首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ denaturation of metaphase chromosomes with alkali results in a shift from green to yellow, orange, brown and red fluorescence with acridine orange, indicating increasing denaturation of chromosomal DNA. The kinetics and characteristics of denaturation are described. Mouse and Microtus agrestis chromosomes denature uniformly but human cells show sequential denaturation. With increasing concentrations of alkali, the secondary constrictions in chromosomes 1, 9 and 16 are the first, and the distal half of the Y chromosome the last, to become denatured. — Reassociation of chromosomal DNA occurs within seconds after the start of incubation in salt solution. Areas containing repetitious DNA, e.g. mouse centromeres, fluoresce much more strongly than other regions with acridine orange after prolonged reassociation. Since human and Microtus centromeric regions behave similarly, it is proposed that they, too, contain repetitious DNA. — Reassociation treatment leads to enhancement of bright quinacrine mustard fluorescence in regions already bright before treatment. Furthermore, regions containing repetitious DNA, e.g. the secondary constrictions in human chromosomes 1, 9 and 16, whose fluorescence is dull before treatment, turn bright after reassociation. — The methods of fluorescence analysis of mammalian chromosomes with acridine orange and quinacrine mustard permit the localization and study of different classes of chromosomal DNA.  相似文献   

2.
A cytological technique based on heat denaturation of in situ chromosomal DNA followed by differential reassociation and staining with acridine orange was developed. Mouse nuclei and chromosomes in fixed cytological preparations show a red-orange fluorescence after thermal DNA denaturation (2–4 minutes at 100° C), and fluoresce green if denaturation is followed by a total DNA reassociation (two minutes or more at 65–66°C). — A reassociation time between a few and 60–90 seconds demonstrates the centromeric heterochromatin of chromosomes (which sometimes aggregate in the form of clusters) and the interphase chromocenters in green, the chromosomal arms fluorescing red-orange. Under the same conditions, the Y chromosome presents a pale green or yellow-green fluorescence along its chromatids, but its centromeric region fluoresces weakly. — The interpretation is suggested that the fast-reassociating chromosomal DNA (as detected by AO in centromeric heterochromatin and interphase chromocenters), represents repetitive DNA.  相似文献   

3.
W. Schnedl 《Chromosoma》1972,38(3):319-328
Almost all the 30 chromosome pairs of cattle can be identified by their banding patterns made be visible by a Giemsa staining technique described previously. The banding pattern of the X chromosome shows striking similarities with the banding pattern of the human X chromosome. — The centromeric region of the acrocentric autosomes contains a highly condensed DNA. This DNA is removed by the Giemsa staining procedure as can be shown by interference microscopic studies. If the chromosomes are stained with quinacrine dihydrochloride these centromeric regions are only slightly fluorescent. — Autoradiographic studies with 3H-thymidine show that the DNA at the centromeric regions starts and finishes its replication later than in the other parts of the chromosomes.  相似文献   

4.
A silver stain (Kt) technique was used to analyze the centromeric area in metacentric chromosomes originating from Robertsonian rearrangements in the mouse. The 2n=40 all-acrocentric mouse karyotype and two Robertsonian-rearranged karyotypes (2n=24 and 2n=26 from Upper Valtellina) were used. The existence was demonstrated of a single centromeric pattern common to metacentric and to acrocentric chromosomes except for the Y, and consisting of two deeply stained dots, one per chromatid. In many cells this technique stains the nucleolar organizers and resolves the paracentromeric constitutive heterochromatin in chromomeres.  相似文献   

5.
本工作用Hoechst 33258及着丝粒特异抗体间接免疫荧光法显示的小鼠粗线期染色体主缢痕区,与以小鼠富集着丝粒(SFA)DNA为探针在粗线期染色体上的原位杂交主缢痕区作了比较。发现SFA DNA探针不仅杂交于全部常染色体联会复合体上的着丝粒区,并且杂交于着丝粒周围的异染色质区;而且,也杂交于X,Y染色体的着丝粒区。由此结论:此富集SFA DNA中含有全套常染色体及X,Y染色体的SFA DNA。  相似文献   

6.
F. Pera 《Chromosoma》1972,36(3):263-271
The distribution of repetitive DNA in the chromosomes of Microtus agrestis was studied with the method for demonstrating constitutive heterochromatin given by Yunis et al. (1971) and the reassociation technique described by Schnedl (1971). All autosomes can be individually recognized by means of the position of their bands. The euchromatic segment of the X1 chromosome shows the same banding pattern as the corresponding segment of X2 which consists of facultative heterochromatin. The short arms of the Y chromosome are not deeply stained with either method and therefore do not contain noticeable amounts of repetitive DNA. The relative distances between the bands remain constant during chromosome contraction in mitosis.  相似文献   

7.
After staining by a new proflavine derivative (2,7-di-t-butyl proflavine, DBP), which specifically binds to the A-T base pairs of DNA by an external process, the constrictions of the human chromosomes 1, 16 and to a lesser extent 9 and the centromeric regions of the chromosomes (except the Y) of Mus musculus are brightly fluorescent. These chromosome regions are known to contain repetitive DNAs rich in A-T. On the contrary, the centromeric regions of the autosomes of Bos taurus, which contain a G-C rich DNA, are faintly fluorescent. The arms of the chromosomes of the three species display a banding similar to, but fainter than, the Q-banding. These results are discussed in correlation with physico-chemical studies on the binding and fluorescence processes of the dye bound to DNA and to nucleohistone. The staining properties of DBP are compared to those of quinacrine, quinacrine mustard and proflavine, three intercalative dyes which are also supposed to reveal the A-T base pairs along the chromosomes, but are faintly fluorescent on the human and murine A-T rich regions. This comparison leads us to discuss the mechanisms responsible for the chromosomal banding in relation to DNA base composition and repetitiveness, protein distribution and packing of the chromatin fibers, along the chromosomes.  相似文献   

8.
Mitomycin C induced chromosome rearrangements were analysed in cultured human leukocytes by reverse banding technique. Breaks and chromosomal exchanges involved preferentialy the entromeric region of some chromosomes (1, 5, 9, 16, and 20). Associations between acrocentric chromosomes was not found to be increased. But acrocentric associations with centromeric regions were frequently present. The differences between the mechanism of exchanges and breaks are discussed. The part of heterochromatin in post replication DNA repair is considered.  相似文献   

9.
The location of highly reiterated nucleotide sequences on the chromosomes has been studied by the technique of in situ hybridisation between the DNA of either Drosophila melanogaster salivary gland chromosomes or mouse chromosomes and tritium labelled complementary RNA (c-RNA) transcribed in vitro from appropriate templates with the aid of DNA dependent RNA polymerase extracted from Micrococcus lysodeikticus. The location of the hybrid material was identified by autoradiography after RNase treatment. — When Drosophila c-RNA, transcribed from whole DNA, was annealed with homologous salivary chromosomes in the presence of formamide the well defined labelling was confined to the chromocentre. With heat instead of formamide denaturation there was evidence of discontinuous labelling in various chromosome regions as well, apparently associated with banding. Xenopus ribosomal RNA showed no evidence of annealing to Drosophila chromosomes with the comparatively short exposure times used here. — When mouse satellite DNA was used as template the resulting c-RNA showed no hybridisation to Drosophila chromosomes but, when annealed with mouse chromosomes, the centromeric regions were intensely labelled. The interphase nuclei showed several distinct regions of high activity which suggested aggregation of centromeric regions of both homologous and non-homologous chromosomes. The results of annealing either c-RNA or labelled satellite DNA to homologous chromosomes were virtually indistinguishable. Incubation of Drosophila c-RNA with mouse chromosomes provided no evidence of localisation of grains. — It is inferred that both in mouse and Drosophila the centromeric regions of all chromosomes are enriched in highly reiterated sequences. This may be a general phenomenon and it might be tentatively suggested that the highly reiterated sequences play some role in promoting the close physical approximation of homologous and non-homologous chromosomes or chromosome regions to facilitate regulation of function.  相似文献   

10.
C-bands are observed in the centromeric regions of only three pairs of autosomes and the distal portion of the small acrocentric Y in a total complement of 44 chromosomes of a male Presbytis e. entellus. Simultaneously treated slides of a Rhesus monkey, however, have C-bands in all the 42 chromosomes. The lack of C-bands may be due to (1) absence of highly repetitive DNA in the centromeric region of certain chromosomes or (2) presence of minute quantity of such DNA which is imperceptible or (3) different types of centromeric heterochromatin with a varying degree of repetition of DNA sequences all of which do not react in similar manner to various techniques employed at present. It is hypothesized that the centromeric heterochromatin rich in satellite DNA helps in withstanding the force of excessive coiling of chromosomes at the centromere to facilitate the functioning of the genes for microtubular protein during cell division when other genes are rendered inactive due to compactness of chromosomes.  相似文献   

11.
We characterized 21 t(13;14) and 3 t(14;21) Robertsonian translocations for the presence of DNA derived from the short arms of the translocated acrocentric chromosomes and identified their centromeres. Nineteen of these 24 translocation carriers were unrelated. Using centromeric alpha-repeat DNA as chromosome-specific probe, we found by in situ hybridization that all 24 translocation chromosomes were dicentric. The chromatin between the two centomeres did not stain with silver, and no hybridization signal was detected with probes for rDNA or beta-satellite DNA that flank the distal and proximal ends of the rDNA region on the short arm of the acrocentrics. By contrast, all 24 translocation chromosomes gave a distinct hybridization signal when satellite III DNA was used as probe. This result strongly suggests that the chromosomal rearrangements leading to Robertsonian translocations occur preferentially in satellite III DNA. We hypothesize that guanine-rich satellite III repeats may promote chromosomal recombination by formation of tetraplex structures. The findings localize satellite III DNA to the short arm of the acrocentric chromosomes distal to centromeric alpha-repeat DNA and proximal to beta-satellite DNA.  相似文献   

12.
Differences in highly repeated DNA sequences among three swine breeds genomes were detected by means of whole‐comparative genomic hybridization (W‐CGH). The results showed that Duroc, Iberian and Landrace/Large White breeds share similar DNA sequences in their centromeric regions, but the number of copies of the highly repeated DNA sequences building the blocks of heterochromatin in the metacentric chromosomes is differentially expanded among them. That is not the case in the acrocentric subgenome where the chromosomes share similar sequence composition and number of copies among the three breeds in the centromeric regions. The highly repeated DNA sequences in the chromosome Y also displayed differences among the breeds studied. The reported results are discussed in the light of the possible evolutionary tendencies of these particular DNA sequences.  相似文献   

13.
The binding of highly purified anti-nucleoside antibodies to fixed metaphase chromosomes of the kangaroo rat (Dipodomys ordii) revealed the presence of different classes of DNA in different regions of the chromosomes. To permit antibody binding, the chromosomal DNA was first made single-stranded by either ultraviolet irradiation, which denatures some classes of AT-rich DNA, or photo-oxidation, which denatures GC-rich DNA. The antibody binding patterns obtained matched the location of the different classes of satellite DNA in kangaroo rat chromosomes. After either denaturation method, anti-5-methylcytidine (anti-M) bound intensely only to the centromeric heterochromatic regions which are known to contain the GC rich, highly methylated HS-β satellite DNA of this species. The basic repeating unit of the HS-β sequence is 5′-ACACAGCGGG-3′ 3′-TGTGTCGCCC-5′ [4]. The binding of anti-M after UV irradiation is permitted by the production of pyrmidine (CC and TC) dimers in the right-hand portion of this repeating sequence, supporting the idea that the 5-methylcytosine residues are in this portion. After photo-oxidation, anti-cytidine (anti-C) and anti-adenosine (anti-A) also showed intense binding to the centromeric heterochromatin. In addition, these antibodies showed moderately intense binding to non-centromeric heterochromatic regions, which contain the relatively GC-rich HS-α and MS satellite DNAs. After UV irradiation, anti-A binding produced a banding pattern identical to the quinacrine (Q-band) pattern, with bright chromosome arms and very dull centromeric heterochromatic regions, while anti-C showed moderate binding in the centromeric regions and fairly even but weak binding elsewhere.The results have clarified the way in which anti-nucleoside antibodies react with chromosomal DNA. The reactivity of anti-A, anti-C and anti-M with the partially denatured HS-β satellite DNA supports the idea that antibody binding requires denaturation of a sequence perhaps no more than 5 base pairs long. In addition, it appears that it is not necessary to have more than one identical base in a row to permit antibody binding.  相似文献   

14.
Cytological preparations were incubated in 0.07 N NaOH at room temperature or 90% formamide (final salt concentration 2 × SSC) at either 65 °C or 37 °C for 2.5 h to denature guinea pig chromosomes. Chromosomes treated with NaOH or formamide at 65 °C showed a large amount of DNA loss, while chromosomes treated with formamide at 37 °C showed little or no DNA loss. Repeated sequences were isolated from guinea pig DNA and [3H]cRNA was transcribed with Escherichia coli RNA polymerase for in situ hybridization. Localization of the [3H]cRNA occurred in the centromeric regions and C-band positive short arms of almost all of the chromosomes in the NaOH preparations. Chromosomes treated with formamide at 65 °C showed the same grain distribution with a decrease in the number of grains/cluster. Slides incubated in formamide at 37 °C showed localization in only a few chromosomes and the number of grains/cluster was greatly diminished. Thermal denaturation of isolated chromatin indicated that incubation of chromosomes in formamide at 37 °C did not fully denature the DNA. C-bands could be induced by treating slides in formamide at either 65 °C or 37 °C when followed by a “reassociation” in 2 × SSC at 65 °C for 16 h. If the “reassociation” step was omitted, C-bands were found in the 65 °C formamide slides but not the 37 °C formamide slides.  相似文献   

15.
Klaus Hägele 《Chromosoma》1979,71(2):217-225
The DNA of fixed mitotic and meiotic chromosomes and of spermatides of Schistocerca gregaria males was heat denaturated and then differentially reassociated in a Giemsa buffer or in acridine orange buffer solution. After this procedure, two to three large, selectively stained regions are seen in the X chromosome of spermatocytes and spermatides. Denaturation and reassociation experiments have shown that after differential reassociation such a selective stainability of chromosome regions is characteristic for the presence of fast-reassociating, i.e., repetitive DNA (Stockert and Lisanti, 1972). The possible presence of repetitive DNA in the X chromosome regions concerned can not be the only reason for the occurrence of the heavily stained segments after reassociation because (1) these segments are obtained in positively heteropycnotic X chromosomes, but not in negatively heteropycnotic Xs and (2) they do not occur in positively heteropycnotic X chromosomes when the histones have been extracted before the denaturation and reassociation processes. Contrary to the latter statement, the heavily stained X chromosomal regions are preserved when the histones are removed after the denaturation and reassociation steps. — It is assumed that the heavily stained X chromosome segments represent DNA reassociation complexes which are only formed if histones are present. It is discussed whether the formation of the X chromosome complexes depends on a specific chromatin configuration within positively heteropycnotic X chromosomes.  相似文献   

16.
Satellite DNA sequences were isolated from the water buffalo (Bubalus bubalis) after digestion with two restriction endonucleases, BamHI and StuI. These satellite DNAs of the water buffalo were classified into two types by sequence analysis: one had an approximately 1,400 bp tandem repeat unit with 79% similarity to the bovine satellite I DNA; the other had an approximately 700 bp tandem repeat unit with 81% similarity to the bovine satellite II DNA. The chromosomal distribution of the satellite DNAs were examined in the river-type and the swamp-type buffaloes with direct R-banding fluorescence in situ hybridization. Both the buffalo satellite DNAs were localized to the centromeric regions of all chromosomes in the two types of buffaloes. The hybridization signals with the buffalo satellite I DNA on the acrocentric autosomes and X chromosome were much stronger than that on the biarmed autosomes and Y chromosome, which corresponded to the distribution of C-band-positive centromeric heterochromatin. This centromere-specific satellite DNA also existed in the interstitial region of the long arm of chromosome 1 of the swamp-type buffalo, which was the junction of the telomere-centromere tandem fusion that divided the karyotype in the two types of buffaloes. The intensity of the hybridization signals with buffalo satellite II DNA was almost the same over all the chromosomes, including the Y chromosome, and no additional hybridization signal was found in noncentromeric sites.  相似文献   

17.
Several repetitive DNA fragments were generated from PCR amplifications of caribou DNA using primer sequences derived from the white-tailed deer satellite II DNA clone OvDII. Two fragments, designated Rt-0.5 and Rt-0.7, were sequenced and found to have 96% sequence similarity. These caribou clones also had 85% sequence similarity with OvDII. Multiple-colored fluorescence in situ hybridization (FISH) studies with satellite I and satellite II DNA probes to caribou metaphase chromosomes and extended chromatin fibers provided direct visualization of the genomic organization of these two satellite DNA families, with the following findings: (1) Cervid satellite I DNA is confined to the centromeric regions of the acrocentric autosomes, whereas satellite II DNA is found at the centromeric regions of all chromosomes except for the Y. (2) For most acrocentric chromosomes, the satellite I signal appeared to be medially located at the primary constriction, in contrast to that of satellite II, which appeared to be oriented toward the lateral sides as two separate fluorescent dots. (3) The satellite II clone Rt-0.7 appeared to be enriched in the centromeric region of the caribou X chromosome, a pair of biarmed autosomes, and a number of other acrocentric autosomes. (4) Fiber-FISH demonstrated that the satellite I and satellite II arrays were juxtaposed. On highly extended chromatin fibers, the total length of the hybridization signals for the two satellite DNA arrays often reached 300-400 microm. The length of a given satellite II array usually reached 200 microm, corresponding to 2 x 10(3) kb of DNA in a given centromere.  相似文献   

18.
The field mouse,Apodemus argenteus Temminck, has 46 chromosomes. The autosomes comprise 20 pairs of acrocentrics and 2 pairs of metacentrics. The X chromosome is represented by an outstandingly large submetacentric element, while the Y is an acrocentric corresponding in size to the 5th or 6th pair of autosomes. All of the autosomes and gonosomes can be unequivocally identified by their characteristic Q-band or G-band patterns. The constitutive heterochromatin, as revealed by C-banding, is localized at the centromeric regions of all autosomes, the short arm and the proximal 1/3 of the long arm of the X chromosome, and the entire Y chromosome. The C-band-positive segments which constitute 33.5% of the genome exhibit dark fluorescence after Q-banding, late DNA replication, faint or positive staining reaction to G-banding, fast reassociation of DNA revealed by AO staining, and allocyclic behavior of the sex-bivalent in male meiosis. An exception to the above is the distal segment of the Y which is positive to both C- and Q-banding. The giant X chromosome occupies 13.1% of the genome, leaving 5.6% of euchromatic segments, the latter value being equivalent to that of the original type X.  相似文献   

19.
The first chromosomal data in Hoplosternum littorale from an isolated South American drainage in north-eastern Brazil are presented. All specimens were characterized by a diploid number (2n) of 60 chromosomes divided into three metacentric, one submetacentric and 26 acrocentric pairs; single nucleolar organizer regions (NOR) on the sixth pair; centromeric and interstitial heterochromatin; GC-rich sites on four large acrocentric chromosomes, including the NOR-bearing pair, and 5S ribosomal genes at terminal region on short arms of two acrocentric pairs. These data are invariably similar to previous reports in H. littorale from distant localities throughout South America, which contrasts with the chromosomal diversity of Callichthyidae and reinforces the role of human activities on the dispersal and colonization of this fish.  相似文献   

20.
A modified Giemsa staining technique and the in situ hybridisation technique, have been used to investigate the localisation of highly repeated sequences in the karyotype of the locust Schistocerca gregaria. The centromeric regions are stained densely with Giemsa and further Giemsa-stained bands occur at the telomeric region of the short (S) chromosomes. RNA complementary to repetitious DNA hybridised to loci scattered along the whole length of the chromosomes, with concentrations of grains at the centromeric regions of all the chromosomes and also at the telomeric regions of the S chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号