文献   

9.
The reaction catalyzed by calf liver uridine diphosphate glucose synthase (pyrophosphorylase) (EC 2.7.7.9; UTP + glucose 1-phosphate = UDP-glucose + PPi) is an example of an enzymic reaction in which a nucleoside triphosphate other than ATP is the immediate source of metabolic energy. Kinetic properties of the enzyme, acting in the direction of UCP-glucose formation were investigated in vitro. The reaction was inhibited by UDP-glucose (0.072), Pi (11), UDP (1.6), UDP-xylose (0.87), UDP-glucuronate (1.3), and UDP-galacturonate (0.95). The numbers in parentheses indicate the concentration (mM) required for half-maximal inhibition under the conditions used. Other compounds tested, including ATP, ADP, and AMP, had no effect. Over a range of concentrations of UTP (0.04-0.8 MM) and UDP-glucose (0.05-0.03 mM), the reaction rate was more dependent on the concentration ratio [UDP-glucose]/[UTP] than on the absolute concentration of either compound. Comparison of the kinetic properties in vitro with estimates of metabolite levels in vivo suggests that (1) the enzyme operates in a range far from its maximal rate, and (2) the concentrations of glucose 1-phosphate and Pi and the ratio [UDP-glucose]/[UTP] may be the most important determinants of UDP-glucose synthase activity.  相似文献   

10.

Background

Giardia lamblia is a pathogen of humans and other vertebrates. The synthesis of glycogen and of structural oligo and polysaccharides critically determine the parasite's capacity for survival and pathogenicity. These characteristics establish that UDP-glucose is a relevant metabolite, as it is a main substrate to initiate varied carbohydrate metabolic routes.

Results

Herein, we report the molecular cloning of the gene encoding UDP-glucose pyrophosphorylase from genomic DNA of G. lamblia, followed by its heterologous expression in Escherichia coli. The purified recombinant enzyme was characterized to have a monomeric structure. Glucose-1-phosphate and UTP were preferred substrates, but the enzyme also used galactose-1-phosphate and TTP. The catalytic efficiency to synthesize UDP-galactose was significant. Oxidation by physiological compounds (hydrogen peroxide and nitric oxide) inactivated the enzyme and the process was reverted after reduction by cysteine and thioredoxin. UDP-N-acetyl-glucosamine pyrophosphorylase, the other UTP-related enzyme in the parasite, neither used galactose-1-phosphate nor was affected by redox modification.

Conclusions

Our results suggest that in G. lamblia the UDP-glucose pyrophosphorylase is regulated by oxido-reduction mechanism. The enzyme exhibits the ability to synthesize UDP-glucose and UDP-galactose and it plays a key role providing substrates to glycosyl transferases that produce oligo and polysaccharides.

General significance

The characterization of the G. lamblia UDP-glucose pyrophosphorylase reinforces the view that in protozoa this enzyme is regulated by a redox mechanism. As well, we propose a new pathway for UDP-galactose production mediated by the promiscuous UDP-glucose pyrophosphorylase of this organism.  相似文献   

11.
We report the functional characterization of the galF gene of strain VW187 ( Escherichia coli O7:K1), which encodes a polypeptide displaying structural features common to bacterial UDP-glucose pyrophosphorylases, including the E. coli GalU protein. These enzymes catalyse a reversible reaction converting UTP and glucose-1-phosphate into UDP-glucose and PPi. We show that, although the GalF protein is expressed in vivo , GalF-expressing plasmids cannot complement the phenotype of a galU mutant and extracts from this mutant which only produces GalF are enzymatically inactive. In contrast, the presence of GalU and GalF proteins in the same cell-free extract caused a significant reduction in the rate of pyrophosphorolysis (conversion of UDP-glucose into glucose-1-phosphate) but no significant effect on the kinetics of synthesis of UDP-glucose. The presence of GalF also increased the thermal stability of the enzyme in vitro. The effect of GalF in the biochemical properties of the UDP-glucose pyrophosphorylase required the co-synthesis of GalF and GalU, suggesting that they could interact as components of the oligomeric enzyme. The physical interaction of GalU and GalF was demonstrated in vivo by the co-expression of both proteins as fusion products using a yeast two-hybrid system. Furthermore, using a pair of galF  +/ galU + and galF/galU  + isogenic strains, we demonstrated that the presence of GalF is associated with an increased concentration of intracellular UDP-glucose as well as with an enhancement of the thermal stability of the UDP-glucose pyrophosphorylase in vivo . We propose that GalF is a non-catalytic subunit of the UDP-glucose pyrophosphorylase modulating the enzyme activity to increase the formation of UDP-glucose, and this function is important for bacterial adaptation to conditions of stress.  相似文献   

12.
The specific activity of uridine 5'-triphosphate:alpha-d-glucose 1-phosphate uridyltransferase (EC 2.7.7.9) (also called uridine 5'-diphosphate [UDP]-glucose pyrophosphorylase) has been found to increase up to eightfold during spherule formation by the slime mold Physarum polycephalum. The enzyme accumulates during the first 8 to 9 h after initiation of spherule formation, declines to basal levels found in vegetative microplasmodia by 15 h, and is undetectable in completed spherules. Specific activities for UDP-glucose pyrophosphorylase in vegetative microplasmodia range from 15 to 30 nmol of UDP-glucose formed per min per mg of protein, whereas accumulated levels during spherule formation can attain a specific activity as high as 125 nmol of UDP-glucose formed per min per mg of protein. The scheduling and extent of accumulation are critically dependent on an early log-phase age of microplasmodia originally induced to form spherules. Spherule induction by 0.2 M or 0.5 M mannitol delays this schedule in a variable and unpredictable manner. Spherule-forming microplasmodia which have accumulated high levels of UDP-glucose pyrophosphorylase spontaneously excrete the enzyme when transferred to salts medium containing 0.2 M or 0.5 M mannitol. The excreted enzyme is subsequently destroyed or inactivated. Studies with preferential inhibitors of macromolecular synthesis indicate that accumulation of UDP-glucose pyrophosphorylase requires concomitant protein synthesis and prior ribonucleic acid synthesis.  相似文献   

13.
The inactivation of the renal outer cortical brush-border membrane D-glucose transporter by the covalent carboxyl reagent N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) is studied by monitoring its effects on sodium-dependent phlorizin binding to the active site of the carrier. In the presence of EEDQ, this component of phlorizin binding decreases exponentially and irreversibly with time. The order of this inactivation reaction is very close to 1, indicating that EEDQ modifies the transporter at a single essential site. This site can be partially protected by glucose and by other substrates of the transporter and completely protected by phlorizin, a nontransported competitive inhibitor. By contrast, sodium, a co-transported activator, has no protective effect. The concentration dependence of the protection provided by glucose and phlorizin indicates that the site of action of EEDQ is at or closely related to the substrate binding site on the carrier. The effects of EEDQ on the transporter are mimicked by another carboxyl specific reagent, 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate. The rate of inactivation of the transporter by EEDQ increases dramatically with decreasing pH, consistent with the hypothesis that the rate-limiting step in the inactivation process is a reaction with an essential carboxyl group. The properties of this group indicate, however, that it is distinct from the carboxyl group proposed by others as forming (a part of) the sodium binding site of sodium-coupled sugar carriers.  相似文献   

14.
Y Kazuta  Y Omura  M Tagaya  K Nakano  T Fukui 《Biochemistry》1991,30(35):8541-8545
Uridine di- and triphosphopyridoxals were used to probe the substrate-binding site in potato tuber UDP-glucose pyrophosphorylase (EC 2.7.7.9). The enzyme was rapidly inactivated in time- and dose-dependent manners when incubated with either reagent followed by reduction with sodium borohydride. The inactivations were almost completely retarded by UDP-Glc and UTP but only slightly by alpha-D-glucose 1-phosphate. The complete inactivation corresponded to the incorporation of about 0.9-1.0 mol of either reagent per mole of enzyme monomer. Both reagents appear to bind specifically to the UDP-Glc-(UTP)-binding site. Structural studies of the labeled enzymes revealed that the two reagents modified the identical set of five lysyl residues (Lys-263, Lys-329, Lys-367, Lys-409, and Lys-410), in which Lys-367 was most prominently modified. The ratios of the amounts of labels incorporated into these residues were similar for the two reagents. Furthermore, linear relationships were observed between the residual activities and the amounts of incorporation into each lysyl residue. We conclude that the five lysyl residues are located at or near the UDP-Glc(UTP)-binding site of potato tuber UDP-Glc pyrophosphorylase and that the modification of these residues occurs in a mutually exclusive manner, leading to the inactivation of the enzyme.  相似文献   

15.
We have isolated a cDNA encoding UDP-glucose pyrophosphorylase from a cDNA library of immature potato tuber using oligonucleotide probes synthesized on the basis of partial amino acid sequences of the enzyme. The cDNA clone contained a 1,758-base-pair insert including the complete message for UDP-glucose pyrophosphorylase with 1,431 base pairs. The amino acid sequence of the enzyme inferred from the nucleotide sequence consists of 477 amino acid residues. All the partial amino acid sequences determined protein-chemically [Nakano et al. (1989) J. Biochem. 106, 528-532] confirmed the primary structure of the enzyme. An N-terminal-blocked peptide was isolated from the proteolytic digest of the enzyme protein, and the blocking group was deduced to be an acetyl group by fast atom bombardment-mass spectrometry. On the basis of the predicted amino acid sequence (477 residues minus the N-terminal Met plus an acetyl group), the molecular weight of the enzyme monomer is calculated to be 51,783, which agrees well with the value determined by polyacrylamide gel electrophoresis. In the cDNA structure, the open-reading frame is preceded by a 125-base-pair noncoding region, which contains a sequence being homologous with the consensus sequence for plant genes, and is followed by a 174-base-pair noncoding sequence including a polyadenylation signal. Amino acid sequence comparisons revealed that the potato UDP-glucose pyrophosphorylase is homologous to the enzyme from slime mold, Dictyostelium discoideum, but not to ADP-glucose pyrophosphorylases from rice seed and Escherichia coli.  相似文献   

16.
Biosynthesis of Starch in Chloroplasts   总被引:4,自引:2,他引:2       下载免费PDF全文
The enzymic synthesis of ADP-glucose and UDP-glucose by chloroplastic pyrophosphorylase of bean and rice leaves has been demonstrated by paper chromatographic techniques. In both tissues, the activity of UDP-glucose-pyrophosphorylase was much higher than ADP-glucose-pyrophosphorylase. Glycerate-3-phosphate, phosphoenolpyruvate and fructose-1,6-diphosphate did not stimulate ADP-glucose formation by a pyrophosphorylation reaction. The major metabolic pathway for UDP-glucose utilization appears to be the synthesis of either sucrose or sucrose-P. On the other hand, a specific precursor role of ADP-glucose for synthesizing chloroplast starch by the ADP-glucose-starch transglucosylase reaction is supported by the coupled enzyme system of ADP-glucose-pyrophosphorylase and transglucosylase, isolated from chloroplasts. None of the glycolytic intermediates stimulated the glucose transfer in the enzyme sequence of reaction system employed.  相似文献   

17.
D-beta-Hydroxybutyrate dehydrogenase D-3-hydroxybutyrate: NAD+ oxidoreductase, EC 1.1.1.30), a phosphatidylcholine-requiring enzyme, was irreversibly inactivated by a water-soluble carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDAC) or a hydrophobic carbodiimide, N,N'-dicyclohexylcarbodiimide (DCCD). The inactivation is pseudo-first-order with a kinetic stoichiometry of about 1. Phospholipid-free apoenzyme was more sensitive towards these reagents than reconstituted phospholipid-enzyme or membrane-bound enzyme forms. Reduced coenzyme (NADH) protected the enzyme against the inactivation, while oxidized coenzyme (NAD+) in presence of 2-methylmalonate (a pseudo-substrate) gave a better protection. It was found that the phospholipid-free apoenzyme bound about 1 mol [14C]DCCD. This incorporation was prevented by EDAC, indicating that both reagents react at the same site. [14C]Glycine ethyl ester, a nucleophilic compound which reacts specifically with the carboxylcarbodiimide derivative was incorporated to the enzyme (1 mol [14C]glycine ethyl ester per polypeptide chain), whatever its form, in the presence of DCCD or EDAC. These results indicate the presence of one carboxyl group probably located at or near the coenzyme-binding site and near the interacting domain of the enzyme with phospholipid.  相似文献   

18.
Changes in ADP-glucose and UDP-glucose pyrophosphorylase activities were followed during tuber development of Solanum tuberosum and prolonged storage at 4 and 11 C. Potato tuberization was accompanied by a sharp increase in starch synthesis simultaneous with a marked rise in ADP-glucose pyrophosphorylase activity. When tubers reached an average diameter of 1 centimeter (0.5 gram average tuber weight) and had already established 58% starch on a dry weight basis, ADP-glucose pyrophosphorylase increased 16- to 24-fold over its activity seen in low starch containing stolon tissue. During this same period UDP-glucose pyrophosphorylase increased approximately 2- to 3-fold. Although participation of UDP-glucose in starch formation can not be neglected, it is suggested that the onset of rapid non-photosynthetic potato tuber starch biosynthesis may be closely related to the simultaneous increase in ADP-glucose pyrophosphorylase activity.  相似文献   

19.
Escherichia coli H+-ATPase (ECF1) was inactivated in a time- and concentration-dependent manner by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), a selective carboxyl group reagent. Among the subunits of ECF1, only the beta subunit was modified by EEDQ. The reaction of 1 mol of EEDQ per mol of ECF1 resulted in total inactivation, in spite of the fact that the enzyme possesses three beta subunits.  相似文献   

20.
Glucose-1-phosphate uridylyltransferase, also referred to as UDP-glucose pyrophosphorylase or UGPase, catalyzes the formation of UDP-glucose from glucose-1-phosphate and UTP. Not surprisingly, given the central role of UDP-glucose in glycogen synthesis and in the production of glycolipids, glycoproteins, and proteoglycans, the enzyme is ubiquitous in nature. Interestingly, however, the prokaryotic and eukaryotic forms of the enzyme are unrelated in amino acid sequence and structure. Here we describe the cloning and structural analysis to 1.9 A resolution of the UGPase from Escherichia coli. The protein is a tetramer with 222 point group symmetry. Each subunit of the tetramer is dominated by an eight-stranded mixed beta-sheet. There are two additional layers of beta-sheet (two and three strands) and 10 alpha-helices. The overall fold of the molecule is remarkably similar to that observed for glucose-1-phosphate thymidylyltransferase in complex with its product, dTDP-glucose. On the basis of this similarity, a UDP-glucose moiety has been positioned into the active site of UGPase. This protein/product model predicts that the side chains of Gln 109 and Asp 137, respectively, serve to anchor the uracil ring and the ribose of UDP-glucose to the protein. The beta-phosphoryl group of the product is predicted to lie within hydrogen bonding distance to the epsilon-nitrogen of Lys 202 whereas the carboxylate group of Glu 201 is predicted to bridge the 2'- and 3'-hydroxyl groups of the glucosyl moiety. Details concerning the overall structure of UGPase and a comparison with glucose-1-phosphate thymidylyltransferase are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号