首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 217 毫秒
1.
Agrobacterium tumefaciens VirB proteins assemble a type IV secretion apparatus for the transfer of DNA and proteins to plant cells. To study the role of the VirB6 protein in the assembly and function of the type IV apparatus, we determined its subcellular location by immunofluorescence microscopy. In wild-type bacteria VirB6 localized to the cell poles but in the absence of the tumour-inducing plasmid it localized to random sites on the cell membranes. Five of the 11 VirB proteins, VirB7-VirB11, are required for the polar localization of VirB6. We identified two regions of VirB6, a conserved tryptophan residue at position 197 and the extreme C-terminus, that are essential for its polar localization. Topology determination by PhoA fusion analysis placed both regions in the cell cytoplasm. Alteration of tryptophan 197 or the deletion of the extreme C-terminus led to the mislocalization of the mutant protein. The mutations abolished the DNA transfer function of the protein as well. The C-terminus of VirB6, in silico, can form an amphipathic helix that may encode a protein-protein interaction domain essential for targeting the protein to a cell pole. We previously reported that another DNA transfer protein, VirD4, localizes to a cell pole. To determine whether VirB6 and VirD4 localize to the same pole, we performed colocalization experiments. Both proteins localized to the same pole indicating that VirB6 and VirD4 are in close proximity and VirB6 is probably a component of the transport apparatus.  相似文献   

2.
Agrobacterium tumefaciens transfers oncogenic DNA and effector proteins to plant cells during the course of infection. Substrate translocation across the bacterial cell envelope is mediated by a type IV secretion (TFS) system composed of the VirB proteins, as well as VirD4, a member of a large family of inner membrane proteins implicated in the coupling of DNA transfer intermediates to the secretion machine. In this study, we demonstrate with novel cytological screens - a two-hybrid (C2H) assay and bimolecular fluorescence complementation (BiFC) - and by immunoprecipitation of chemically cross-linked protein complexes that the VirE2 effector protein interacts directly with the VirD4 coupling protein at cell poles of A. tumefaciens. Analyses of truncation derivatives showed that VirE2 interacts via its C terminus with VirD4, and, further, an NH2-terminal membrane-spanning domain of VirD4 is dispensable for complex formation. VirE2 interacts with VirD4 independently of the virB-encoded transfer machine and T pilus, the putative periplasmic chaperones AcvB and VirJ, and the T-DNA transfer intermediate. Finally, VirE2 is recruited to polar-localized VirD4 as a complex with its stabilizing secretion chaperone VirE1, yet the effector-coupling protein interaction is not dependent on chaperone binding. Together, our findings establish for the first time that a protein substrate of a type IV secretion system is recruited to a member of the coupling protein superfamily.  相似文献   

3.
Agrobacterium tumefaciens translocates T-DNA through a polar VirB/D4 type IV secretion (T4S) system. VirC1, a factor required for efficient T-DNA transfer, bears a deviant Walker A and other sequence motifs characteristic of ParA and MinD ATPases. Here, we show that VirC1 promotes conjugative T-DNA transfer by stimulating generation of multiple copies per cell of the T-DNA substrate (T-complex) through pairwise interactions with the processing factors VirD2 relaxase, VirC2, and VirD1. VirC1 also associates with the polar membrane and recruits T-complexes to cell poles, the site of VirB/D4 T4S machine assembly. VirC1 Walker A mutations abrogate T-complex generation and polar recruitment, whereas the native protein recruits T-complexes to cell poles independently of other polar processing factors (VirC2, VirD1) or T4S components (VirD4 substrate receptor, VirB channel subunits). We propose that A. tumefaciens has appropriated a progenitor ParA/MinD-like ATPase to promote conjugative DNA transfer by: (i) nucleating relaxosome assembly at oriT-like T-DNA border sequences and (ii) spatially positioning the transfer intermediate at the cell pole to coordinate substrate-T4S channel docking.  相似文献   

4.
The Agrobacterium tumefaciens VirB/D4 type IV secretion system (T4SS) translocates DNA and protein substrates across the bacterial cell envelope. Six presumptive channel subunits of this T4SS (VirD4, VirBll, VirB6, VirB8, VirB2, and VirB9) form close contacts with the VirD2-T-strand transfer intermediate during export, as shown recently by a novel transfer DNA immunoprecipitation (TrIP) assay. Here, we characterize the contribution of the hydrophobic channel component VirB6 to substrate translocation. Results of reporter protein fusion and cysteine accessibility studies support a model for VirB6 as a polytopic membrane protein with a periplasmic N terminus, five transmembrane segments, and a cytoplasmic C terminus. TrIP studies aimed at characterizing the effects of VirB6 insertion and deletion mutations on substrate translocation identified several VirB6 functional domains: (i) a central region composed of a large periplasmic loop (P2) (residues 84 to 165) mediates the interaction of VirB6 with the exiting T-strand; (ii) a multi-membrane-spanning region carboxyl-terminal to loop P2 (residues 165 to 245) is required for substrate transfer from VirB6 to the bitopic membrane subunit VirB8; and (iii) the two terminal regions (residues 1 to 64 and 245 to 290) are required for substrate transfer to the periplasmic and outer membrane-associated VirB2 and VirB9 subunits. Our findings support a model whereby the periplasmic loop P2 comprises a portion of the secretion channel and distinct domains of VirB6 participate in channel subunit interactions required for substrate passage to the cell exterior.  相似文献   

5.
Conjugation is an efficient way for transfer of genetic information between bacteria, even between highly diverged species, and a major cause for the spreading of resistance genes. We have investigated the subcellular localization of several conserved conjugation proteins carried on plasmid pLS20 found in Bacillus subtilis. We show that VirB1, VirB4, VirB11, VirD2, and VirD4 homologs assemble at a single cell pole, but also at other sites along the cell membrane, in cells during the lag phase of growth. Bimolecular fluorescence complementation analyses showed that VirB4 and VirD4 interact at the cell pole and, less frequently, at other sites along the membrane. VirB1 and VirB11 also colocalized at the cell pole. Total internal reflection fluorescence microscopy showed that pLS20 is largely membrane associated and is frequently found at the cell pole, indicating that transfer takes place at the pole, which is a preferred site for the assembly of the active conjugation apparatus, but not the sole site. VirD2, VirB4, and VirD4 started to localize to the pole or the membrane in stationary-phase cells, and VirB1 and VirB11 were observed as foci in cells resuspended in fresh medium but no longer in cells that had entered exponential growth, although at least VirB4 was still expressed. These data reveal an unusual assembly/disassembly timing for the pLS20 conjugation machinery and suggest that specific localization of conjugation proteins in lag-phase cells and delocalization during growth are the reasons why pLS20 conjugation occurs only during early exponential phase.  相似文献   

6.
Protein fusion with the Escherichia coli alkaline phosphatase is used extensively for the analysis of the topology of membrane proteins. To study the topology of the Agrobacterium T-DNA transfer proteins, we constructed a transposon, Tn 3phoA . The transposon mobilizes into plasmids at a high frequency, is stable after transposition, can produce phoA translational fusions and can be used for the analysis of protein topology directly in the bacterium of interest. For studies on the DNA transfer proteins, an Agrobacterium strain deficient in phoA under our experimental conditions was constructed by chemical mutagenesis. A plasmid containing virB and virD4 was used as a target for mutagenesis. Twenty-eight unique phoA -positive clones that mapped to eight virB genes were isolated. Multiple insertions throughout VirB1, VirB5, VirB7, VirB9 and VirB10 indicated that these proteins primarily face the periplasm. Insertions in VirB2, VirB6 and VirB8 allowed the identification of their periplasmic domains. No insertions were found in VirB3, VirB4 and VirB11. These proteins either lack or have a short periplasmic domain. No insertions mapped to VirD4 either. To study VirD4 topology, targeted phoA fusions and random lacZ fusions were constructed. Analysis of the fusion proteins indicated that VirD4 contains a single periplasmic domain near the N-terminus, and most of the protein lies in the cytoplasm. A hypothetical model for the T-DNA transport pore is presented.  相似文献   

7.
The Type IV Secretion System (T4SS) is the only bacterial secretion system known to translocate both DNA and protein substrates. The VirB/D4 system from Agrobacterium tumefaciens is a typical T4SS. It facilitates the bacteria to translocate the VirD2-T-DNA complex to the host cell cytoplasm. In addition to protein-DNA complexes, the VirB/D4 system is also involved in the translocation of several effector proteins, including VirE2, VirE3 and VirF into the host cell cytoplasm. These effector proteins aid in the proper integration of the translocated DNA into the host genome. The VirD2-binding protein (VBP) is a key cytoplasmic protein that recruits the VirD2–T-DNA complex to the VirD4-coupling protein (VirD4 CP) of the VirB/D4 T4SS apparatus. Here, we report the crystal structure and associated functional studies of the C-terminal domain of VBP. This domain mainly consists of α-helices, and the two monomers of the asymmetric unit form a tight dimer. The structural analysis of this domain confirms the presence of a HEPN (higher eukaryotes and prokaryotes nucleotide-binding) fold. Biophysical studies show that VBP is a dimer in solution and that the HEPN domain is the dimerization domain. Based on structural and mutagenesis analyses, we show that substitution of key residues at the interface disrupts the dimerization of both the HEPN domain and full-length VBP. In addition, pull-down analyses show that only dimeric VBP can interact with VirD2 and VirD4 CP. Finally, we show that only Agrobacterium harboring dimeric full-length VBP can induce tumors in plants. This study sheds light on the structural basis of the substrate recruiting function of VBP in the T4SS pathway of A. tumefaciens and in other pathogenic bacteria employing similar systems.  相似文献   

8.
Agrobacterium uses a mechanism similar to conjugation for trans-kingdom transfer of its oncogenic T-DNA. A defined VirB/VirD4 Type IV secretion system is responsible for such a genetic transfer. In addition, certain virulence proteins as VirE2 can be mobilized into host cells by the same apparatus. VirE2 is essential to achieve plant but not yeast transformation. We found that the limited host range plasmid CloDF13 can be recruited by the virulence apparatus of Agrobacterium for transfer to eukaryotic hosts. As expected the VirB transport complex was required for such trans-kingdom DNA transfer. However, unexpectedly, the coupling factor VirD4 turned out to be necessary for transfer to plants but not for transport into yeast. The CloDF13 encoded coupling factor (Mob) was essential for transfer to both plants and yeast though. This is interpreted by the different specificities of Mob and VirD4. Hence, Mob being required for the transport of the CloDF13 transferred DNA (to both plants and yeast) and VirD4 being required for transport of virulence proteins such as VirE2. Nevertheless, the presence of the VirE2 protein in the host plant was not sufficient to restore the deficiency for VirD4 in the transforming bacteria. We propose that Mob functions encoded by the plasmid CloDF13 are sufficient for DNA mobilization to eukaryotic cells but that the VirD4-mediated pathway is essential to achieve DNA nuclear establishment specifically in plants. This suggests that other Agrobacterium virulence proteins besides VirE2 are translocated and essential for plant transformation.  相似文献   

9.
The bitopic membrane protein VirB10 of the Agrobacterium VirB/VirD4 type IV secretion system (T4SS) undergoes a structural transition in response to sensing of ATP binding or hydrolysis by the channel ATPases VirD4 and VirB11. This transition, detectable as a change in protease susceptibility, is required for DNA substrate passage through the translocation channel. Here, we present evidence that DNA substrate engagement with VirD4 and VirB11 also is required for activation of VirB10. Several DNA substrates (oncogenic T-DNA and plasmids RSF1010 and pCloDF13) induced the VirB10 conformational change, each by mechanisms requiring relaxase processing at cognate oriT sequences. VirD2 relaxase deleted of its translocation signal or any of the characterized relaxases produced in the absence of cognate DNA substrates did not induce the structural transition. Translocated effector proteins, e.g., VirE2, VirE3, and VirF, also did not induce the transition. By mutational analyses, we supplied evidence that the N-terminal periplasmic loop of VirD4, in addition to its catalytic site, is essential for early-stage DNA substrate transfer and the VirB10 conformational change. Further studies of VirB11 mutants established that three T4SS-mediated processes, DNA transfer, protein transfer, and pilus production, can be uncoupled and that the latter two processes proceed independently of the VirB10 conformational change. Our findings support a general model whereby DNA ligand binding with VirD4 and VirB11 stimulates ATP binding/hydrolysis, which in turn activates VirB10 through a structural transition. This transition confers an open-channel configuration enabling passage of the DNA substrate to the cell surface.  相似文献   

10.
Agrobacterium tumefaciens uses a type IV secretion (T4S) system composed of VirB proteins and VirD4 to deliver oncogenic DNA (T-DNA) and protein substrates to susceptible plant cells during the course of infection. Here, by use of the Transfer DNA ImmunoPrecipitation (TrIP) assay, we present evidence that the mobilizable plasmid RSF1010 (IncQ) follows the same translocation pathway through the VirB/D4 secretion channel as described previously for the T-DNA. The RSF1010 transfer intermediate and the Osa protein of plasmid pSa (IncW), related in sequence to the FiwA fertility inhibition factor of plasmid RP1 (IncPalpha), render A. tumefaciens host cells nearly avirulent. By use of a semi-quantitative TrIP assay, we show that both of these 'oncogenic suppressor factors' inhibit binding of T-DNA to the VirD4 substrate receptor. Both factors also inhibit binding of the VirE2 protein substrate to VirD4, as shown by coimmunoprecipitation and bimolecular fluorescence complementation assays. Osa fused to the green fluorescent protein (GFP) also blocks T-DNA and VirE2 binding to VirD4, and Osa-GFP colocalizes with VirD4 at A. tumefaciens cell poles. RSF1010 and Osa interfere specifically with VirD4 receptor function and not with VirB channel activity, as shown by (i) TrIP and (ii) a genetic screen for effects of the oncogenic suppressors on pCloDF13 translocation through a chimeric secretion channel composed of the pCloDF13-encoded MobB receptor and VirB channel subunits. Our findings establish that a competing plasmid substrate and a plasmid fertility inhibition factor act on a common target, the T4S receptor, to inhibit docking of DNA and protein substrates to the translocation apparatus.  相似文献   

11.
Type IV secretion (T4S) systems are versatile bacterial secretion systems mediating transport of protein and/or DNA. T4S systems are generally composed of 11 VirB proteins and 1 VirD protein (VirD4). The VirB1‐11 proteins assemble to form a secretion machinery and a pilus while the VirD4 protein is responsible for substrate recruitment. The structure of VirD4 in isolation is known; however, its structure bound to the VirB1‐11 apparatus has not been determined. Here, we purify a T4S system with VirD4 bound, define the biochemical requirements for complex formation and describe the protein–protein interaction network in which VirD4 is involved. We also solve the structure of this complex by negative stain electron microscopy, demonstrating that two copies of VirD4 dimers locate on both sides of the apparatus, in between the VirB4 ATPases. Given the central role of VirD4 in type IV secretion, our study provides mechanistic insights on a process that mediates the dangerous spread of antibiotic resistance genes among bacterial populations.  相似文献   

12.
In Escherichia coli, chemoreceptor clustering at a cell pole seems critical for signal amplification and adaptation. However, little is known about the mechanism of localization itself. Here we examined whether the aspartate chemoreceptor (Tar) is inserted directly into the polar membrane by using its fusion to green fluorescent protein (GFP). After induction of Tar-GFP, fluorescent spots first appeared in lateral membrane regions, and later cell poles became predominantly fluorescent. Unexpectedly, Tar-GFP showed a helical arrangement in lateral regions, which was more apparent when a Tar-GFP derivative with two cysteine residues in the periplasmic domain was cross-linked to form higher oligomers. Moreover, similar distribution was observed even when the cytoplasmic domain of the double cysteine Tar-GFP mutant was replaced by that of the kinase EnvZ, which does not localize to a pole. Observation of GFP-SecE and a translocation-defective MalE-GFP mutant, as well as indirect immunofluorescence microscopy on SecG, suggested that the general protein translocation machinery (Sec) itself is arranged into a helical array, with which Tar is transiently associated. The Sec coil appeared distinct from the MreB coil, an actin-like cytoskeleton. These findings will shed new light on the mechanisms underlying spatial organization of membrane proteins in E. coli.  相似文献   

13.
Bacteria use type IV secretion systems (T4SS) to translocate DNA (T-DNA) and protein substrates across the cell envelope. By transfer DNA immunoprecipitation (TrIP), we recently showed that T-DNA translocates through the Agrobacterium tumefaciens VirB/D4 T4SS by forming close contacts sequentially with the VirD4 receptor, VirB11 ATPase, the inner membrane subunits VirB6 and VirB8 and, finally, VirB2 pilin and VirB9. Here, by TrIP, we show that nucleoside triphosphate binding site (Walker A motif) mutations do not disrupt VirD4 substrate binding or transfer to VirB11, suggesting that these early reactions proceed independently of ATP binding or hydrolysis. In contrast, VirD4, VirB11 and VirB4 Walker A mutations each arrest substrate transfer to VirB6 and VirB8, suggesting that these subunits energize this transfer reaction by an ATP-dependent mechanism. By co-immunoprecipitation, we supply evidence for VirD4 interactions with VirB4 and VirB11 independently of other T4SS subunits or intact Walker A motifs, and with the bitopic inner membrane subunit VirB10. We reconstituted substrate transfer from VirD4 to VirB11 and to VirB6 and VirB8 by co-synthesis of previously identified 'core' components of the VirB/D4 T4SS. Our findings define genetic requirements for DNA substrate binding and the early transfer reactions of a bacterial type IV translocation pathway.  相似文献   

14.
Agrobacterium VirB7, VirB9, and VirB10 form a "core complex" during biogenesis of the VirB/VirD4 type IV secretion system (T4SS). VirB10 spans the cell envelope and, in response to sensing of ATP energy consumption by the VirB/D4 ATPases, undergoes a conformational change required for DNA transfer across the outer membrane (OM). Here, we tested a model in which VirB10 regulates substrate passage by screening for mutations that allow for unregulated release of the VirE2 secretion substrate to the cell surface independently of target cell contact. One mutation, G272R, conferred VirE2 release and also rendered VirB10 conformationally insensitive to cellular ATP depletion. Strikingly, G272R did not affect substrate transfer to target cells (Tra(+)) but did block pilus production (Pil(-)). The G272R mutant strain displayed enhanced sensitivity to vancomycin and SDS but did not nonspecifically release periplasmic proteins or VirE2 truncated of its secretion signal. G272 is highly conserved among VirB10 homologs, including pKM101 TraF, and in the TraF X-ray structure the corresponding Gly residue is positioned near an α-helical domain termed the antenna projection (AP), which is implicated in formation of the OM pore. A partial AP deletion mutation (ΔAP) also confers a Tra(+) Pil(-) phenotype; however, this mutation did not allow VirE2 surface exposure but instead allowed the release of pilin monomers or short oligomers to the milieu. We propose that (i) G272R disrupts a gating mechanism in the core chamber that regulates substrate passage across the OM and (ii) the G272R and ΔAP mutations block pilus production at distinct steps of the pilus biogenesis pathway.  相似文献   

15.
The yeast Pdr5 multidrug transporter is an important member of the ATP-binding cassette superfamily of proteins. We describe a novel mutation (S558Y) in transmembrane helix 2 of Pdr5 identified in a screen for suppressors that eliminated Pdr5-mediated cycloheximide hyper-resistance. Nucleotides as well as transport substrates bind to the mutant Pdr5 with an affinity comparable with that for wild-type Pdr5. Wild-type and mutant Pdr5s show ATPase activity with comparable K(m)((ATP)) values. Nonetheless, drug sensitivity is equivalent in the mutant pdr5 and the pdr5 deletion. Finally, the transport substrate clotrimazole, which is a noncompetitive inhibitor of Pdr5 ATPase activity, has a minimal effect on ATP hydrolysis by the S558Y mutant. These results suggest that the drug sensitivity of the mutant Pdr5 is attributable to the uncoupling of NTPase activity and transport. We screened for amino acid alterations in the nucleotide-binding domains that would reverse the phenotypic effect of the S558Y mutation. A second-site mutation, N242K, located between the Walker A and signature motifs of the N-terminal nucleotide-binding domain, restores significant function. This region of the nucleotide-binding domain interacts with the transmembrane domains via the intracellular loop-1 (which connects transmembrane helices 2 and 3) in the crystal structure of Sav1866, a bacterial ATP-binding cassette drug transporter. These structural studies are supported by biochemical and genetic evidence presented here that interactions between transmembrane helix 2 and the nucleotide-binding domain, via the intracellular loop-1, may define at least part of the translocation pathway for coupling ATP hydrolysis to drug transport.  相似文献   

16.
Many bacteria possess the ability to actively take up DNA from the environment and incorporate it into the chromosome. RecA protein is the key protein achieving homologous recombination. Several of the proteins involved in the transport of DNA across the cell envelope assemble at a single or both cell poles in competent Bacillus subtilis cells. We show that the presumed structure that transports DNA across the cell wall, the pseudopilus, also assembles at a single or both cell poles, while the membrane receptor, ComEA, forms a mobile layer throughout the cell membrane. All other known Com proteins, including the membrane permease, localize again to the cell pole, revealing that the uptake machinery has three distinct layers. In cells having two uptake machineries, one complex is occasionally mobile, with pairs of proteins moving together, suggesting that a complete complex may lose anchoring and become mobile. Overall, the cell pole provides stable anchoring. Only one of two uptake machineries assembles RecA protein, suggesting that only one is competent for DNA transfer. FRAP (fluorescence recovery after photobleaching) analyses show that in contrast to known multiprotein complexes, the DNA uptake machinery forms a highly stable complex, showing little or no exchange with unbound molecules. When cells are converted into round spheroplasts, the structure persists, revealing that the assembly is highly stable and does not require the cell pole for its maintenance. High stability may be important to fulfill the mechanical function in pulling DNA across two cell layers.  相似文献   

17.
Bacterial type IV secretion systems (T4SSs) are involved in processes such as bacterial conjugation and protein translocation to animal cells. In this work, we have switched the substrates of T4SSs involved in pathogenicity for DNA transfer. Plasmids containing part of the conjugative machinery of plasmid R388 were transferred by the T4SS of human facultative intracellular pathogen Bartonella henselae to both recipient bacteria and human vascular endothelial cells. About 2% of the human cells expressed a green fluorescent protein (GFP) gene from the plasmid. Plasmids of different sizes were transferred with similar efficiencies. B. henselae codes for two T4SSs: VirB/VirD4 and Trw. A ΔvirB mutant strain was transfer deficient, while a ΔtrwE mutant was only slightly impaired in DNA transfer. DNA transfer was in all cases dependent on protein TrwC of R388, the conjugative relaxase, implying that it occurs by a conjugation-like mechanism. A DNA helicase-deficient mutant of TrwC could not promote DNA transfer. In the absence of TrwB, the coupling protein of R388, DNA transfer efficiency dropped 1 log. The same low efficiency was obtained with a TrwB point mutation in the region involved in interaction with the T4SS. TrwB interacted with VirB10 in a bacterial two-hybrid assay, suggesting that it may act as the recruiter of the R388 substrate for the VirB/VirD4 T4SS. A TrwB ATPase mutant behaved as dominant negative, dropping DNA transfer efficiency to almost null levels. B. henselae bacteria recovered from infected human cells could transfer the mobilizable plasmid into recipient Escherichia coli under certain conditions, underscoring the versatility of T4SSs.  相似文献   

18.
Although many proteins are known to localize in bacterial cells, for the most part our understanding of how such localization takes place is limited. Recent evidence that the phospholipid cardiolipin localizes to the poles of rod-shaped bacteria suggests that targeting of some proteins may rely on the heterogeneous distribution of membrane lipids. Membrane curvature has been proposed as a factor in the polar localization of high-intrinsic-curvature lipids, but the small size of lipids compared to the dimensions of the cell means that single molecules cannot stably localize. At the other extreme, phase separation of the membrane energetically favors a single domain of such lipids at one pole. We have proposed a physical mechanism in which osmotic pinning of the membrane to the cell wall naturally produces microphase separation, i.e., lipid domains of finite size, whose aggregate sensitivity to cell curvature can support spontaneous and stable localization to both poles. Here, we demonstrate that variations in the strength of pinning of the membrane to the cell wall can also act as a strong localization mechanism, in agreement with observations of cardiolipin relocalization from the poles to the septum during sporulation in the bacterium Bacillus subtilis. In addition, we rigorously determine the relationship between localization and the domain-size distribution including the effects of entropy, and quantify the strength of domain-domain interactions. Our model predicts a critical concentration of cardiolipin below which domains will not form and hence polar localization will not take place. This observation is consistent with recent experiments showing that in Escherichia coli cells with reduced cardiolipin concentrations, cardiolipin and the osmoregulatory protein ProP fail to localize to the poles.  相似文献   

19.
Agrobacterium tumefaciens translocates DNA and protein substrates between cells via a type IV secretion system (T4SS) whose channel subunits include the VirD4 coupling protein, VirB11 ATPase, VirB6, VirB8, VirB2, and VirB9. In this study, we used linker insertion mutagenesis to characterize the contribution of the outer-membrane-associated VirB9 to assembly and function of the VirB/D4 T4SS. Twenty-five dipeptide insertion mutations were classified as permissive for intercellular substrate transfer (Tra+), completely transfer defective (Tra-), or substrate discriminating, e.g., selectively permissive for transfer only of the oncogenic transfer DNA and the VirE2 protein substrates or of a mobilizable IncQ plasmid substrate. Mutations inhibiting transfer of DNA substrates did not affect formation of close contacts of the substrate with inner membrane channel subunits but blocked formation of contacts with the VirB2 and VirB9 channel subunits, which is indicative of a defect in assembly or function of the distal portion of the secretion channel. Several mutations in the N- and C-terminal regions disrupted VirB9 complex formation with the outer-membrane-associated lipoprotein VirB7 or the inner membrane energy sensor VirB10. Several VirB9.i2-producing Tra+ strains failed to elaborate T pilus at detectable levels (Pil-), and three such Tra+ Pil- mutant strains were rendered Tra- upon deletion of virB2, indicating that the cellular form of pilin protein is essential for substrate translocation. Our findings, together with computer-based analyses, support a model in which distinct domains of VirB9 contribute to substrate selection and translocation, establishment of channel subunit contacts, and T-pilus biogenesis.  相似文献   

20.
The conjugative plasmid R388 and a number of other plasmids carry an operon, stbABC, adjacent to the origin of conjugative transfer. We investigated the role of the stbA, stbB, and stbC genes. Deletion of stbA affected both conjugation and stability. It led to a 50-fold increase in R388 transfer frequency, as well as to high plasmid loss. In contrast, deletion of stbB abolished conjugation but provoked no change in plasmid stability. Deletion of stbC showed no effect, neither in conjugation nor in stability. Deletion of the entire stb operon had no effect on conjugation, which remained as in the wild-type plasmid, but led to a plasmid loss phenotype similar to that of the R388ΔstbA mutant. We concluded that StbA is required for plasmid stability and that StbA and StbB control conjugation. We next observed the intracellular positioning of R388 DNA molecules and showed that they localize as discrete foci evenly distributed in live Escherichia coli cells. Plasmid instability of the R388ΔΔstbA mutant correlated with aberrant localization of the plasmid DNA molecules as clusters, either at one cell pole, at both poles, or at the cell center. In contrast, plasmid molecules in the R388ΔΔstbB mutant were mostly excluded from the cell poles. Thus, results indicate that defects in both plasmid maintenance and transfer are a consequence of variations in the intracellular positioning of plasmid DNA. We propose that StbA and StbB constitute an atypical plasmid stabilization system that reconciles two modes of plasmid R388 physiology: a maintenance mode (replication and segregation) and a propagation mode (conjugation). The consequences of this novel concept in plasmid physiology will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号