共查询到12条相似文献,搜索用时 0 毫秒
1.
Linking individual response to biotic interactions with community structure: a trait-based framework
Nicolas Gross Georges Kunstler Pierre Liancourt Francesco de Bello Katharine Nash Suding Sandra Lavorel 《Functional ecology》2009,23(6):1167-1178
1. Due to species-specificity of the outcomes of biotic interactions, it is difficult to generalize from observed biotic interactions at the individual plant level to the effect of those interactions at the community level. To evaluate the importance of biotic interactions in shaping plant communities, it is necessary to understand how the outcomes of the complex interactions observed at the individual level can influence community structure.
2. Here, we propose a trait-based framework that identifies and organises mechanisms affecting community structure (here described with relative abundances of plant functional traits – i.e. the distribution of trait values at the community level). We applied our approach to a single leaf trait, specific leaf area (SLA), to link individual responses to plant interactions with community structure (SLA distribution observed at the community level) and to test whether biotic interactions can predict the functional composition of subalpine grasslands. We evaluated the generality of our model through a cross-validation with a set of eight subalpine grasslands independent from the four fields used to build the model.
3. We found that competition and facilitation were able to explain the functional composition of subalpine grasslands, and the relevant fitness components (survival or growth) explaining this link changed depending on the limiting resources. When soil water availability was limiting, positive plant-plant interactions acting on survival were able to explain community structure. In contrast, when no water limitation was observed competition acting on individual growth was the main driver of community structure.
4. Our framework enables evaluation of the consequences of biotic interactions observed at individual level on community structure, thereby indicating when and where different types of plant-plant interactions are important. 相似文献
2. Here, we propose a trait-based framework that identifies and organises mechanisms affecting community structure (here described with relative abundances of plant functional traits – i.e. the distribution of trait values at the community level). We applied our approach to a single leaf trait, specific leaf area (SLA), to link individual responses to plant interactions with community structure (SLA distribution observed at the community level) and to test whether biotic interactions can predict the functional composition of subalpine grasslands. We evaluated the generality of our model through a cross-validation with a set of eight subalpine grasslands independent from the four fields used to build the model.
3. We found that competition and facilitation were able to explain the functional composition of subalpine grasslands, and the relevant fitness components (survival or growth) explaining this link changed depending on the limiting resources. When soil water availability was limiting, positive plant-plant interactions acting on survival were able to explain community structure. In contrast, when no water limitation was observed competition acting on individual growth was the main driver of community structure.
4. Our framework enables evaluation of the consequences of biotic interactions observed at individual level on community structure, thereby indicating when and where different types of plant-plant interactions are important. 相似文献
2.
Chapin FS 《Annals of botany》2003,91(4):455-463
Human activities are causing widespread changes in the species composition of natural and managed ecosystems, but the consequences of these changes are poorly understood. This paper presents a conceptual framework for predicting the ecosystem and regional consequences of changes in plant species composition. Changes in species composition have greatest ecological effects when they modify the ecological factors that directly control (and respond to) ecosystem processes. These interactive controls include: functional types of organisms present in the ecosystem; soil resources used by organisms to grow and reproduce; modulators such as microclimate that influence the activity of organisms; disturbance regime; and human activities. Plant traits related to size and growth rate are particularly important because they determine the productive capacity of vegetation and the rates of decomposition and nitrogen mineralization. Because the same plant traits affect most key processes in the cycling of carbon and nutrients, changes in plant traits tend to affect most biogeochemical cycling processes in parallel. Plant traits also have landscape and regional effects through their effects on water and energy exchange and disturbance regime. 相似文献
3.
Akira S. Mori Takuya Furukawa Takehiro Sasaki 《Biological reviews of the Cambridge Philosophical Society》2013,88(2):349-364
A growing body of evidence highlights the importance of biodiversity for ecosystem stability and the maintenance of optimal ecosystem functionality. Conservation measures are thus essential to safeguard the ecosystem services that biodiversity provides and human society needs. Current anthropogenic threats may lead to detrimental (and perhaps irreversible) ecosystem degradation, providing strong motivation to evaluate the response of ecological communities to various anthropogenic pressures. In particular, ecosystem functions that sustain key ecosystem services should be identified and prioritized for conservation action. Traditional diversity measures (e.g. ‘species richness’) may not adequately capture the aspects of biodiversity most relevant to ecosystem stability and functionality, but several new concepts may be more appropriate. These include ‘response diversity’, describing the variation of responses to environmental change among species of a particular community. Response diversity may also be a key determinant of ecosystem resilience in the face of anthropogenic pressures and environmental uncertainty. However, current understanding of response diversity is poor, and we see an urgent need to disentangle the conceptual strands that pervade studies of the relationship between biodiversity and ecosystem functioning. Our review clarifies the links between response diversity and the maintenance of ecosystem functionality by focusing on the insurance hypothesis of biodiversity and the concept of functional redundancy. We provide a conceptual model to describe how loss of response diversity may cause ecosystem degradation through decreased ecosystem resilience. We explicitly explain how response diversity contributes to functional compensation and to spatio‐temporal complementarity among species, leading to long‐term maintenance of ecosystem multifunctionality. Recent quantitative studies suggest that traditional diversity measures may often be uncoupled from measures (such as response diversity) that may be more effective proxies for ecosystem stability and resilience. Certain conclusions and recommendations of earlier studies using these traditional measures as indicators of ecosystem resilience thus may be suspect. We believe that functional ecology perspectives incorporating the effects and responses of diversity are essential for development of management strategies to safeguard (and restore) optimal ecosystem functionality (especially multifunctionality). Our review highlights these issues and we envision our work generating debate around the relationship between biodiversity and ecosystem functionality, and leading to improved conservation priorities and biodiversity management practices that maximize ecosystem resilience in the face of uncertain environmental change. 相似文献
4.
Garnier E Lavorel S Ansquer P Castro H Cruz P Dolezal J Eriksson O Fortunel C Freitas H Golodets C Grigulis K Jouany C Kazakou E Kigel J Kleyer M Lehsten V Leps J Meier T Pakeman R Papadimitriou M Papanastasis VP Quested H Quétier F Robson M Roumet C Rusch G Skarpe C Sternberg M Theau JP Thébault A Vile D Zarovali MP 《Annals of botany》2007,99(5):967-985
BACKGROUND AND AIMS: A standardized methodology to assess the impacts of land-use changes on vegetation and ecosystem functioning is presented. It assumes that species traits are central to these impacts, and is designed to be applicable in different historical, climatic contexts and local settings. Preliminary results are presented to show its applicability. METHODS: Eleven sites, representative of various types of land-use changes occurring in marginal agro-ecosystems across Europe and Israel, were selected. Climatic data were obtained at the site level; soil data, disturbance and nutrition indices were described at the plot level within sites. Sixteen traits describing plant stature, leaf characteristics and reproductive phase were recorded on the most abundant species of each treatment. These data were combined with species abundance to calculate trait values weighed by the abundance of species in the communities. The ecosystem properties selected were components of above-ground net primary productivity and decomposition of litter. KEY RESULTS: The wide variety of land-use systems that characterize marginal landscapes across Europe was reflected by the different disturbance indices, and were also reflected in soil and/or nutrient availability gradients. The trait toolkit allowed us to describe adequately the functional response of vegetation to land-use changes, but we suggest that some traits (vegetative plant height, stem dry matter content) should be omitted in studies involving mainly herbaceous species. Using the example of the relationship between leaf dry matter content and above-ground dead material, we demonstrate how the data collected may be used to analyse direct effects of climate and land use on ecosystem properties vs. indirect effects via changes in plant traits. CONCLUSIONS: This work shows the applicability of a set of protocols that can be widely applied to assess the impacts of global change drivers on species, communities and ecosystems. 相似文献
5.
Measuring the functional responses of farmland birds: an example for a declining seed-feeding bunting 总被引:1,自引:0,他引:1
1. Many farmland bird species have undergone significant declines. It is important to predict the effect of agricultural change on these birds and their response to conservation measures. This requirement could be met by mechanistic models that predict population size from the optimal foraging behaviour and fates of individuals within populations. A key component of these models is the functional response, the relationship between food and competitor density and feeding rate. 2. This paper describes a method for measuring functional responses of farmland birds, and applies this method to a declining farmland bird, the corn bunting Miliaria calandra L. We derive five alternative models to predict the functional responses of farmland birds and parameterize these for corn bunting. We also assess the minimum sample sizes required to predict accurately the functional response. 3. We show that the functional response of corn bunting can be predicted accurately from a few behavioural parameters (searching rate, handling time, vigilance time) that are straightforward to measure in the field. These parameters can be measured more quickly than the alternative of measuring the functional response directly. 4. While corn bunting violated some of the assumptions of Holling's disk equation (model 1 in our study), it still provided the most accurate fit to the observed feeding rates while remaining the most statistically simple model tested. Our other models may be more applicable to other species, or corn bunting feeding in other locations. 5. Although further tests are required, our study shows how functional responses can be predicted, simplifying the development of mechanistic models of farmland bird populations. 相似文献
6.
7.
Michael P. Perring Pieter De Frenne Lander Baeten Sybryn L. Maes Leen Depauw Haben Blondeel María M. Carón Kris Verheyen 《Global Change Biology》2016,22(4):1361-1371
One of the major challenges in ecology is to predict how multiple global environmental changes will affect future ecosystem patterns (e.g. plant community composition) and processes (e.g. nutrient cycling). Here, we highlight arguments for the necessary inclusion of land‐use legacies in this endeavour. Alterations in resources and conditions engendered by previous land use, together with influences on plant community processes such as dispersal, selection, drift and speciation, have steered communities and ecosystem functions onto trajectories of change. These trajectories may be modulated by contemporary environmental changes such as climate warming and nitrogen deposition. We performed a literature review which suggests that these potential interactions have rarely been investigated. This crucial oversight is potentially due to an assumption that knowledge of the contemporary state allows accurate projection into the future. Lessons from other complex dynamic systems, and the recent recognition of the importance of previous conditions in explaining contemporary and future ecosystem properties, demand the testing of this assumption. Vegetation resurvey databases across gradients of land use and environmental change, complemented by rigorous experiments, offer a means to test for interactions between land‐use legacies and multiple environmental changes. Implementing these tests in the context of a trait‐based framework will allow biologists to synthesize compositional and functional ecosystem responses. This will further our understanding of the importance of land‐use legacies in determining future ecosystem properties, and soundly inform conservation and restoration management actions. 相似文献
8.
Question: What is the relative importance of environmental and spatial factors for species compositional and phylogenetic turnover? Location: High‐rainfall zone of the Southwest Australian Floristic Region (SWAFR). Methods: Correlates of species compositional turnover were assessed using quadrat‐based floristic data, and establishing relationships with environmental and spatial factors using canonical correspondence analyses and Mantel tests. Between‐quadrat phylogenetic distance measures were computed and examined for correlations with environmental and spatial attributes. Processes structuring pa2t2terns of beta diversity were also evaluated within four broad floristic assemblages defined a priori. Results: Floristic diversity was strongly related to environmental attributes. A low significance of spatial variables on assemblage patterns suggested no evident effect of dispersal limitations. Species compositional turnover was especially high within the swamp and outcrop assemblage. Phylogenetic turnover was closely coupled to species compositional turnover, implying the occurrence of many locally endemic and phylogenetically relict taxa. Beta diversity patterns within assemblages were also significantly correlated with the local environment, and relevant correlates differed between floristic assemblage types. Conclusion: Phylogenetic diversity in the SWAFR high‐rainfall zone is clustered within edaphic microhabitats in a generally subdued landscape. A clustered rather than dispersed distribution of phylogenetic diversity increases the probability of significant plant diversity loss during periods of climate change. Climate change susceptibility of the region's flora is accordingly estimated to be high. We highlight the conservation significance of swamp and outcrops that are characterized by distinct hydrological properties and may provide refugial habitat for plant diversity during periods of moderate climate change. 相似文献
9.
D. Maxin 《Journal of biological dynamics》2017,11(1):339-364
Many models of mutualism have been proposed and studied individually. In this paper, we develop a general class of models of facultative mutualism that covers many of such published models. Using mild assumptions on the growth and self-limiting functions, we establish necessary and sufficient conditions on the boundedness of model solutions and prove the global stability of a unique coexistence equilibrium whenever it exists. These results allow for a greater flexibility in the way each mutualist species can be modelled and avoid the need to analyse any single model of mutualism in isolation. Our generalization also allows each of the mutualists to be subject to a weak Allee effect. Moreover, we find that if one of the interacting species is subject to a strong Allee effect, then the mutualism can overcome it and cause a unique coexistence equilibrium to be globally stable. 相似文献
10.
Joseph K. Bailey Jennifer A. Schweitzer Francisco úbeda Julia Koricheva Carri J. LeRoy Michael D. Madritch Brian J. Rehill Randy K. Bangert Dylan G. Fischer Gerard J. Allan Thomas G. Whitham 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2009,364(1523):1607-1616
Using two genetic approaches and seven different plant systems, we present findings from a meta-analysis examining the strength of the effects of plant genetic introgression and genotypic diversity across individual, community and ecosystem levels with the goal of synthesizing the patterns to date. We found that (i) the strength of plant genetic effects can be quite high; however, the overall strength of genetic effects on most response variables declined as the levels of organization increased. (ii) Plant genetic effects varied such that introgression had a greater impact on individual phenotypes than extended effects on arthropods or microbes/fungi. By contrast, the greatest effects of genotypic diversity were on arthropods. (iii) Plant genetic effects were greater on above-ground versus below-ground processes, but there was no difference between terrestrial and aquatic environments. (iv) The strength of the effects of intraspecific genotypic diversity tended to be weaker than interspecific genetic introgression. (v) Although genetic effects generally decline across levels of organization, in some cases they do not, suggesting that specific organisms and/or processes may respond more than others to underlying genetic variation. Because patterns in the overall impacts of introgression and genotypic diversity were generally consistent across diverse study systems and consistent with theoretical expectations, these results provide generality for understanding the extended consequences of plant genetic variation across levels of organization, with evolutionary implications. 相似文献
11.
FERNANDO P. LIMA †‡ PEDRO A. RIBEIRO†‡ NUNO QUEIROZ†‡ RAQUEL XAVIER† PEDRO TARROSO† STEPHEN J. HAWKINS‡§ ANTÓNIO M. SANTOS † 《Global Change Biology》2007,13(10):2065-2077
A climate envelope approach was used to model the distributions of the intertidal gastropod Patella rustica , to test the robustness of forecast responses to climate change. The model incorporated variables that were likely to determine the abundance and the northern range limit of this species in the NE Atlantic. The model was built using classification and regression tree analysis (CART) trained with historical distribution data from the mid 1950s and a set of corresponding climatic and oceanographic variables. Results indicated air and sea temperature, in particular during the reproductive and settlement periods, as the main determinants of the Atlantic distribution of P. rustica . The model was subsequently fed with contemporary climatic data and its output was compared with the current distribution and abundance of P. rustica , assessed during a 2002–2003 survey. The model correctly hindcasted the recent collapse of a distributional gap in northern Portugal, as well as an increase in abundance at locations within its range. The predicted northward expansion of the northern range limit did not occur because the absence of the species was confirmed in a survey encompassing the whole Atlantic French coast up to Brest. Stretches of unsuitable habitat too long to be overcome by dispersal are the likely mechanism controlling the northern limit of the distribution of this intertidal species. 相似文献
12.
LORENA GÓMEZ‐APARICIO RAÚL GARCÍA‐VALDÉS PALOMA RUÍZ‐BENITO MIGUEL A. ZAVALA 《Global Change Biology》2011,17(7):2400-2414
Most large‐scale multispecies studies of tree growth have been conducted in tropical and cool temperate forests, whereas Mediterranean water‐limited ecosystems have received much less attention. This limits our understanding of how growth of coexisting tree species varies along environmental gradients in these forests, and the implications for species interactions and community assembly under current and future climatic conditions. Here, we quantify the absolute effect and relative importance of climate, tree size and competition as determinants of tree growth patterns in Iberian forests, and explore interspecific differences in the two components of competitive ability (competitive response and effect) along climatic and size gradients. Spatially explicit neighborhood models were developed to predict tree growth for the 15 most abundant Iberian tree species using permanent‐plot data from the Spanish Second and Third National Forest Inventory (IFN). Our neighborhood analyses showed a climatic and size effect on tree growth, but also revealed that competition from neighbors has a comparatively much larger impact on growth in Iberian forests. Moreover, the sensitivity to competition (i.e. competitive response) of target trees varied markedly along climatic gradients causing significant rank reversals in species performance, particularly under xeric conditions. We also found compelling evidence for strong species‐specific competitive effects in these forests. Altogether, these results constitute critical new information which not only furthers our understanding of important theoretical questions about the assembly of Mediterranean forests, but will also be of help in developing new guidelines for adapting forests in this climatic boundary to global change. If we consider the climatic gradients of this study as a surrogate for future climatic conditions, then we should expect absolute growth rates to decrease and sensitivity to competition to increase in most forests of the Iberian Peninsula (in all but the northern Atlantic forests), making these management considerations even more important in the future. 相似文献