首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seed pods of wild-type narrow-leafed lupins (Lupinus angustifolius L.) shatter upon maturity, dispersing their seeds. Recessive alleles of the genes Tardus and Lentus that confer reduced pod shattering have been incorporated into domesticated cultivars to facilitate harvesting. Tardus was mapped in an F8 recombinant inbred population of a cross between domesticated and wild lupins. A microsatellite–anchored fragment length polymorphism marker (TaM1), which mapped 2.1 cM from Tardus, was converted to a locus-specific PCR assay. Marker TaM2, a restriction fragment length polymorphism marker was converted to a PCR assay and mapped to 3.9 cM on the other side of Tardus. Marker TaM3, a cleaved amplified polymorphic sequence marker, was positioned along-side marker TaM1 at 3.9 cM from Tardus. One or more markers was polymorphic in 70% of possible pairwise crosses between Australian domesticated lines and wild accessions tested, indicating wide applicability of the markers in crosses between wild and domesticated germplasm.  相似文献   

2.
Seeds and plants of wild type Lupinus albus are bitter and contain high level of alkaloids. During domestication, at least three genes conferring low-alkaloid content were identified and incorporated into commercial varieties. Australian lupin breeders exclusively utilize one of these sweetness genes, “pauper”, in all varieties to prevent possible bitterness contamination via out-crossing. A cross was made between a sweet variety Kiev Mutant (containing pauper gene) and a bitter type landrace P27174, and the population was advanced into F8 recombinant inbred lines (RILs). Twenty-four plants representing sweetness and bitterness were subjected to DNA fingerprinting by the microsatellite-anchored fragment length polymorphism (MFLP) technique. A dominant polymorphism was discovered in an MFLP fingerprint. The MFLP marker was converted into a co-dominant, sequence-specific, simple PCR-based marker. Linkage analysis by the software program MapManager with marker score data and alkaloid phenotyping data from a segregating population containing 190 F8 RILs indicated that the marker is linked to the pauper gene at the genetic distance of 1.4 centiMorgans (cM). This marker, which is designated as “PauperM1”, is capable of distinguishing the pauper gene from the other two low-alkaloid genes exiguus and nutricius. Validation on germplasm from the Australian lupin breeding program showed that the banding pattern of the marker PauperM1 is consistent with the alkaloid genotyping on a wide range of domesticated varieties and breeding lines. The PauperM1 marker is now being implemented for marker assisted selection in the Australian albus lupin breeding program.  相似文献   

3.
    
Anthracnose caused by Colletotrichum gloeosporioides is the most serious disease of lupins (Lupinus spp). A cross was made between cultivars Tanjil (resistant) and Unicrop (susceptible) in narrow-leafed lupin (L. angustifolius). Analysis of disease reaction data on the F2 population and on the resultant F7 recombinant inbred lines suggested that Tanjil contained a single dominant gene (Lanr1) conferring resistance to anthracnose. The parents and the representative F2 plants were used to generate molecular markers liked to the Lanr1 gene using the MFLP technique. A co-dominant MFLP polymorphism linked to the Lanr1 gene was identified as a candidate marker. The bands were isolated, re-amplified by PCR, cloned and sequenced. The MFLP polymorphism was converted into a co-dominant, sequence-specific, simple PCR-based marker. Linkage analysis by the computer program MAPMAKER indicated that the marker was 3.5 centiMorgans (cM) from the gene Lanr1. This marker is currently being implemented for marker assisted selection in the Australian National Lupin Breeding Program.  相似文献   

4.

Background

Molecular marker-assisted breeding provides an efficient tool to develop improved crop varieties. A major challenge for the broad application of markers in marker-assisted selection is that the marker phenotypes must match plant phenotypes in a wide range of breeding germplasm. In this study, we used the legume crop species Lupinus angustifolius (lupin) to demonstrate the utility of whole genome sequencing and re-sequencing on the development of diagnostic markers for molecular plant breeding.

Results

Nine lupin cultivars released in Australia from 1973 to 2007 were subjected to whole genome re-sequencing. The re-sequencing data together with the reference genome sequence data were used in marker development, which revealed 180,596 to 795,735 SNP markers from pairwise comparisons among the cultivars. A total of 207,887 markers were anchored on the lupin genetic linkage map. Marker mining obtained an average of 387 SNP markers and 87 InDel markers for each of the 24 genome sequence assembly scaffolds bearing markers linked to 11 genes of agronomic interest. Using the R gene PhtjR conferring resistance to phomopsis stem blight disease as a test case, we discovered 17 candidate diagnostic markers by genotyping and selecting markers on a genetic linkage map. A further 243 candidate diagnostic markers were discovered by marker mining on a scaffold bearing non-diagnostic markers linked to the PhtjR gene. Nine out from the ten tested candidate diagnostic markers were confirmed as truly diagnostic on a broad range of commercial cultivars. Markers developed using these strategies meet the requirements for broad application in molecular plant breeding.

Conclusions

We demonstrated that low-cost genome sequencing and re-sequencing data were sufficient and very effective in the development of diagnostic markers for marker-assisted selection. The strategies used in this study may be applied to any trait or plant species. Whole genome sequencing and re-sequencing provides a powerful tool to overcome current limitations in molecular plant breeding, which will enable plant breeders to precisely pyramid favourable genes to develop super crop varieties to meet future food demands.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1878-5) contains supplementary material, which is available to authorized users.  相似文献   

5.
Durable broad-spectrum, adult-plant stem rust resistance in wheat conferred by the Sr2 gene has remained effective against Puccinia graminis f. sp tritici worldwide for more than 50 years. The Sr2 gene has been positioned on the physical map of wheat to the distal 25% portion of the short arm of chromosome 3B. Selection for this gene in wheat breeding programs within Australia has been performed so far through the use of the linked pseudo black chaff (PBC) phenotype and of the microsatellite markers Xgwm389 and Xgwm533 that flank the gene. The molecular markers flank a genetic interval of approximately 4 cM equating to a physical distance of over 10 Mbp. Recently, a 3B-specific BAC library was developed and a physical map established for this region. Analysis of the sequence of minimal tiling path-BAC clones within the region containing the Sr2 gene enabled the development of three new markers that were mapped within the Xgwm389Xgwm533 genetic interval and tightly linked to the Sr2 gene. Screening a wide range of germplasm containing the Sr2 gene with these markers demonstrated their usefulness for marker-assisted selection in Australian wheat breeding programs.  相似文献   

6.
Pea rust is a devastating disease of peas especially in the sub-tropical regions of the world and greatly influenced by the environmental conditions during disease development. Molecular markers associated with pea rust resistance would be useful in marker assisted selection (MAS). Utility of molecular markers associated with the pea rust resistance were evaluated in 30 diverse pea genotypes using four SSR markers (AA446 and AA505 flanking the major QTL Qruf; AD146 and AA416 flanking the minor QTL, Qruf1). QTL, Qruf flanking markers were able to identify all the resistant genotypes when used together, except Pant P 31. While, SSR markers AD146 and AA416 flanking the minor QTL, Qruf1 were able to identify all the pea resistant genotypes used for validation, except for HUDP-11 by AD146 and Pant P 31 by AA416. Similarly, SSR markers AA446 and AA505 were able to identify all the susceptible pea genotypes, except IPFD 99–13, HFP 9415 and S- 143. SSR markers AD146 and AA416 were together able to identify all the pea susceptible genotypes used for validation, except KPMR 526, KPMR 632 and IPFD 99–13. On the basis of marker allele analysis it may be concluded that SSR markers (AA446, AA505, AD146 and AA416) can be used in MAS of pea rust resistance.  相似文献   

7.
Monogenically-inherited resistance to Soil-borne cereal mosaic virus (SBCMV) in hexaploid bread wheat cultivars ‘Tremie’ and ‘Claire’ was mapped on chromosome 5D. The two closest flanking markers identified in the Claire-derived mapping population, Xgwm469-5D and E37M49, are linked to the resistance locus at distances of 1 and 9 cm, respectively. Xgwm469-5D co-segregated with the SBCMV resistance in the Tremie-derived population and with the recently identified Sbm1 locus in the cv. Cadenza. This suggested that Tremie and Claire carry a resistance gene allelic to Sbm1, or one closely linked to it. The diagnostic value of Xgwm469-5D was assessed using a collection of SBCMV resistant and susceptible cultivars. Importantly, all susceptible genotypes carried a null allele of Xgwm469-5D, whereas resistant genotypes presumably related to either Claire and Tremie or Cadenza revealed a 152 or 154 bp allele of Xgwm469-5D, respectively. Therefore, Xgwm469-5D is well suited for marker assisted selection for SBCMV resistance.  相似文献   

8.
Large-scale marker-assisted selection requires highly reproducible, consistent and simple markers. The use of genetic markers is important in woody plant breeding in general, and in apple in particular, because of the high level of heterozygosity present in Malus species. We present here the transformation of two RAPD markers, which we found previously to be linked to the major scab resistance gene Vf, into more reliable and reproducible markers that can be applied directly to apple breeding. We give an example of how the use of such markers can speed up selection for the introduction of scab resistance genes into the same plant, reducing labour and avoiding time-consuming test crosses. We discuss the nature and relationship of the scab resistance gene Vf to the one present in Nova Easygro, thought to be Vr.  相似文献   

9.
Fusarium head blight (FHB) in wheat results in reduced yield and quality and in accumulation of mycotoxins. The objective of this study was to identify genomic regions in wheat involved in the control of FHB resistance applying a QTL meta-analysis approach by combining QTL of 30 mapping populations to propose independent meta-QTL (MQTL). A consensus map was created on which initial QTL were projected. Nineteen MQTL comprising 2–13 initial QTL with widely varying confidence intervals were found on 12 chromosomes. Some of them coincided with genomic regions previously identified (e.g. chromosomes 3BS, 6B), however, some MQTL were newly detected by this study. Separate analysis of populations with the same resistant parent showed a rather high consistency for the Chinese spring wheat donor ‘Sumai 3’, but little consistency for the Chinese donor ‘Wangshuibai’ and the Swiss donor ‘Arina’. According to our results breeders can in future (1) choose parents for crossing not comprising the same resistance loci or QTL intervals, (2) exploit new MQTL, and (3) select markers of some of these MQTL to be used in marker-assisted selection. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.
Anthracnose, caused by the fungusColletotrichum lindemuthianum, is a severe disease of common bean (Phaseolus vulgaris L.) controlled, in Europe, by a single dominant gene,Are. Four pairs of near-isogenic lines (NILs) were constructed, in which theAre gene was introgressed into different genetic backgrounds. These pairs of NILs were used to search for DNA markers linked to the resistance gene. Nine molecular markers, five RAPDs and four RFLPs, were found to discriminate between the resistant and the susceptible members of these NILs. A backcross progeny of 120 individuals was analysed to map these markers in relation to theAre locus. Five out of the nine markers were shown to be linked to theAre gene within a distance of 12.0 cM. The most tightly linked, a RAPD marker, was used to generate a pair of primers that specifically amplify this RAPD (sequence characterized amplified region, SCAR).The research was supported by the CNRS and the Ministère Français de l'Education Nationale  相似文献   

12.
We have developed a polymerase chain reaction (PCR)-based assay that could effectively reduce the time period required to screen and select for Gall Midgeresistant rice lines under field conditions. The primers for the assay were designed on the basis of sequence information of two phenotype specific random amplified polymorphic DNA fragments which were found to be tightly linked to Gall Midge biotype-1 resistance gene (Gm2). The two RAPD fragments, F81700 in the susceptible parent ARC6650 and F10600 in the resistant parent Phalguna, were identified after screening 5450 loci using 520 random primers on genomic DNAs of ARC6650 and Phalguna. These primers, when used in a multiplexed PCR, amplified specifically a 1.7-kb and 0.6-kb fragment in the susceptible and resistant parents, respectively. When this assay was performed on genomic DNAs of 44 recombinant inbred lines derived from ARC6650 x Phalguna and 5 lines derived from other crosses where one of the parents was Phalguna, ARC6650 or their derivatives, the primers amplified a 1.7-kb fragment in all of the susceptible lines or a 0.6-kb fragment in all of the resistant ones. These markers can be of potential use in the marker-aided selection of Gall Midge biotype-1 resistant phenotypes. As screening for resistance can now be conducted independent of the availability of insects, the breeding of resistant varieties can be hastened.  相似文献   

13.
With the development of genetic maps and the identification of the most-likely positions of quantitative trait loci (QTLs) on these maps, molecular markers for lodging resistance can be identified. Consequently, marker-assisted selection (MAS) has the potential to improve the efficiency of selection for lodging resistance in a breeding program. This study was conducted to identify genetic loci associated with lodging resistance, plant height and reaction to mycosphaerella blight in pea. A population consisting of 88 recombinant inbred lines (RILs) was developed from a cross between Carneval and MP1401. The RILs were evaluated in 11 environments across the provinces of Manitoba, Saskatchewan and Alberta, Canada in 1998, 1999 and 2000. One hundred and ninety two amplified fragment length polymorphism (AFLP) markers, 13 random amplified polymorphic DNA (RAPD) markers and one sequence tagged site (STS) marker were assigned to ten linkage groups (LGs) that covered 1,274 centi Morgans (cM) of the pea genome. Six of these LGs were aligned with the previous pea map. Two QTLs were identified for lodging resistance that collectively explained 58% of the total phenotypic variation in the mean environment. Three QTLs were identified each for plant height and resistance to mycosphaerella blight, which accounted for 65% and 36% of the total phenotypic variation, respectively, in the mean environment. These QTLs were relatively consistent across environments. The AFLP marker that was associated with the major locus for lodging resistance was converted into the sequence-characterized amplified-region (SCAR) marker. The presence or absence of the SCAR marker corresponded well with the lodging reaction of 50 commercial pea varieties.Communicated by H. F. Linskens  相似文献   

14.
Selection for anthracnose disease resistance is one of the top priorities in white lupin (Lupinus albus) breeding programs. A cross was made between a landrace P27174 (resistant to anthracnose) and a cultivar Kiev Mutant (susceptible). The progeny was advanced to F8 recombinant inbred lines (RILs). Disease tests on the RIL population from field trials over 2 years indicated that the disease resistance in P27174 was polygenic controlled. A modified selective genotyping strategy was applied in the development of molecular markers linked to quantitative loci conferring anthracnose diseases resistance. Eight individual plants representing high level of anthracnose resistance (HR), eight plants representing susceptibility (S), together with eight lines representing medium level of anthracnose resistance (MR), were subjected to DNA fingerprinting by Microsatellite-anchored Fragment Length Polymorphisms (MFLP). Six MFLP polymorphisms, which had the banding pattern matching the HR plants and the S plants, were identified as candidate markers linked to quantitative loci conferring anthracnose resistance. The six candidate MFLP markers were delineated into three groups based on their banding variation on the eight MR plants. One candidate MFLP marker each from the three groups was selected, cloned, sequenced, and converted into co-dominant, sequence-specific PCR markers. These three markers, designated as WANR1, WANR2 and WANR3, were tested on a segregating population containing 189 F8 RILs. The disease phenotyping data and the marker genotyping data on the F8 RILs were merged and analysed by the JMP software using the ‘fit-model’ function, which revealed that 71% of the phenotypic variation was controlled by genetic factors, while the other 29% of the phenotypic variation was due to environmental factors and environment × genotype interactions. On individual marker basis, marker WANR1 conditioned 39% of phenotypic variations of anthracnose resistance, followed by marker WANR2 with 8%, and WANR3 with 12%. Further analysis showed that WANR2 and WANR3 were on the same linkage group with a genetic distance of 15.3 cM. The combination of the two markers WANR1 and WANR3 explained 51% out from the 71% of the genetic controlled variations for disease resistance, indicating that the two QTLs working additively for anthracnose disease resistance. A simulation of marker-assisted selection on the F8 RIL population using the two markers WANR1 and WANR3 identified 42 out of the 189 RILs being homozygous for resistance-allele bands for both markers, and 41 of them showed disease severity below 3.0 on the 1 (highly resistant) to 5 (susceptible) scale. The two markers WANR1 and WANR3 have now been implemented for marker-assisted selection for anthracnose resistance in the L. albus breeding program in Australia.  相似文献   

15.
Sequence-characterized amplified regions markers (SCARs) were developed from six randomly amplified polymorphic DNA (RAPD) markers linked to the major QTL region for powdery mildew (Uncinula necator) resistance in a test population derived from the cross of grapevine cultivars “Regent” (resistant) × “Lemberger”(susceptible). RAPD products were cloned and sequenced. Primer pairs with at least 21 nucleotides primer length were designed. All pairs were tested in the F1 progeny of “Regent” × “Lemberger”. The SCAR primers resulted in the amplification of specific bands of expected sizes and were tested in additional genetic resources of resistant and susceptible germplasm. All SCAR primer pairs resulted in the amplification of specific fragments. Two of the SCAR markers named ScORA7-760 and ScORN3-R produced amplification products predominantly in resistant individuals and were found to correlate to disease resistance. ScORA7-760, in particular, is suitable for marker-assisted selection for powdery mildew resistance and to facilitate pyramiding powdery mildew resistance genes from various sources.  相似文献   

16.
Molecular markers for the crown rust resistance genes Pc38, Pc39, and Pc48 in cultivated oat (Avena sativa L.) were identified using near-isogenic lines and bulked segregant analysis. Six markers for Pc48, the closest being 6 cM away, were found in a Pendek-39 × Pendek-48 (Pendek3948) population, but none was found in a Pendek-48 × Pendek-38 (Pendek4838) population. Three markers for Pc39 were found in the Pendek3948 population, one of which cosegregated with the gene. This same marker was found to be 6 cM away from the gene in an OT328 × Dumont (OT328Du) population. Nine markers for Pc38 were found in the Pendek4838 population, eight of which are within 2 cM of the gene. One other marker for Pc38 was found in the OT328Du population; however, comparative mapping suggests that the Pc38 region in OT328Du is in a different location than that in Pendek4838. A number of markers unlinked to the genes under study formed linkage groups in both the Pendek3948 and Pendek4838 populations. Four of these show homology or homoeology to each other and to the Pc39 region in Pendek3948. Two RFLP clones closely linked to Pc38 code for a putative leucine-rich repeat transmembrane protein kinase and a cre3 resistance gene analogue. This study provides information to support molecular breeding in oat, and contributes to ongoing research into genomic regions associated with fungal pathogen resistance.  相似文献   

17.
Pre-harvest sprouting (PHS) is a complex trait controlled by multiple genes with strong interaction between environment and genotype that makes it difficult to select breeding materials by phenotypic assessment. One of the most important genes for pre-harvest sprouting resistance is consistently identified on the long arm of chromosome 4A. The 4AL PHS tolerance gene has therefore been targeted by Australian white-grained wheat breeders. A new robust PCR marker for the PHS QTL on wheat chromosome 4AL based on candidate genes search was developed in this study. The new marker was mapped on 4AL deletion bin 13-0.59-0.66 using 4AL deletion lines derived from Chinese Spring. This marker is located on 4AL between molecular markers Xbarc170 and Xwg622 in the doubled-haploid wheat population Cranbrook × Halberd. It was mapped between molecular markers Xbarc170 and Xgwm269 that have been previously shown to be closely linked to grain dormancy in the doubled haploid wheat population SW95-50213 × Cunningham and was co-located with Xgwm269 in population Janz × AUS1408. This marker offers an additional efficient tool for marker-assisted selection of dormancy for white-grained wheat breeding. Comparative analysis indicated that the wheat chromosome 4AL QTL for seed dormancy and PHS resistance is homologous with the barley QTL on chromosome 5HL controlling seed dormancy and PHS resistance. This marker will facilitate identification of the gene associated with the 4A QTL that controls a major component of grain dormancy and PHS resistance.  相似文献   

18.
Our objective was to develop a rapid and accurate procedure to genotype common bean plants for the bc-1 2 allele, which conditions resistance to bean common mosaic and bean common mosaic necrosis viruses. A segregating F2 population was derived from the cross between pinto bean breeding lines P94207-43 (bc-1 2//bc-1 2) and P94207-189 (bc-1//bc-1). A quantitative PCR assay based on the detection of fluorescent labeled amplicons was developed to distinguish between homozygous (bc-1 2//bc-1 2), heterozygous (bc-1 2//bc-1) and null (bc-1//bc-1) F2 genotypes. Remnant F1 plants were used as a comparative reference sample. PCR results among this sample fit a normal distribution, and 99% and 95% confidence intervals for heterozygotes were determined. F2 plants for which no amplification was detected were classified as null (bc-1//bc-1) genotypes. F2 plants that fell within the confidence intervals for heterozygotes were classified as heterozygotes (bc-1 2//bc-1), while plants that fell outside the right tail of the heterozygote confidence intervals were classified as homozygotes (bc-1 2//bc-1 2). F2 plants were also genotyped for the bc-1 2 allele by performing F3 family progeny tests for virus resistance. Agreement between the two methods for genotyping plants was 100% (59/59) when PCR genotyping was based on a 99% heterozygote confidence interval, and 98.3% (58/59) when based on a 95% heterozygote confidence interval. This assay will accelerate breeding for virus resistance in bean by facilitating discrimination among plants that are heterozygous or homozygous for the bc-1 2 allele. The experimental design may be generally applicable towards developing other assays for the codominant interpretation of dominant markers in diploid plants.  相似文献   

19.
The genetic diversity, relationship and molecular identification of 15 well known, widely planted traditional Chinese elite tea genetic resources [Camellia sinensis (L.) O. Kuntze] preserved in the China National Germplasm Hangzhou Tea Repository in the Tea Research Institute of the Chinese Academy of Agricultural Sciences located in Zhejiang province, China, were investigated using RAPD markers. A total of 1050 bands with an average of 52.5 bands per primer, 70 bands per genetic resource were generated by the 20 selected primers from the 15 tea genetic resources. In the total of 137 amplified products, 129 were polymorphic, corresponding to 94.2% genetic diversity. The relative frequency of polymorphic products was from 0.24 to 0.83, with an average of 0.47. In general, this average frequency was relatively high. The genetic distances among the genetic resources were from 0.16 to 0.62, with an average of 0.37. The 15 tea genetic resources were grouped into three groups by UPGMA cluster analysis based on RAPD data. By using the presence of 20 unique RAPD markers and the absence of 11 unique markers, all the 15 investigated tea genetic resources could be easily identified. RAPD markers provided a practical method not only to evaluate the genetic diversity and relationship, but also to identify tea genetic resources.  相似文献   

20.
Pulses are multipurpose crops for providing income, employment and food security in the underprivileged regions, notably the FAO-defined low-income food-deficit countries. Owing to their intrinsic ability to endure environmental adversities and the least input/management requirements, these crops remain central to subsistence farming. Given their pivotal role in rain-fed agriculture, substantial research has been invested to boost the productivity of these pulse crops. To this end, genomic tools and technologies have appeared as the compelling supplement to the conventional breeding. However, the progress in minor pulse crops including dry beans (Vigna spp.), lupins, lablab, lathyrus and vetches has remained unsatisfactory, hence these crops are often labeled as low profile or lesser researched. Nevertheless, recent scientific and technological breakthroughs particularly the next generation sequencing (NGS) are radically transforming the scenario of genomics and molecular breeding in these minor crops. NGS techniques have allowed de novo assembly of whole genomes in these orphan crops. Moreover, the availability of a reference genome sequence would promote re-sequencing of diverse genotypes to unlock allelic diversity at a genome-wide scale. In parallel, NGS has offered high-resolution genetic maps or more precisely, a robust genetic framework to implement whole-genome strategies for crop improvement. As has already been demonstrated in lupin, sequencing-based genotyping of the representative sample provided access to a number of functionally-relevant markers that could be deployed straight away in crop breeding programs. This article attempts to outline the recent progress made in genomics of these lesser explored pulse crops, and examines the prospects of genomics assisted integrated breeding to enhance and stabilize crop yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号