首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excised soybean (Glycine max [L.] Merrill) cv Anoka leaf discs tend to remain green even after the corresponding intact leaves have turned yello on fruiting plants. We have found that explants which include a leaf along with a stem segment (below the node) and one or more pods (maintained on distilled H2O) show similar but accelerated leaf yellowing and abscission compared with intact plants. In podded explants excised at pre-podfill, the leaves begin to yellow after 16 days, whereas those excised at late podfill begin to yellow after only 6 days. Although stomatal resistances remain low during the first light period after excision, they subsequently increase to levels above those in leaves of intact plants. Explants taken at mid to late podfill with one or more pods per node behave like intact plants in that pod load does not affect the time lag to leaf yellowing. Explant leaf yellowing and abscission are delayed by removal of the pods or seeds or by incubation in complete mineral nutrient solution or in 4.6 micromolar zeatin. Like chorophyll breakdown, protein loss is accelerated in the explants, but minerals or especially zeatin can retard the loss. Pods on explants show rates and patterns of color change (green to yellow to brown) similar to those of pods on intact plants. These changes start earlier in explants on water than in intact plants, but they can be delayed by adding zeatin. Seed dry weight increased in explants, almost as much as in intact plants. Explants appear to be good analogs of the corresponding parts of the intact plant, and they should prove useful for analyzing pod development and mechanisms of foliar senescence. Moreover, our data suggest that the flux of minerals and cytokinin from the roots could influence foliar senescence in soybeans, but increased stomatal resistance does not seem to cause foliar senescence.  相似文献   

2.
On the way from the roots to the seeds during reproductive developmentin soybean (Glycine max), a large proportion of the mineralspass through the leaves rather than travelling directly viathe xylem. This direct and indirect movement of mineral nutrientshas important implications for mineral redistribution, seeddevelopment and leaf senescence. Therefore, we have studiedthe role of cytokinin and mineral flux from the roots in regulatingmineral redistribution from the leaves to the seeds using explants,i.e. a leaf, a pod and a subtending stem segment, with theirbases immersed in treatment solutions. Thus, defined solutionscontaining cytokinin and/or minerals can be substituted forthe roots. When explants (excised at early-mid podfill) aresupplied H2O only, leaf N, P, K, Mo, Mg, Zn, Fe, B, Cu, Ca,and Mn decline, ranging from 93% for Mo to 38% for Fe. In explantson H2O, N, P, K, Mo, Mg, Zn, and Fe appear to be redistributedfrom the leaves to the seeds, while the B, Cu, Ca, and Mn lostfrom the leaves do not seem to move to the seeds. Although amixture of minerals resembling xylem sap can delay net lossof these elements from the leaves, it does not prevent the decreases.The cytokinin zeatin (4.6 µM) inhibits the loss of N,IC, Mo, Mg, Zn, Fe, B, Cu, Ca, and Mn from the leaves, but notthat of P. When combined with minerals, zeatin not only preventsthe loss of the minerals from the leaves but may even greatlyincrease them with the possible exception of Zn, Fe, and Cu.Supplying the mineral nutrient mixture increases the quantitiesof N, P, K, Mg, Cu, and B in the seeds but not Zn, Fe, Mn, Ca,and Mo. For those minerals, especially N, where zeatin inhibitsefflux from the leaves, it may reduce the amounts in the seeds,but it does not change P, K, Mg, and Ca. The accumulation andredistribution patterns of the different mineral nutrients showmany dissimilarities thereby suggesting differences in the controlof their distribution. Key words: Cytokinin, mineral transport, seed development, senescence  相似文献   

3.
Soybean explants (leaf, pod and subtending stem segment) excisedat early-mid podfill and cultured on a mineral nutrient solutionsenesce much sooner than comparable intact structures. Pod developmentis also advanced, but seed yield is reduced. Cytokinin addedto the mineral nutrient medium retards leaf yellowing, bladeabscission, petiole abscission and to a lesser extent pod development.At 3?10–7 M, dihydrozeatin riboside (diZR), benzyladenine,dihydrozeatin (diZ), zeatin riboside (ZR), zeatin (Z), isopentenyladenineor isopentenyladenine riboside retard leaf yellowing by 18,15, 12, 4–6, 2–5, 2 and 1 days, respectively. Thesecytokinins show a similar hierarchy of activity on abscission.Cytokinin also retards changes in stomatal resistance and transpirationrate. The activity hierarchy for the different cytokinins onstomatal resistance and pod development differs from that onleaf yellowing. When cytokinins are given as a long pulse (about3 days), they show a somewhat different activity pattern comparedwith a continuous supply of cytokinin. Clearly, the cytokininscoming up through the xylem from the roots play an importantrole in maintaining the foliage, and a decline in the supplyof cytokinins from the roots could be a major factor in monocarpicsenescence of soybeans. If Z. ZR, diZ and diZR are normallysupplied by the roots via the xylem, they must be importantfactors in sustaining leaf function and pod development. (Received June 10, 1983; Accepted November 22, 1983)  相似文献   

4.
The relationship between seed number per pod and senescenceof the leaf in its axil was examined in a determinate cowpea(Vigna unguiculata L. Walp) variety C.779. The seed number perpod was reduced at all fruiting nodes by surgical excision ofpart of the 4-d-old pod. Leaf senescence as measured by lossof leaf area, chlorophyll content and soluble protein was sloweddown in leaves supporting the development of an artificiallyreduced number of seeds. Diminished nitrogen mobilization fromthe leaf could not account for the reduced rate of leaf senescence.The result suggests the involvement of a senescence signal fromthe developing seeds to the leaf in its axil. Development ofthe basal half of the excised pod in the cowpea provides a uniquesystem for manipulating seed number per pod. Senescence, monocarpic, chlorophyll, protein, Vigna unguiculata, cowpea  相似文献   

5.
Several genes can alter the yellowing processes that normallyoccur during pod development and monocarpic senescence in soybean.CytG and d1 + d2 cause the leaves and seeds to stay green atmaturity. G blocks yellowing of the seed coat but not the leavesor embryos. By contrast, another gene, y3, causes earlier yellowingof the leaves. This paper examines the effects of these geneson photosynthesis and some related parameters of the senescencesyndrome in near-isogenic backgrounds (cv. Clark). Neither cytGnor d1 d2 delays the decline in photosynthetic rate during monocarpicsenescence relative to Clark; while Gd1 d2 does. Again, y3 causesan earlier decrease. Similarly, neither cytG nor d1 d2 altersthe decline in stomatal conductance and transpiration, whichoccurs at the end of podfill; however, Gd1 d2 delays it andy3 advances it. Neither cytG nor d1 d2 prevents the rise inintercellular CO2 during podfill, while Gd1 d2 does, and y3promotesit. These changes in intercellular CO2 may reciprocally reflectthe status (maintenance for Gd1 d2 and early loss for y3) ofthe photosynthetic enzymes. Gd1 d2, d1 d2 and cytG do not appreciablyaffect leaf blade abscission; however, y3 prevents it. Gd1 d2increases the dry weight seed yield, and y3 decreases it. Gd1d2 inhibits several components in the senescence process, whilecytG seems to affect mainly chlorophyll loss and y3 may actmore broadly than just accelerating senescence. Clearly, thestay-green trait can be caused by more than one genetic locus,and it may or may not maintain photosynthesis. 3Present address: Instituto de Fisologia Vegetal, Facultad deAgronomia, c.c. 31, 1900-La Plata, Argentina (Received May 18, 1990; Accepted September 4, 1990)  相似文献   

6.
K2S2O8, applied to the basal end of cuttings of Vigna radiatastimulated leaf abscission in the light or dark. Because inhibitionof leaf sbscission in the dark by IAA was completely abolishedby K2S2O8, and IAA decreased stimulation of abscission by K2S2O8,destruction of IAA in the cuttings by K2S2O8 is indicated. K2S2O8had no effect on leaf abscission when applied as a foliar sprayor when roots of undisturbed seedlings were treated. When appliedproximally or distally to leafless explants, K2S2O8 inhibitedpetiole abscission, and neither IAA nor ethylene had an effecton the inhibition. Although K2S2O8 destroyed IAA in vitro, ithad no effect on abscission inhibitors in macerates of Vignaleaves and corn roots, nor did it destroy the biological activityof IAA added to such macerates. Substances liberated by macerationmay interfere with the ability of K2S2O8 to destroy IAA. (Received May 2, 1981; Accepted August 24, 1981)  相似文献   

7.
We have examined the hypothesis that cytokinins transportedfrom roots to shoots affects leaf growth, stomatal conductance,and cytokinin concentration of leaves of Phaseolus and a hybridpoplar (Populus trichocarpa x Populus deltoides) with hypoxicroots. Because cytokinins may interact with other substances,potassium and calcium concentrations were determined in xylemsap of Populus plants with hypoxic and aerated roots while gibberellin(GA) concentrations were measured in shoot tissues. Root hypoxiadecreased leaf growth and closed stomata in both species. Inboth species, fluxes of cytokinins out of the roots were reduced,but no differences in bulk leaf concentrations were measuredbetween the hypoxic and aerated plants. Shoots with aeratedroots contained slightly higher concentrations of GA1 and GA3than shoots from hypoxic plants. There were no differences incalcium or potassium concentrations in xylem sap between aerationtreatments. Exogenously applied cytokinins did not alleviatethe growth or stomatal responses caused by root hypoxia. Informationon the site(s) and mechanism(s) of cytokinin action and theways in which cytokinins are compartmentalized within plantcells will be required to understand the physiological significanceof cytokinin transport in the transpirational stream. Key words: Cytokinins, hypoxia, Populus, Phaseolus  相似文献   

8.
In field trials of Phaseolus vulgaris large differences wereobserved between varieties in the rate at which the leaves abscised.Similar differences were found in the rate of decline of thechlorophyll content of excised leaf discs. A grafting experimentshowed that the differences in leaf abscission depended on thegenotype of the scion and on that of the rootstock. Scion andstock effects of each genotype were similar, and additive. Rootstock/scioncombinations which conferred enhanced leaf retention producedgreater yields of seed and of seed nitrogen. When shoots ofdelayed-senescence genotypes of P. vulgaris were held in waterthey produced more adventitious roots than did shoots of rapid-senescencegenotypes. This relationship between senescence pattern andadventitious rooting was also observed among varieties of Glycinemax, and between isogenic lines of G. max differing in the leafabscission alleles Ab/ab. These results are discussed in relationto current theories of leaf senescence, abscission, and theproduction of yield.  相似文献   

9.
Senescence of Brassica campestris L. cv. B-9 was studied with regard to seed maturation and source-sink relationships. In normal control plants leaf senescence (as determined by the change in chlorophyll level) started and proceeded in a progressive manner from base to apex during the period of early pod setting. Complete yellowing of the leaves occurred well before the seed maturation and pod wall senescence. The pod wall always senesced before the attainment of final seed weight. In two different sets of acrocarpous plants containing 65 pods and 10 pods, respectively, leaf senescence was delayed during the pod filling period. It started non-sequentially after complete yellowing and senescence of the pod wall. The degree of leaf senescence at the post-pod filling stage was almost proportional to the number of pods present. When peduncles of the acrocarpous 10-podded plants were removed after the pod filling stage of the plant, leaf senescence was delayed compared to plants whose pedicels were removed, although the senescence pattern of the upper three leaves was nonsequential in both cases. Defruiting at an early stage of development delayed leaf senescence, although the pattern of such senescence remained unaltered (i.e. nonsequential). Defoliation hastened the seed-filling process and pod wall senescence. Plants containing fewer pods had higher average seed weight, although yield per plant was reduced.
These results suggest that the pod wall serves as a temporary as well as intermediary storage organ and that foliar senescence is not directly related to seed maturation. The possible cause of uncoupling between foliar senescence and seed development is discussed.  相似文献   

10.
Evidence from earlier studies with explants (stem cutting with a leaf and a pod) indicates that a decline in the supply of mineral nutrients from the roots may prepare the leaves for induction of monocarpic senescence in soybean [ Glycine max (L.) Merrill cv. Anoka). In order to assess the changes in mineral flux from the root system, xylem sap was collected from a decapitated plant under 100 kPa pressure over 50 min. The sap volume yield declines after flowering starts, but increases during pod extension and then decreases again during podfill. The concentrations of K, Ca, Mg, P, S, Zn, Fe, Mn, Cu, Mo and Si rise and then fall during reproductive development, but the exact timing differs among the elements. In contrast, B, Al and Na concentrations show a slow rise initially with a large increase in late pod development. Depodding, which prevents the early death of the plant, inhibits the changes of some elements (K, Mg) but not others (Ca. Mg, P, S, Zn. Fe. Mn, B, Cu, Al), and it does not prevent the decrease in sap volume delivered. Inasmuch as the mineral concentration of xylem sap quantitatively reflects upward mineral flux, the supply of most minerals to the shoot declines, and this decrease seems to be an important factor in the preparatory phase of monocarpic senescence. The different minerals show different patterns of change, which indicate differences in the transport mechanisms and their regulation.  相似文献   

11.
Cytokinins (CKs) coming from the roots via the xylem are known to delay leaf senescence, and their decline may be important in the senescence of soybean (Glycine max) plants during pod development (monocarpic senescence). Therefore, using radioimmunoassay of highly purified CKs, we quantified the zeatin (Z), zeatin riboside (ZR), the dihydro derivatives (DZ, DZR), the O-glucosides, and DZ nucleotide in xylem sap collected from root stocks under pressure at various stages of pod development. Z, ZR, DZ, and DZR dropped sharply during early pod development to levels below those expected to retard senescence. Pod removal at full extension, which delayed leaf senescence, caused an increase in xylem sap CKs (particularly ZR and DZR), while depodding at late podfill, which did not delay senescence, likewise did not increase the CK levels greatly. The levels of the O-glucosides and the DZ nucleotide were relatively low, and they showed less change with senescence or depodding. The differences in the responses of individual CKs to senescence and depodding suggest differences in their metabolism. Judging from their activity, concentrations and response to depodding, DZR and ZR may be the most important senescence retardants in soybean xylem sap. These data also suggest that the pods can depress CK production by the roots at an early stage and this decrease in CK production is required for monocarpic senescence in soybean.  相似文献   

12.
We investigated the degree to which developing fruit compete directly with leaves for mineral nutrients, e.g. phosphate coming up from the roots. When soybean ( Glycine max (L.) Merrill cv. Anoka) explants cut at mid-late podfill were given a 15-min pulse of 32Pi via the cut stem and then transferred to distilled water, 75% of the 32P accumulated in the leaves and 21% in stem and petiole during the first hour. The amount of 32P entering the seeds was low (1%) initially, but thereafter increased to 30% in 48 h. An accumulation of 32P in the seed coats preceded its entry into the embryos. Disruption (with hot steam) of the phloem between the leaf and the pods after pulse labelling indicated that more than 80% of the 32Pi pulse moved to the leaf before redistribution to the pods. Increasing "sink" size by adjusting the pod load from 1 to 2–3 did not increase the 32P accumulated by the pods proportionally. Conversely, excision of the seeds after pulse labelling did not prevent translocation of 32P out of the leaves. These results suggest that the rate of transport of phosphate to the pods at mid-late podfill is controlled primarily by factors in the leaves. The results are consistent with the observation that the relative size of the sink (pod load) does not regulate leaf senescence.  相似文献   

13.
When [3H]dihydrozeatin riboside and [3H]zeatin riboside were supplied to soybean (Glycine max L.) explants (comprising one leaf, associated pods, and subtending stem) via the xylem at mid to late podfill, 0.1% of the supplied 3H was extracted from the seeds. The distribution of 3H in the explants was similar to that bound previously following uptake of [3H]zeatin riboside at earlier stages of pod development. Metabolites formed in the explants from 3H-labeled zeatin, zeatin riboside, and dihydrozeatin riboside were identified and related to the endogenous cytokinins shown to be present. When zeatin riboside and zeatin were supplied for 1 hour, zeatin nucleotide was the principal metabolite formed and this appeared to be the precursor of the other metabolites detected subsequently. Explants supplied with zeatin riboside or dihydrozeatin riboside for 1 hour, and then transferred to water for 20 to 24 hours, yielded leaf blades in which the main metabolites were O-glucosyldihydrozeatin, adenosine, and adenine. The metabolism of zeatin riboside in blades of explants at pre-podfill, early podfill, and mid to late podfill did not differ appreciably. The results are discussed in relation to leaf senescence and seed development.  相似文献   

14.
Two-node explants from Sweet Orange cv. St Ives Valencia orangeshoots produced prolific callus and formed secondary abscissionzones within internodes when cultured in vitro with abscisicacid (ABA, 5 µM) or -naphthaleneacetic acid (NAA, 5 µM).Benzyladenine (BA, 1 µm) induced callus but had littleeffect on abscission. Secondary abscission zone formation wasassociated with ABA-induced and auxin-induced ethylene formation.Treatment of explants with inhibitors of ethylene synthesis[aminoethoxyvinyl glycine (AVG), Co2+, PO43–] preventedformation of secondary abscission zones but had variable effectson callus formation. Newly made explants contained high concentrationsof endogenous ABA (up to 6000 ng g–1 f.wt), as measuredby GC/MS/SIM. Long-term subculture of explants (two years) inmedia containing BA (1 µm) led to a reduction in endogenousABA level (40 ng g–1 f. wt) and to loss of capacity toform extensive callus and secondary abscission zones. Citrus sinensis (L.) Osbeck cv. St Ives Valencia, sweet orange, secondary abscission zones, in vitro, ethylene, endogenous ABA, endogenous IAA  相似文献   

15.
SESAY  A.; SHIBLES  R. 《Annals of botany》1980,45(1):47-55
Senescence, as judged by the time courses of leaf lamina photosynthesis,soluble protein and chlorophyll contents, was studied in relationto mineral redistribution in field-grown soya beans [Glycinemax (L.) Merr] to investigate the hypothesis that the depletionof nutrients m the leaves by the developing seeds is the causeof soya bean senescence. A mineral nutrient solution was appliedto the canopy during the seed-filling period, and the effectson senescence and mineral depletion of the leaves were determinedin three cultivars, at two leaf positions, weekly from beginningof seed filling through physiological maturity. The onset of senescence occurred shortly after the beginningof rapid seed filling Photosynthetic rate declined about 60per cent within 3 weeks. Protein dropped by 52 per cent andchlorophyll by 48 per cent over the same period. Foliar nutrient application, at a rate previously shown to givesignificant yield increases in soya beans, increased the concentrationsof N, P and K in the leaf laminae, but tended only to delaytheir decline and failed to either delay the onset or alterthe course of senescence. The results of this experiment seem to indicate that, undernormal growth conditions, the events of senescence in the soyabean are not causally related to the N, P or K concentrationsof the leaf laminae Glycme max (L.) Merr., soya bean, nitrogen, phosphorus, potassium, leaf protein, chlorophyll, photosynthesis, foliar nutrient application, mineral depletion, leaf senescence  相似文献   

16.
Because triiodobenzoic acid increases pod number, albeit variably, in soybean (Glycine max), we tested other auxin-transport inhibitors. Morphactins, especially methylchlorflurenol (MCF), were found to be very active (optimal concentration 10 micromolar) when sprayed onto the foliage. Applications at 1 week after the start of flowering were most effective, producing a 40% increase in pod number with little inhibition (12%) of stem elongation. MCF increased the number of pods initiated (reaching 1 cm length) at least partially by prolonging the initiation period, while pod abortion (failure of pods > 1 cm long) remained low. Generally, MCF did not increase seed yield (dry weight/plant); more, but smaller seeds, were formed by the treated plants. The promotive effect of MCF on pod initiation seems to be independent of its inhibition of stem elongation, which is insignificant at 10 micromolar. MCF delayed pod maturation by 3 to 4 days, while foliar yellowing, blade abscission, and petiole abscission were retarded by 2, 4, and 2 days, respectively. MCF has only a small effect on senescence and that could be indirect, due to a delay in pod development. Other auxin-transport inhibitors tested, including N-1-naphthylphthalamic acid, produced little or no increase in pod number; however, 0.1 millimolar 5-[2′-carboxyphenyl]-3-phenylpyrazole caused a 27% increase. These results implicate auxin as a potential regulator of pod development, and they show that soybean seed yield is not simply sink limited.  相似文献   

17.
Ethylene is a stress hormone involved in early senescence and abscission of vegetative and reproductive organs under stress conditions. Ethylene perception inhibitors can minimize the impact of ethylene-mediated stress. The effects of high temperature (HT) stress during flowering on ethylene production rate in leaf, flower and pod and the effects of ethylene inhibitor on ethylene production rate, oxidative damage and physiology of soybean are not understood. We hypothesize that HT stress induces ethylene production, which causes premature leaf senescence and flower and pod abscission, and that application of the ethylene perception inhibitor 1-Methyl cyclopropene (1-MCP) can minimize HT stress induced ethylene response in soybean. The objectives of this study were to (1) determine whether ethylene is produced in HT stress; (2) quantify the effects of HT stress and 1-MCP application on oxidative injury; and (3) evaluate the efficacy of 1-MCP at minimizing HT-stress-induced leaf senescence and flower abscission. Soybean plants were exposed to HT (38/28 °C) or optimum temperature (OT; 28/18 °C) for 14 d at flowering stage (R2). Plants at each temperature were treated with 1-MCP (1 μg L−1) gas for 5 h or left untreated (control). High temperature stress increased rate of ethylene production in leaves, flowers and pods, production of reactive oxygen species (ROS), membrane damage, and total soluble carbohydrate content in leaves and decreased photosynthetic rate, sucrose content, Fv/Fm ratio and antioxidant enzyme activities compared with OT. Foliar spray of 1-MCP decreased rate of ethylene production and ROS and leaf senescence traits but enhanced antioxidant enzyme activities (e.g. superoxide dismutase and catalase). In conclusion, HT stress increased ethylene production rates, caused oxidative damage, decreased antioxidant enzyme activity, caused premature leaf senescence, increased flower abscission and decreased pod set percentage. Application of 1-MCP lowered ethylene and ROS production, enhanced antioxidant enzyme activity, increased membrane stability, delayed leaf senescence, decreased flower abscission and increased pod set percentage. The beneficial effects of 1-MCP were greater under HT stress compared to OT in terms of decreased ethylene production, decreased ROS production, increased antioxidant protection, decreased flower abscission and increased pod set percentage.  相似文献   

18.
Plants of Phaseolus vulgaris were grown from seed in open-topgrowth chambers at the present (P, 350 µmol mol–1)atmospheric CO2 concentration and at an elevated (E, 700 µmolmol–1) CO2 concentration, and at low (L, without additionalnutrient solution) and high (H, with additional nutrient solution)nutrient supply for 28 d The effects of CO2 and nutrient availabilitywere examined on growth, morphological and biochemical characteristics Leaf area and dry mass were significantly increased by CO2 enrichmentand by high nutrient supply Stomatal density, stomatal indexand epidermal cell density were not affected by elevated CO2concentration or by nutrient supply Leaf thickness respondedpositively to CO2 increasing particularly in mesophyll areaas a result of cell enlargement Intercellular air spaces inthe mesophyll decreased slightly in plants grown in elevatedCO2 Leaf chlorophyll content per unit area or dry mass was significantlylower in elevated CO2 grown plants and increased significantlywith increasing nutrient availability The content of reducingcarbohydrates of leaves, stem, and roots was not affected byCO2 but was significantly increased by nutrient addition inall plant parts Starch content in leaves and stem was significantlyincreased by elevated CO2 concentration and by high nutrientsupply Phaseolus vulgaris, elevated atmospheric CO2, CO2-nutrient interaction, stomatal density, leaf anatomy, chlorophyll, carbohydrates, starch  相似文献   

19.
The influence of a water stress or foliar ABA spraying pretreatmenton stomatal responses to water loss, exogenous ABA, IAA, Ca2+,and CO2 were studied using excised leaves of Solanum melongena.Both pretreatments increased stomatal sensitivity of water loss,in the presence and absence of CO2, but decreased stomatal sensitivityto exogenous ABA. CO2 greatly reduced the effect of exogenouslyapplied ABA. IAA decreased leaf diffusion resistance for controland ABA sprayed leaves, but did not influence the LDR of previouslywater-stressed leaves. CA2+ did not influence LDR of any leavesof any treatments. Key words: Water stress, stomatal response, pretreatments  相似文献   

20.
The influence of NaCl on senescence-related parameters (proteinand chlorophyll concentrations, membrane permeability and chlorophyllfluorescence) was investigated in young and old leaves of fiverice cultivars differing in salt resistance. NaCl hastened thenaturally-occurring senescence of rice leaves which normallyappears during leaf ontogeny: it decreased chlorophyll and proteinconcentrations and increased membrane permeability and malondialdehydesynthesis. Such an acceleration of deteriorative processes affectedall leaves in salt-sensitive cultivars while it was more markedin oldest than in youngest leaves of salt-resistant genotypes.NaCl-induced senescence also involved specific modifications,such as an increase in basal non-variable chlorophyll fluorescence(F 0) recorded in all cultivars or a transient increase in solubleprotein concentration recorded in salt-resistant genotypes only.Alteration of membrane permeability appeared as one of the firstsymptoms of senescence in rice leaves and allowed discriminationamong cultivars after only 7 d of stress. In contrast, F v/F mratio (variable fluorescence/maximal fluorescence) was thesame for all cultivars during the first 18 d of stress and thuscould not be used for identifying salt-resistant rice exposedto normal light conditions. Relationships between parametersinvolved in leaf senescence are discussed in relation to salinityresistance of rice cultivars. Chlorophyll concentration; chlorophyll fluorescence; electrolyte leakage; magnesium; malondialdehyde; membrane permeability; NaCl; Oryza sativa L.; protein; rice; salinity resistance; senescence; UV absorbing substances  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号