首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Summary Cell growth and phenol degradation kinetics were studied at 10°C for a psychrotrophic bacterium, Pseudomonas putida Q5. The batch studies were conducted for initial phenol concentrations, So, ranging from 14 to 1000 mg/1. The experimental data for 14<=So<=200 mg/1 were fitted by non-linear regression to the integrated Haldane substrate inhibition growth rate model. The values of the kinetic parameters were found to be: m=0.119 h–1, K S=5.27 mg/1 and K I=377 mg/1. The yield factor of dry biomass from substrate consumed was Y=0.55. Compared to mesophilic pseudomonads previously studied, the psychrotrophic strain grows on and degrades phenol at rates that are ca. 65–80% lower. However, use of the psychrotrophic microorganism may still be economically advantageous for waste-water treatment processes installed in cold climatic regions, and in cases where influent waste-water temperatures exhibit seasonal variation in the range 10–30°C.Nomenclature K S saturation constant (mg/l) - K I substrate inhibition constant (mg/l) - specific growth rate (h–1) - m maximum specific growth rate without substrate inhibition (h–1) - max maximum achievable specific growth rate with substrate inhibition (h–1) - S substrate (phenol) concentration (mg/l) - So initial substrate concentration (mg/l) - Smax substrate concentration corresponding to max (mg/l) - t time (h) - X cell concentration, dry basis (mg DW/l) - Xf final cell concentration, dry basis (mg DW/l) - Xo initial cell concentration, dry basis (mg DW/l) - Y yield factor (mg DW cell produced/mg substrate consumed)  相似文献   

2.
Chlorella sorokiniana was cultured in heterotrophic or mixotrophic mode in outdoor enclosed tubular photobioreactor. The culture temperature was maintained at 32–35 °C. At night, theChlorella culture grew heterotrophically, and 0.1 M glucose was completely consumed. The biomass growth yield of glucose was 0.35 ± 0.001 g-biomass g-glucose–1. During the day, the algal culture grew mixotrophically and the biomass growth yield was 0.49 g-biomass g-glucose–1 in low density culture (initial biomass concentration, Xo = 2 g l–1), 0.56 g-biomass g-glucose–1 in medium density culture (Xo = 4 g l–1) and 0.46 g-biomass g-glucose–1 in high density culture (Xo = 7 g l–1). The daily area productivity of the culture, with Xo = 4 g l–1 corresponded to 127 g-biomass m–2 d–1 during the day and 79 g-biomass m–2 d–1 during the night. In all the cultures, the dissolved O2 concentration increased in the morning, reached the maximum value at noon, and then decreased in the afternoon. The dissolved CO2 concentration remained at 3 mBar in the morning and increased in the afternoon. Glycolate was not found to accumulate in culture medium.  相似文献   

3.
The kinetics of bio-oxidation by a microbial ensemble of a model mixture of contaminants that mimicked the ground-water pollution plume at an existing contaminated site was investigated. Phenol at 50 mg/l and a mixture of ten organic contaminants (MOC) (benzene, tetrachloromethane, trichloroethylene, toluene, o-xylene, 1,4-dichlorobenzene, o-cresol, nitrobenzene, naphthalene and 2,6-dichlorophenol) at individual concentrations ranging from 150 g/l to 600 g/l were the components of the model mixture. The microbial ensemble consisted of at least three Pseudomonas spp. isolated from the polluted site. Patterns of oxygen uptake rate (OUR) for the oxidation of phenol alone and with added MOC were treated mathematically. The values for kinetic parameters that gave the best fit to the data were respectively 11.29 and 15.03 ml O2 h–1 (mg protein)–1 for the OUR maximum (OURmax), 75.89 mg/l and 33.66 mg/l for the saturation constant (K s), 105.92 mg/l and 36.44 mg/l for the inhibitor constant (K i), and 89.66 mg/l and 35.02 mg/l the substrate minimum inhibitory concentration (S mic). This study also scrutinised interference between the two components of the model mixture of contaminants (phenol and MOC) on the basis of variations in kinetic patterns. MOC was shown to be toxic at milligram per litre levels. The microbial ensemble increased phenol oxidation in response to MOC, possibly to obtain the energy to overcome this toxic effect. This was indicated by an acceleration of phenol oxidation in response to increasing concentrations of MOC and higher OURmax for oxidation of phenol in the presence of MOC. The toxicity of MOC also resulted in enhanced vulnerability of the microbial ensemble to a phenol inhibitory effect, indicated by the diminution of K i and S mic. The microbial ensemble showed high resistance to inhibition by the sole presence of phenol possibly because of adaptation to toxic features of MOC during the processes of enrichment and cultivation.  相似文献   

4.
The kinetic and general growth features of Bacillus thuringiensis var. israelensis were evaluated. Initial glucose concentration (S 0) in fermentation media varied from 10 to 152 g/l. The results afforded to characterize four morphologically and physiologically well-defined culture phases, independent of S 0 values: Phase I, vegetative growth; Phase II, transition to sporulation; Phase III, sporulation; and Phase IV, spores maturation and cell lysis. Important process parameters were also determined. The maximum specific growth rates (μ X,m) were not affected with S 0 up to 75 g/l (1.0–1.1 per hour), but higher glucose concentrations resulted in growth inhibition by substrate, revealed by a reduction in μ X,m values. These higher S 0 values led to longer Phases III and IV and delayed sporulation. Similar biomass concentrations (X m = 15.2–15.9 g/l) were achieved with S 0 over 30.8 g/l, with increasing residual substrate, suggesting a limitation in some other nutrients and the use of glucose to form other metabolites. In this case, with S 0 from 30.8 to 152 g/l, cell yield (Y X/S ) decreased from 0.58 to 0.41 g/g. On the other hand, with S 0 = 10 g/l growth was limited by substrate, and Y X/S has shown its maximum value (0.83 g/g).  相似文献   

5.
Batch assays are currently used to study the kinetic behavior of microbial growth. However, it has been shown that the outcome of batch experiments is greatly influenced by the initial ratio of substrate concentration (S o) to biomass concentration (X o). Substrate-sufficient batch culture is known to have mechanisms of spilling energy that lead to significant nongrowth-associated substrate consumption, and the Monod equation is no longer appropriate. By incorporating substrate consumption associated with energy spilling into the balance of the substrate oxidation reaction, a kinetic model for the observed specific substrate consumption rate was developed for substrate-sufficient batch culture of activated sludge, and was further verified by experimental data. It was demonstrated that the specific substrate consumption rate increased with the increase of the S o/X o ratio, and the majority of substrate was consumed through energy spilling at high S o/X o ratios. It appears that the S o/X o ratio is a key parameter in regulating metabolic pathways of microorganisms. Received: 18 January 1999 / Received revision: 7 May 1999 / Accepted: 28 May 1999  相似文献   

6.
Summary A continuous single stage yeast fermentation with cell recycle by ultrafiltration membranes was operated at various recycle ratios. Cell concentration was increased 10.6 times, and ethanol concentration and fermentor productivity both 5.3 times with 97% recycle as compared to no recycle. Both specific growth rate and specific ethanol productivity followed the exponential ethanol inhibition form (specific productivity was constant up to 37.5 g/l of ethanol before decreasing), similar to that obtained without recycle, but with greater inhibition constants most likely due to toxins retained in the system at hight recycle ratios.By analyzing steady state data, the fractions of substrate used for cell growth, ethanol formation, and what which were wasted were accounted for. Yeast metabolism varied from mostly aerobic at low recycle ratios to mostly anaerobic at high recycle ratios at a constant dissolved oxygen concentration of 0.8 mg/kg. By increasing the cell recycle ratio, wasted substrate was reduced. When applied to ethanol fermentation, the familiar terminology of substrate used for Maintenance must be used with caution: it is not the same as the wasted substrate reported here.A general method for determining the best recycle ratio is presented; a balance among fermentor productivity, specific productivity, and wasted substrate needs to be made in recycle systems to approach an optimal design.Nomenclature B Bleed flow rate, l/h - C T Concentration of toxins, arbitrary units - D Dilution rate, h-1 - F Filtrate or permeate flow rate, removed from system, l/h - F o Total feed flow rate to system, l/h - K s Monod form constant, g/l - P Product (ethanol) concentration, g/l - P o Ethanol concentration in feed, g/l - PP} Adjusted product concentration, g/l - PD Fermentor productivity, g/l-h - R Recycle ratio, F/F o - S Substrate concentration in fermentor, g/l - S o Substrate concentration in feed, g/l - V Working volume of fermentor, l - V MB Viability based on methylene blue test - X Cell concentration, g dry cell/l - X o Cell concentration in feed, g/l - Y ATP Cellular yield from ATP, g cells/mol ATP - Y ATPS Yield of ATP from substrate, mole ATP/mole glucose - Y G True growth yield or maximum yield of cells from substrate, g cell/g glucose - Y P Maximum theoretical yield of ethanol from glucose, 0.511 g ethanol/g glucose - Y P/S Experimental yield of product from substrate, g ethanol/g glucose - Y x/s Experimental yield of cells from substrate, g cell/g glucose - S NP/X Non-product associated substrate utilization, g glucose/g cell - k 1, k2, k3, k4 Constants - k 1 APP , k 2 APP Apparent k 1, k3 - k 1 TRUE True k 1 - m Maintenance coefficient, g glucose/g cell-h - m * Coefficient of substrate not used for growth nor for ethanol formation, g glucose/g cell-h - Specific growth rate, g cells/g cells-h, reported as h-1 - m Maximum specific growth rate, h-1 - v Specific productivity, g ethanol/g cell-h, reported as h-1 - v m Maximum specific productivity, h-1  相似文献   

7.
Substrates that contain hexose as well as pentose sugars can form an interesting substrate for the production of ethanol. Pichia stipitis and a respiratory-deficient mutant of Saccharomyces diastaticus were used to convert such a substrate into ethanol under continuous culture conditions. With a sugar mixture (glucose 70%/xylose 30%) at 50 g/l, the xylose was entirely consumed when the dilution rate (D) did not exceed 0.006 h–1 whereas the glucose was entirely consumed whatever the D. The study of influence of initial substrate concentration (S0) was performed at D = 0.015 h–1. Under these conditions the substrate was entirely consumed when its initial concentration did not exceed 20 g/l. With S0 = 80 g/l the residual xylose concentration reached 20.5 g/l. At low D or at low S0, P. stipitis was the dominant species in the fermentor. Increasing the D or S0 resulted in the wash-out of P. stipitis mainly because of its low ethanol tolerance. Correspondence to: J. P. Delgenes  相似文献   

8.
The mathematical model of an aerobic culture of recombinant yeast presented in work by Zhang et al. (1997) is given by a differential-algebraic system. The classical nonlinear observer algorithms are generally based on ordinary differential equations. In this paper, first we extend the nonlinear observer synthesis to differential-algebraic dynamical systems. Next, we apply this observer theory to the mathematical model proposed in Zhang et al. (1997). More precisely, based on the total cell concentration and the recombinant protein concentration, the observer gives the online estimation of the glucose, the ethanol, the plasmid-bearing cell concentration and a parameter that represents the probability of plasmid loss of plasmid-bearing cells. Numerical simulations are given to show the good performances of the designed observer.Symbols C 1 activity of pacing enzyme pool for glucose fermentation (dimensionless) - C 2 activity of pacing enzyme pool for glucose oxidation (dimensionless) - C 3 activity of pacing enzyme pool for ethanol oxidation (dimensionless) - E ethanol concentration (g/l) - G glucose concentration (g/l) - k a regulation constant for (g glucose/g cell h–1) - k b regulation constant for (dimensionless) - k c regulation constant for (g glucose/g cell h–1) - k d regulation constant for (dimensionless) - K m1 saturation constant for glucose fermentation (g/l) - K m2 saturation constant for glucose oxidation (g/l) - K m3 saturation constant for ethanol oxidation (g/l) - L ( t) time lag function (dimensionless) - p probability of plasmid loss of plasmid-bearing cells (dimensionless) - P recombinant protein concentration (mg/g cell) - q G total glucose flux culture time (g glucose/g cell h) - t culture time (h) - t lag lag time (h) - X total cell concentration (g/l) - X + plasmid-bearing cell concentration (g/l) - Y F X / G cell yield for glucose fermentation pathway (g cell/g glucose) - Y O X / G cell yield for glucose oxidation pathway (g cell/g glucose) - Y X / E cell yield for ethanol oxidation pathway (g cell/g ethanol) - Y E / X ethanol yield for fermentation pathway based on cell mass (g ethanol·g cell) - 2 glucoamylase yield for glucose oxidation (units/g cell) - 3 glucoamylase yield for ethanol oxidation (units/g cell) - µ1 specific growth rate for glucose fermentation (h–1) - µ2 specific growth rate for glucose oxidation (h–1) - µ3 specific growth rate for ethanol oxidation (h–1) - µ1max maximum specific growth rate for glucose fermentation (h–1) - µ2max maximum specific growth rate for glucose oxidation (h–1) - µ3max maximum specific growth rate for ethanol oxidation (h–1)  相似文献   

9.
Biomass behaviour and COD removal in a benchscale activated sludge reactor have been studied alternating anaerobic and aerobic conditions. Particular attention has been paid to the influence of the ratio of the initial substrate concentration (S 0) to the initial biomass concentration (X 0) on the reactor performance. Tests at very low ratios (S 0/X 0<2) demonstrate the existence of a threshold below which the reactor performance is seriously affected (S 0/X 0=0.5). Under conditions of total suppression of cell duplication, substrate maintenance requirements have also been calculated for the microbial consortium present in the activated sludges. The results obtained show that stressed biomass can survive conditions of substrate lack better than unstressed biomass.List of Symbols b h–1 specific death rate - COD g/l chemical oxygen demand - DO g/l dissolved oxygen concentration - K s g/l Monod saturation constant - MLSS g/l mixed liquor suspended solid concentration - P g/l phosphorus concentration - S g/l substrate concentration - S 0 g/l initial substrate concentration - SS g/l suspended solid concentration - t h time - X g/l biomass concentration - X 0 g/l initial biomass concentration - Y SX g/g yield of growth on substrate - max h–1 maximum specific growth rate  相似文献   

10.
Using two mouse-mouse hybridoma cell lines, the response to ammonia step and serial changes was investigated in batch and continuous cultures with serum-free medium. The inhibitory effect of ammonia on cell growth depended on the cultivation mode, and differed markedly between cell lines. The cell line, 4C10B6 producing IgG monoclonal antibody against Pseudomonas, showed a high adaptation ability to ammonia. The 4C10B6 cells could grow under ammonia concentration as high as 21 mmol/l NH4Cl with a viability of 80% in the continuous culture with serial increase in ammonia concentration. Whereas, in the batch culture with ammonia step change the cell growth completely ceased at 12 mmol/l NH4Cl. The other cell line, TO-405 producing IgG monoclonal antibody against hepatitis B surface antigen, could not adapt to ammonia, and the cell growth did not occur at 9 mmol/l NH4Cl even under the ammonia serial change.List of symbols DFeed d-1 Dilution rate of fresh feed medium (=Fo/V) - DOut d-1 Dilution rate of cell suspension (=F1/V) - F1 ml·d-1 Volumetric discharge rate of cell suspension - F0 ml·d-1 Volumetric flow rate of fresh feed medium - kD h-1 Specific death rate - P mmol·l-1 Product concentration - S mmol·l-1 Substrate concentration in culture broth - S0 mmol·l-1 Substrate concentration in feed medium - t d Cultivation time - V ml Working volume of reactor - X0 cells·ml-1 Total cell density - XV cells·ml-1 Viable cell density - YP/S mmol·mmol-1 Yield of product from substrate - YX/S cells·mmol-1 Yield of cells from substrate - mmol·cell-1·h-1 Specific production rate - h-1 Specific growth rate - mmol·cell-1·h-1 Specific consumption rate of substrate  相似文献   

11.
The toxic effects of phenol, a common constituent of many industrial effluents, necessitates treatment of the polluted streams. Biodegradation is a popular technique and enjoys many advantages. The degradation of phenol with Arthrobacter species is studied in batch cultures and it is observed that the substrate is inhibiting. The fit of various models, including the model proposed earlier by us [17], to the experimental data is studied. The model is used to fit available data in literature, which unfortunately is very sparse. In all the cases the present model fits the data best.List of Symbols S mg/l substrate concentration - S 0 mg/l threshold substrate concentration - K I mg/l inhibition constant - K m , K s mg/l half saturation constant of growth kinetics - m, n constants - 1/h specific growth rate - m 1/h maximal specific growth rate - X mg/l biomass concentration at time t - X 0 mg/l initial biomass concentration Abbreviations MTCC Microbial Type Culture Collection - IMTECH Institute of Microbial Technology The cooperation of the staff of the Biosciences and Biotechnology Center, I.I.T. Madras is greatly appreciated.  相似文献   

12.
Summary The anaerobic degradation of phenol under denitrifying conditions by a bacterial consortium was studied both in batch and continuous cultures. Anaerobic degradation was dependent on NOf3 p– and concentrations up to 4 mm phenol were degraded within 2–5 days. During continuous growth in a fermenter, steady states could be maintained at eight dilution rates (D) corresponding to residence times between 12.5 and 50 h. Culture wash-out occurred at D=0.084 h–1. The kinetic parameters obtained for anaerobic degradation of phenol under denitrifying conditions by the consortium were: maximam specific growth rate = 0.091 h–1; saturation constant = 4.91 mg phenol/l; true growth yield = 0.57 mg dry wt/mg phenol; maintenance coefficient = 0.013 mg phenol/mg dry wt per hour. The Haldane model inhibition constant was estimated from batch culture data giving a value of 101 mg/l. The requirement of CO2 for the anaerobic degradation of phenol with NOf3 p– indicates that phenol carboxylation to 4-hydroxybenzoate was the first step of phenol degradation by this culture. 4-Hydroxybenzoate, proposed as an intermediate of phenol carboxylation under these conditions, was detected only in continuous cultures at very low growth rates (D=0.02 h–1), but was never detected as a free intermediary metabolite either in batch or in continuous cultures. Correspondence to: N. Khoury  相似文献   

13.
This article describes conditions to optimize the yield of viable protoplasts from callus tissue of Asparagus densiflorus cv. Sprengeri and their subsequent regeneration into plantlets. Callus tissue was initiated by culturing spear sections (5–7 mm) on Murashige and Skoog (MS) medium supplemented with 0.8% (wt/vol) Bacto agar, 3% (wt/vol) sucrose, 0.5 mg/l each of nicotinic acid, pyridoxine-HCl, and thiamine-HCl, 1 mg/l p-chlorophenoxyaceticacid (pCPA) and 1 mg/l 6-benzylaminopurine (BAP). The maximum protoplast yield was obtained in a mixture of 1% (wt/vol) Cellulysin, 0.8% (wt/vol) Rhozyme HP 150 and 0.3% (wt/vol) Macerase, dissolved in cell protoplast wash salt solution with 7 mm CaCl2 .2H2O, 3 mm MES, 0.6 m glucose, and 0.1 m mannitol. First divisions were observed after 3–4 days of initial culture. The plating efficiency was highest (7.8%) in half-strength MS semisolid medium containing 1 g/l glutamine, 0.6 m glucose, 0.1 m mannitol, 0.5 mg/l folic acid, 0.05 mg/l biotin, 2 mg/l ascorbic acid, 1 mg/l α-naphthaleneacetic acid, 0.5 mg/l zeatin, and 0.1% (wt/vol) Gelrite. Protoplast-derived microcolonies and microcalli were cultured on the same medium on which the primary callus culture was initiated. After 10–12 weeks, calli were transferred to shoot regeneration medium containing MS salts, 1 mg/l BAP, 0.5 mg/l pCPA and 0.2% Gelrite. Shoots (3–4 cm) were then transferred to MS rooting medium with 2 mg/l indole-3-butyric acid, and 0.2% Gelrite. Plantlets were obtained within 4–5 weeks. Received: 9 August 1995 / Revision received: 27 June 1997 / Accepted: 17 July 1997  相似文献   

14.
Yang CF  Lee CM 《Biodegradation》2008,19(3):329-336
The objectives of this research were to monitor the variations of species in mixed cultures during the enrichment period, isolate species and identify and characterize the pure 4-chlorophenol (4-CP) degrading strains from enriched mixed cultures. Strain Rhizobium sp. 4-CP-20 was isolated from the acclimated mixed culture. The DGGE result indicated that strain Rhizobium sp. 4-CP-20 was undetectable at the beginning but detectable after 2 weeks of enrichment. The optimum growth temperatures for Rhizobium sp. 4-CP-20 were both 36°C using 350 mg l−1 glucose or sodium acetate as the substrate. The optimum pH range for degrading 100 mg l−1 4-CP was between 6.89 and 8.20. Strain Rhizobium sp. 4-CP-20 could degrade 4-CP completely within 3.95 days, as the initial 4-CP concentration was 100 mg l−1. If the initial 4-CP concentration was higher than 240 mg l−1, the growth of bacterial cells and the activity of degrading 4-CP were both inhibited.  相似文献   

15.
Alginate production by Azotobacter vinelandii was studied in batch and continuous cultures under microaerobic conditions. In batch culture at a pO2 of 2–3% (air saturation) alginate production was enhanced by decreasing the PO3− 4 level in the medium. Alginate yield from biomass (Y P/X) reached the highest value of 0.66 g/g at the lowest phosphate level (100 mg/l), compared to 0.40 g/g and 0.25 g/g at higher phosphate levels (200 mg/l and 400 mg/l, respectively). In contrast, biomass formation behaved differently and the growth yield (Y X/S) decreased with decreasing PO4 3− concentrations. Moreover, the respiratory quotient (RQ) of the culture was dependent on the initial phosphate concentration, especially in the phosphate-limited phase of growth. As the initial phosphate level decreased from 400 mg/l to 100 mg/l, the average RQ value of the culture declined from 1.46 to 0.89. The low RQ value is very close to the theoretical optimum RQ, calculated to be 0.8 on the basis of the stoichiometry of the metabolic pathways for alginate formation from sucrose. This optimum RQ was also confirmed in continuous culture at different dilution rates. Independent of the dilution rate, a pO2 value of 2–5% (air saturation) was found to be optimal for alginate production, the corresponding RQ values being 0.80–0.84. In addition, the molecular mass and composition of alginate were also found to be affected by both phosphate and oxygen concentrations. In conclusion, the RQ appears to be a useful parameter for optimum control of alginate production with this microorganism. Received: 31 March 1999 / Received revision: 2 July 1999 / Accepted: 5 July 1999  相似文献   

16.
Aims: To study the optimization of submerged culture conditions for exopolysaccharide (EPS) production by Armillaria mellea in shake‐flask cultures and also to evaluate the performance of an optimized culture medium in a 5‐l stirred tank fermenter. Methods and Results: Shake flask cultures for EPS optimal nutritional production contained having the following composition (in g l?1): glucose 40, yeast extract 3, KH2PO4 4 and MgSO4 2 at an optimal temperature of 22°C and an initial of pH 4·0. The optimal culture medium was then cultivated in a 5‐l stirred tank fermenter at 1 vvm (volume of aeration per volume of bioreactor per min) aeration rate, 150 rev min?1 agitation speed, controlled pH 4·0 and 22°C. In the optimal culture medium, the maximum EPS production in a 5‐l stirred tank fermenter was 588 mg l?1, c. twice as great as that in the basal medium. The maximum productivity for EPS (Qp) and product yield (YP/S) were 42·02 mg l?1 d?1 and 26·89 mg g?1, respectively. Conclusions: The optimal culture conditions we proposed in this study enhanced the EPS production of A. mellea from submerged cultures. Significance and Impact of the Study: The optimal culturing conditions we have found will be a suitable starting point for a scale‐up of the fermentation process, helping to develop the production of related medicines and health foods from A. mellea.  相似文献   

17.
Summary Particle supported biofilms of uniform thickness were generated in an aerobic fluidized-bed reactor with phenol as the carbon source. A method was developed for determining the effective diffusivities of oxygen and phenol using trypan blue, a vital stain as the tracer. The effective diffusivities of oxygen and phenol were found to be 2.72×10–6 cm2/s and 1.12×10–6 cm2/s respectively.Nomenclature Ci initial solute concentration in bulk, g/cm3 - Ct solute concentration in bulk at time t, g/cm3 - C bulk solute concentration at equilibrium, g/cm3 - D molecular diffusivity, cm2/s - D effective diffusivity, cm2/s - Do Dp Dtb molecular diffusivity of oxygen, phenol and trypan blue, cm2/s - Do, Dp, Dtb effective diffusivity of oxygen, phenol and trypan blue, cm2/s - Ds molecular diffusivity of substrate, cm2/s - Ds effective diffusivity of substrate, cm2/s - K partition coefficient - Mt amount of solute in the particle at time t, g - M amount of solute in the particle at equilibrium, g - r particle radius, cm - r bp radius of the particle with biofilm, cm - S substrate concentration, g/cm3 - Sb substrate concentration in bulk, g/cm3 - Si initial substrate concentration, g/cm3 - V1 solute molar volume, cm3/g mol Greek Symbols bf porosity of the biofilm - tortuosity factor  相似文献   

18.
The production costs of ethanol are dependent on the efficiency of the substrate-ethanol conversion to a high degree. The more the substrate used during the fermentation is converted into alcohol the better is the economy of the process. Therefore the ethanol yield Y SP is an important object of the process optimization. In batch fermentation processes the most essential influence factors are the initial biomass concentration X0, the initial substrate concentration S0, the temperature T, and the pH-value. A model reflecting the complex relationships between these influence factors and the ethanol yield could be obtained by regression. It allows an exact valuation of these optimum process parameters which are necessary for realizing high ethanol yields in the batch fermentation. For the strain Saccharomyces cerevisiae Sc 5 used in this research was found an ethanol yield maximum YSP = 0˙5384 at the parameters X0 = 64.61 g/l S0 = 82.91 g/l T = 36.45°C pH = 6.54.  相似文献   

19.
Summary A system coupling fermentor and decantor permitted strong accumulation of yeast flocs that were homogeneously suspended in the reactional volume. At 100–190 g/l glucose feed practically total substrate conversion was attained. At 130 g/l glucose feed the highest productivity (18.4 g.l.h) and the highest ethanol yield (90.6%) were reached with biomass levels of 80–90 g/l. We observed that the stability of this system is limited when a critical fermentation rate (D.So) close to 39–40 g/l.h (with corresponding ethanol productivities of 19–20 g/l.h) is reached. Higher fermentation rates provoked de-flocculation and lost of biomass.Symbols D dilution rate (h–1) - E ethanol (g/l) - Sr residual substrate (g/l) - So substrate in the feed (g/l) - X biomass (g/l) - ethanol yield (%) - DSo fermentation rate (g/l.h) (for Sr0) - PE ethanol productivity (g/l.h)  相似文献   

20.
The objective of this study was to achieve a better quantitative understanding of the kinetics of 2,4,6-trichlorophenol (TCP) biodegradation by an acclimated mixed microbial culture. An aerobic mixed microbial culture, obtained from the aeration basin of the wastewater treatment plant, was acclimated in shake flasks utilizing various combinations of 2,4,6-TCP (25–100 mg l−1), phenol (300 mg l−1) and glycerol (2.5 mg l−1) as substrates. Complete primary TCP degradation and a corresponding stoichiometric release of chloride ion were observed by HPLC and IEC analytical techniques, respectively. The acclimated cultures were then used as an inoculum for bench scale experiments in a 4 l stirred-tank reactor (STR) with 2,4,6-TCP as the sole carbon/energy (C/E) source. The phenol acclimated mixed microbial culture consisted of primarily Gram positive and negative rods and was capable of degrading 2,4,6-TCP completely. None of the predicted intermediate compounds were detected by gas chromatography in the cell cytoplasm or supernatant. Based on the disappearance of 2,4,6-TCP, degradation was well modelled by zero-order kinetics which was also consistent with the observed oxygen consumption. Biodegradation rates were compared for four operating conditions including two different initial 2,4,6-TCP concentrations and two different initial biomass concentrations. While the specific rate constant was not dependent on the initial 2,4,6-TCP concentration, it did depend on the initial biomass concentration (X init). A lower biomass concentration gave a much higher zero-order specific degradation rate. This behaviour was attributed to a lower average biomass age or cell retention time (θx) for these cultures. The implications of this investigation are important for determining and predicting the potential risks associated with TCP, its degradation in the natural environment or the engineering implications for ex situ treatment of contaminated ground water or soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号