首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Diarrhetic shellfish poisoning has been a recurrent problem along the Brittany coast (France) since 1983. Okadaic acid (O.A.), the main toxin detected in mussels, is generally associated with the presence ofDinophysis cells in sea water. We report here the results of okadaic acid analyses by high performance liquid chromatography, on planktonic samples collected during the summer of 1991.D. sacculus, the majorDinophysis species, throughout this period, showed low okadaic acid content in raw extract, whereas toxic levels were 3- to 12-fold higher in sorted samples than in raw ones. A maximum O.A. concentration of 29.6 pg cell-1 was found inD. sacculus/D. cf. acuminata extract. Similarly, higher O.A. levels were noted in raw samples when these two species were associated. Generally speaking, variations in raw samples were similar to those in sorted samples. Nevertheless, whenD. rotundata reached a concentration equal to that ofD. sacculus in sorted samples, the O.A. level was lower.  相似文献   

2.
The dynamics of the toxicity of the musselMytilus galloprovincialis was compared between two different shellfish farms, 5 km apart, but using the same cultivation technique. The main differences concerned the freshwater influx and the open aspect to the Gulf of Trieste. It is suggested that a deep closed bay and abundant fresh water inflow are the two main conditions for the low toxicity levels in mussels and for shorter periods of danger. A detailed study of the phytoplankton samples revealed the presence of eight species ofDinophysis in the area of both shellfish farms. During the period of the DSP outbreak in Slovenia (autumn and winter 1989).D. fortii andD. acuminata were the most frequentDinophysis species. There was a high positive correlation between the onset of mussel toxicity and the appearance ofDinophysis spp.  相似文献   

3.
A species of Prorocentrum (Dinophyta, Prorocentrales), isolated from a phytoplankton net sample from the Atlantic coast of Nova Scotia, has been brought into unialgal culture. The sample was collected at an aquaculture site immediately following an incident of diarrhetic shellfish poisoning (DSP) due to the consumption of contaminated mussels. This clonal isolate has been identified as P. lima, based on its morphological characteristics. Analysis of the culture extract, using high performance liquid chromatography (HPLC) with fluorescence detection, indicated the presence of the DSP toxins, okadaic acid (OA) and dinophysistoxin-1 (DTX-1).  相似文献   

4.
The mouse bioassay for diarrhetic shellfish poisoning (DSP) toxins had been used as the official method in Japan and also used in the world. In this study, hypothermia, one of the symptoms observed in mice after inoculation with DSP toxins, were characterized. Lethal and sublethal doses of okadaic acid (OA), a representative component of DSP toxins, were inoculated intraperitoneally into mice. Body-temperature changes over time were measured by an electronic thermometer or monitored by an infrared camera. Drastic hypothermia (<30°C in some mice) was observed in a few hours after administration of a lethal dose of OA. Dose-dependency was clearly seen between doses of OA inoculated and body-temperature decrease. Drastic hypothermia was also detected by using an infrared camera. These results suggest that hypothermia could be used as an index for the humane endpoint in experimental animal toxicological studies.  相似文献   

5.
For decades, many aspects of Dinophysis biology have remained intractable due to our inability to maintain these organisms in laboratory cultures. Recent breakthroughs in culture methods have opened the door for detailed investigations of these important algae. Here, for the first time, we demonstrate toxin production in cultures of North American Dinophysis acuminata, isolated from Woods Hole, MA. These findings show that, despite the rarity of Dinophysis-related DSP events in North America, D. acuminata from this area has the ability to produce DSP toxins just as it does in other parts of the world where this species is a major cause of DSP toxicity. In our cultures, D. acuminata cells were observed feeding on Myrionecta rubra using a peduncle. Culture extracts were analyzed using LC–MS/MS, providing unequivocal evidence for the toxin DTX1 in the Dinophysis cultures. In addition, a significant amount of an okadaic acid diol ester, OA-D8, was detected. These results suggest that this Dinophysis isolate stores much of its OA as a diol ester. Also, toxin PTX-2 and a hydroxylated PTX-2 with identical fragmentation mass spectrum to that of PTX-11, but with a different retention time, were detected in this D. acuminata culture. This demonstration of toxin production in cultured North American Dinophysis sets the stage for more detailed studies investigating the causes of geographic differences in toxicity. It is now clear that North American Dinophysis have the ability to produce DSP toxins even though they only rarely cause toxic DSP events in nature. This may reflect environmental conditions that might induce or repress toxin production, genetic differences that cause modifications in toxin gene expression, or physiological and biochemical differences in prey species.  相似文献   

6.
The aim of this study in the field was to investigate whether there are differences between the outer archipelago (Gullmar Fjord) and a semi-enclosed fjord system (Koljö Fjord) in occurrences of D. acuta and D. acuminata as well as in their content of diarrheic shellfish toxin (DST) per cell. When all data pairs of cell toxicity of D. acuminata and the corresponding number of cells l−1 from the two sites were tested in a regression analysis, a statistically significant negative correlation became evident and was apparent as a straight line on a log–log plot (p < 0.0001). Obviously, there was an overall inverse relationship between the population density of D. acuminata and the toxin content per cell. Plotted on a linear scale, all data-pairs of cell toxicity and cell number made up a parabolic curve. On this curve the data-pairs could be separated into three groups: (i) D. acuminata occurring in numbers of fewer than approximately 100 cells l−1, and with a toxin content per cell above 5 ρg cell−1; (ii) cell numbers between 100 and approximately 250 cells l−1 with a cell toxin content from 5 to 2 ρg cell−1; (iii) when the population became greater than 250 cells l−1, the toxicity, with few exceptions, was less than 2 ρg cell−1. By applying this subdivision, some clear patterns of the distribution of the differently toxic D. acuminata became evident. When comparing the cell toxicity of the two sites, it was obvious that the D. acuminata cells from all depths from the Gullmar Fjord as a mean were significantly more toxic compared to the Koljö Fjord samples. The results have demonstrated that approximately 100 high-toxicity cells in a low-density population at surface may lead to the same accumulation of DST in a mussel as the ingestion of 1500 low-toxicity cells from a high-density pycnocline population.  相似文献   

7.
Due to the increasing prevalence of Dinophysis spp. and their toxins on every US coast in recent years, the need to identify and monitor for problematic Dinophysis populations has become apparent. Here, we present morphological analyses, using light and scanning electron microscopy, and rDNA sequence analysis, using a ~2-kb sequence of ribosomal ITS1, 5.8S, ITS2, and LSU DNA, of Dinophysis collected in mid-Atlantic estuarine and coastal waters from Virginia to New Jersey to better characterize local populations. In addition, we analyzed for diarrhetic shellfish poisoning (DSP) toxins in water and shellfish samples collected during blooms using liquid-chromatography tandem mass spectrometry and an in vitro protein phosphatase inhibition assay and compared this data to a toxin profile generated from a mid-Atlantic Dinophysis culture. Three distinct morphospecies were documented in mid-Atlantic surface waters: D. acuminata, D. norvegica, and a “small Dinophysis sp.” that was morphologically distinct based on multivariate analysis of morphometric data but was genetically consistent with D. acuminata. While mid-Atlantic D. acuminata could not be distinguished from the other species in the D. acuminata-complex (D. ovum from the Gulf of Mexico and D. sacculus from the western Mediterranean Sea) using the molecular markers chosen, it could be distinguished based on morphometrics. Okadaic acid, dinophysistoxin 1, and pectenotoxin 2 were found in filtered water and shellfish samples during Dinophysis blooms in the mid-Atlantic region, as well as in a locally isolated D. acuminata culture. However, DSP toxins exceeded regulatory guidance concentrations only a few times during the study period and only in noncommercial shellfish samples.  相似文献   

8.
Sixteen species of unialgal samples of dinoflagellate, either wild or cultured, were tested for production of diarrhetic shellfish toxins such as okadaic acid (OA), dinophysistoxin-1 (DTX1), and pectenotoxins (PTXs). Determination of micro-quantities of the toxins was facilitated by fluorometry and UV HPLC. Seven Dinophysis species were confirmed to produce either OA or DTX1, or both. Toxin content and composition varied regionally and seasonally. Intraspecies variation was also observed among cultured strains of Prorocentrum lima. PTX2 was the only toxin detected among PTX family, and D. fortii was the only species to contain this toxin. author for correspondence  相似文献   

9.
Paralytic shellfish poisoning toxin profiles of dinoflagellate cultures of Gymnodinium catenatum Graham from the Yellow and South Seas in Korea were investigated by high performance liquid chromatography fluorometric detection. Strains from the Yellow Sea had predominantly carbamate toxins, while strains from Sujeongri and Chindong in the South Sea contained the N‐sulfocarbamoyl toxins, Cl,2, as major components including the presence of GTX5 and dcSTX in some strains. Toxin profiles from St. Deukryang Bay strains (South Sea) showed both characteristics of those in the South Sea and those in the Yellow Sea. Thirty strains could be divided into three groups based on cluster analysis of toxin compositions. Group I (Yellow Sea strains) was distinguished from Group II (Sujeongri and Chindong strains) by the absence of GTX5 and dcSTX. Group III comprised Deukryang Bay strains. In conclusion, the Yellow Sea and the South Sea were found to have different dinoflagellate populations with different toxin compositions.  相似文献   

10.
The major pectenotoxin and okadaic acid group toxins in Dinophysis acuta and Dinophysis acuminata cell concentrates, collected from various locations around the coast of the South Island of New Zealand (NZ), were determined by liquid chromatography–tandem mass spectrometry (LC–MS/MS). PTX2 and PTX11 were the major polyether toxins in all Dinophysis spp. cell concentrates. D. acuta contained PTX11 and PTX2 at concentrations of 4.7–64.6 and 32.5–107.5 pg per cell, respectively. The amounts of PTX11 and PTX2 in D. acuminata were much lower at 0.4–2.1 and 2.4–25.8 pg per cell, respectively. PTX seco acids comprised only 4% of the total PTX content of both D. acuta and D. acuminata. D. acuta contained low levels of OA (0.8–2.7 pg per cell) but specimens from the South Island west coast also contained up to 10 times higher levels of OA esters (7.0–10.2 pg per cell). Esterified forms of OA were not observed in D. acuta specimens from the Marlborough Sounds. D. acuta did not contain any DTX1 though all D. acuminata specimens contained DTX1 at levels of 0.1–2.4 pg per cell. DTX2 was not present in any New Zealand Dinophysis spp. specimens. Although the total toxin content varied spatially and temporally, the relative proportions of the various toxins in different specimens from the same location appeared to be relatively stable. The total PTX/total OA ratios in different isolates of D. acuta were very similar (mean±S.E.: 14.9±1.9), although the Marlborough Sounds D. acuminata isolates had a higher total PTX/total OA ratio (mean±S.E.: 22.7±2.4) than the Akaroa Harbour isolates (8.0). No evidence of azaspiracids were detected in these specimens. These results show that the LC–MS/MS monitoring of plankton for PTX group toxins (e.g. PTX2) and their derivatives (e.g. PTX2 seco acid) may provide a sensitive, semi-quantitative, indicator of the presence of more cryptic OA group toxins (e.g. OA esters).  相似文献   

11.
To reconsider whether toxin profile could be used as a marker for populations from different geographical areas, clonal isolates of the toxic dinoflagellates Alexandrium tamarense (Lebour) Balech and Alexandrium catenella (Whedon et Kofoid) Balech from Ofunato Bay (Iwate Prefecture), Atsumi Bay (Aichi Prefecture), Tanabe Bay (Wakayama Prefecture), Harima‐Nada (Kagawa Prefecture), Uranouchi Bay (Kochi Prefecture), Hiroshima Bay (Hiroshima Prefecture) and Yamakawa Bay (Kagoshima Prefecture), which were identified on the basis of morphotaxonomy, immunological and molecular biological techniques, were subjected to analysis of paralytic shellfish poisoning toxins by high performance liquid chromatography‐fluorometric method. All the isolates except A. tamarense OF152 from Ofunato Bay contained mainly N‐sulfocarbamoyl toxins (C1 +2) with various amounts of derivatives, and a typical north‐to‐south trend of decreasing toxicity was observed. In both A. tamarense and A. catenella, toxin profiles were rather constant within a geographical area and divergent among different geographical areas. The toxin profiles of A. tamarense from Harima‐Nada were well conserved among different bloom years. Toxin profile showed that isolates of A. tamarense from Ofunato Bay, A. tamarense from Harima‐Nada isolated in 1988 and A. catenella from Uranouchi Bay were heterogeneous. However, only two or three groups of isolates with different toxin profiles were observed in a geographical region, suggesting that several representative isolates express the genotype in a given region. These observations confirmed that toxin composition could be used as a marker to discriminate different geographical populations of these species.  相似文献   

12.
Gymnodinium catenatum Graham is a paralytic shellfish poison (PSP) producer that was described for the first time from the Gulf of California in 1943. During the last decade, its distribution along the Mexican Pacific coastline has increased. In Bahía Concepción, a coastal lagoon on the western side of the Gulf of California, G. catenatum has been linked to significant PSP concentrations found in mollusks. In this study, we describe the saxitoxin profile of 16 strains of G. catenatum, and catarina scallops (Argopecten ventricosus) from Bahía Concepción. Toxins were analyzed by HPLC with post-column oxidation and fluorescence detection. The average toxicity of the G. catenatum strains was 26.0±6.0 pg and 28.0±18.0 pg STX eq/cell after 17 and 22 days of growth, respectively. Ten toxins were recorded, but only dcSTX, dcGTX2, dcGTX3, C1, and C2 were always present in all strains at both growth stages. Since toxin profiles in scallops were similar to the cultures, biotransformations are not significant in catarina scallop. NeoSTX, GTX2, GTX3, and B2 were present in some G. catenatum strains and their presence varied with the age of the culture. In scallop samples, dcSTX, dcGTX2, and dcGTX3 were the most abundant toxins, and from the C-toxin group, only C2 was found. This unique toxin profile can be used as a biomarker for this population, when compared with strains of G. catenatum from other geographic regions.  相似文献   

13.
Previous investigations into the comparative toxicity of the diarrhetic shellfish poisoning (DSP) toxins to Thalassiosira weissflogii (Grun.) Fryxell et Hasle found that this diatom oxidatively metabolized okadaic acid diol‐ester (OA diol‐ester) to a more water‐soluble product. This oxidative transformation of OA diol‐ester by the diatom is significant for two reasons. First, it is known that dinophysistoxin‐4 (DTX‐4), the primary DSP toxin produced by the dinoflagellate Exuviaella lima (Ehr.) Butschli, will be hydrolyzed to the diol‐ester following cell rupture (e.g. ingestion by a predator). Second, it implies that the ester, an uncharged, lipophilic intermediate, can easily enter cells and therefore may play an important role in the uptake and transfer of DSP toxins through the food web. It has been suggested that the water soluble DTX‐4 may also be the form in which DSP toxins are excreted from the producing cell. Therefore, the stability of DTX‐4 was examined when incubated either in fresh seawater medium into which washed cells of E. lima were introduced or in seawater medium conditioned by E. lima cells. Rapid hydrolysis of DTX‐4 to the diol‐ester took place in both cases. Thus, regardless of the route by which DTX‐4 is liberated from the cell, either by cell disruption or excretion, the diol‐ester will be the dominant form of the toxin to challenge associated organisms. To examine the metabolism of OA diol‐ester by T. weissflogii in more detail, serial cultures of the diatom were challenged with OA diol‐ester at a concentration of 2.0 μg·mL?1. The metabolism and fate of the diol‐ester in both cellular and medium fractions were monitored over 3 days using liquid chromatography with either ultraviolet (LC‐UV) or mass spectrometric (LC‐MS) detection. During the course of the experiment, all of the diol‐ester was metabolized. LC‐MS analysis revealed the presence of multiple oxidative products of OA diol‐ester in the medium fraction, including a carboxylic acid derivative. The major metabolites were isolated in sufficient quantity to permit structural elucidation by NMR and MS. All the metabolites identified resulted from oxidation of the diol‐ester side chain with the primary sites of attack at the terminal, subterminal, and unsaturated carbons. OA was found in both cellular and medium fractions, and its production was directly correlated with the metabolism of the diol‐ester. The relative partitioning of both OA diol‐ester and its oxidation products between cells and medium supports the contention that OA diol‐ester can readily enter cells, be metabolized, and then excreted in more water‐soluble forms.  相似文献   

14.
Although the molecular data currently used for identifying dinoflagellates are generally limited to nuclear ribosomal RNA genes, some dinoflagellates cannot be identified by their gene sequence or morphotype, suggesting that additional effective molecular makers are required. We report here a novel species-specific marker on the mitochondrial (mt) genome of dinoflagellates belonging to six Alexandrium spp., namely, A. tamarense, A. catenella, A. tamiyavanichii, A. affine, A. hiranoi, and A. pseudogonyaulax. This new mt marker was able to clearly differentiate these six species. PCR analysis using a primer set for the A. tamarense-specific sequence confirmed that this sequence is conserved in A. tamarense strains but not in other dinoflagellate species. We also sequenced the mt genome containing the developed molecular marker using a single cell from a field sample, which suggests that this marker is a powerful tool for identifying unculturable dinoflagellates. The sequenced molecular region was also used to identify Alexandrium-like cells isolated from environmental seawater as A. tamarense and A. affine.  相似文献   

15.
The binding between [24-3H]okadaic acid (OA) and a recombinant OA binding protein OABP2.1 was examined using various OA analog, including methyl okadaate, norokadanone, 7-deoxy OA, and 14,15-dihydro OA, 7-O-palmitoyl DTX1, to investigate the structure activity relationship. Among them, 7-O-palmitoyl DTX1, which is one of the diarrhetic shellfish poisoning (DSP) toxins identified in shellfish, displayed an IC50 for [24-3H]OA binding at 51 ± 6.3 nM (Mean ± SD). In addition, a synthetic compound, N-pyrenylmethyl okadamide, exhibited its IC50 at 10 ± 2.9 nM (Mean ± SD). These results suggested that the recombinant OABP2.1 and the N-pyrenylmethyl okadamide might be core substances in a novel assay for the DSP toxins.  相似文献   

16.
The seasonal variation in diarrhetic shellfish poisoning (DSP)-type toxins was followed in the epibiotic community and in shellfish between 41° and 44°N in coastal waters of the northwest Atlantic during a 2-year period. Low levels of okadaic-acid equivalents were detected at all stations in the <90 μm fraction of the collected epibiota as measured by the protein phosphatase inhibition assay, but only 3.5% of the samples had values greater than 100 ng (g dry weight of epibiota)−1. No seasonal pattern could be detected due to differences in intensity, duration and timing of toxin content in the epibiota between the 2 years and between stations. Nevertheless, the concentration of DSP-type toxins in the epibiota correlated weakly but significantly with the abundance of Prorocentrum lima, when data from all stations were considered. A very limited toxin uptake by shellfish was measured at only one station in October and November 2001 and in June and July 2002 at times of maximum cell concentration of P. lima in the epibiota. Toxin levels in shellfish remained well below regulatory limits that would have required quarantine or bans on harvesting. Results from our 2-year survey suggest that, at this time, the threat of DSP events appears minimal. However, the presence of a known toxin producer and its demonstrated ingestion by shellfish would argue for further studies to better understand conditions leading to DSP outbreaks generated by an epiphytic dinoflagellate.  相似文献   

17.
The amnesic shellfish poison domoic acid is produced by marine algae of the genus Pseudo-nitzschia. We have developed a portable surface plasmon resonance (SPR) biosensor system for the detection of domoic acid. Because of concerns with domoic acid contamination of shellfish, there is a need for rapid field quantification of toxin levels in both shellfish and seawater. Antibodies were raised against domoic acid and affinity purified. These antibodies were used to develop competition- and displacement-based assays using a portable six-channel SPR system developed in our laboratories. Standard curves for detection of domoic acid in phosphate buffered saline and in diluted clam extracts analyzed by the competition-based SPR assay demonstrated a limit of detection of 3 ppb (10 nM) and a quantifiable range from 4 to 60 ppb (13–200 nM). Comparison of analyses for domoic acid levels in Pacific razor clams, Siliqua patula, containing moderate to high levels of domoic acid by the standard HPLC analysis protocol and the SPR-based assay gave an excellent correlation. This same technology should also function for detection of domoic acid in concentrated algal extracts or high dissolved levels in seawater.  相似文献   

18.
The morphology and toxicity of the four ubiquitous species belonging to the genus Pseudo-nitzschia found in mixed blooms of phytoplankton from northern Chilean waters were studied. The phytoplankton samples and cultures obtained were identified by scanning electron microscopy, revealing the presence of Pseudo-nitzschia australis, P. calliantha, P. pseudodelicatissima and P. subfraudulenta. This is the first report of P. calliantha in northern Chile. Toxin analyses using the LC–MS method confirmed the presence of domoic acid in P. australis and P. calliantha. Domoic acid was not detected in cultures of P. subfraudulenta. This study therefore confirms P. australis and P. calliantha as an unequivocal source of domoic acid in Chilean waters. P. australis is probably the most important producer of amnesic shellfish toxin in view of its domoic acid content. However, more research is needed to evaluate the potential for toxin production in P. pseudodelicatissima.  相似文献   

19.
Summary Saplings of three, co-occurring maple species in a mature maple-beech forest differed in a suite of structural and physiological characters that separated the canopy species, Acer, saccharum, from the two subcanopy species, A. pensylvanicum and A. spicatum. Acer saccharum had both more dense wood and tougher and heavier but thinner leaves than the subcanopy species. Acer pensylvanicum had the largest, lightest leaves with high stomatal density and its canopy architecture was the most effective in terms of leaf display for light interception. Acer spicatum had weaker wood similar to that of A. pensylvanicum but also small, soft and relatively poorly displayed leaves. Both subcanopy species maintained marginally higher average rates of photosynthesis over the growing season in the understory environment. We consider juvenile A. saccharum only shade-tolerant, capable of persisting through long periods in the closed canopy until a gap occurs but not specifically adapted to the understory environment. Juvenile A. sacchrum appears to be constrained functionally by the requirements set by the canopy environment that adults will occupy. Characters such as high wood density are already expressed in the understory sapling; this investment in denser wood slows the growth of saplings, but is necessary for structural reasons in the adult. Juvenile A. saccaharum have morphological and photosynthetic characters better suited to gas exchange and extension growth under the increased photon flux densities in large forest gaps, characteristics that will also be advantageous in the sunlit canopy environment of adults.Both subcanopy maples appear to be more truly shade-adapted, although in somewhat different ways. Acer pensylvanicum has characteristics that enhance the potential for capture and utilization of sunflecks and is able to sustain higher growth rates than A. saccharum in the shaded subcanopy environment. Acer spicatum shares some shade-adapted features with A. pensylvanicum, and its habit of lateral spread through stem layering may confer an additional advantage in foraging for small light gaps.  相似文献   

20.
A single procedure to detect and estimate okadaic acid in isolated whole cells was developed based on immunofluorescence and microscope photometry. This procedure allows the study of variations in okadaic acid concentration per cell although it is no substitute for HPLC procedures. Cells from mid-log exponential and stationary phase from two different clonal cultures of the okadaic-acid-producing dinoflagellate Prorocentrum lima (PI 5V and PI 7V) were analyzed. The results showed that: (1) cells from saturated phase cultures contain more okadaic acid than those from exponentially-growing mid-log phase; (2) genetic differences exist in okadaic acid production between the clones used; (3) okadaic acid is synthesized continuously during the whole cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号