首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary We present a strategy for establishing a transgenic doubled haploid maize line from heterozygous transgenic material by means of anther culture. Compared to conventional inbreeding, the in vitro androgenesis technique enables a faster generation of virtually fully homozygous lines. Since the androgenic response is highly genotype-dependent, we crossed transgenic, non-androgenic plants carrying a herbicide resistance marker gene (pat, encoding for phosphinothricin acetyl transferase) with a highly androgenic genotype. The transgenic progenies were used as donor plants for anther culture. One transgenic and three non-transgenic doubled haploid lines have been established within approximately 1 yr. The homozygosity of all four doubled haploid lines was tested by analysis of simple sequence repeat (SSR) markers at 19 different loci. Polymorphisms were found between the lines but not within the lines indicating the homozygous nature of the entire plant genome gained by anther culture. Southern blot analysis revealed that the transgenic donor plants and their doubled haploid progeny exhibited the same integration pattern of the pat gene. No segregation of the herbicide resistance trait has been observed among the progeny of the transgenic doubled haploid line.  相似文献   

2.
Summary A chromosome doubling technique, involving colchicine treatment of an embryogenic, haploid callus line of maize (Zea mays L., derived through anther culture), was evaluated. Two colchicine levels (0.025% and 0.05%) and three treatment durations (24, 48, and 72 h) were used and compared to untreated controls. Chromosome counts and seed recovery from regenerated plants were determined. No doubled haploid plants were regenerated from calli without colchicine treatment. After treatment with colchicine for 24 h, the callus tissue regenerated about 50% doubled haploid plants. All of the plants regenerated from the calli treated with colchicine for 72 h were doubled haploids, except for a few tetraploid plants. No significant difference in chromosome doubling was observed between the two colchicine levels. Most of the doubled haploid plants produced viable pollen and a total of 107 of 136 doubled haploid plants produced from 1 to 256 seeds. Less extensive studies with two other genotypes gave similar results. These results demonstrate that colchicine treatment of haploid callus tissue can be a very effective and relatively easy method of obtaining a high frequency of doubled haploid plants through anther culture.  相似文献   

3.
Summary To investigate whether the Hordeum bulbosum system of doubled haploid production generates gametoclonal variation, populations of second generation doubled haploid lines were developed from first generation doubled haploid lines of two barley varieties and three wheat genotypes. In barley, no variation between doubled haploids from doubled haploids was detected for a range of quantitative characters, suggesting the absence of any gametoclonal effects. However, the original selfed-seed stocks were shown to contain cryptic allelic variation for some of the characters investigated. In wheat, gametoclonal variation was detected for ear emergence time, plant height and yield, and its components for two out of the three genotypes investigated. The type and range of variation was similar to that reported from studies of somaclonal variation from immature embryos and gametoclonal variation from anther culture. Generally, the effects appeared to reduce the yield performance of individual lines. The difference in response between the two species and the consequences for the use of the doubled haploid system in breeding programmes are discussed.  相似文献   

4.
Summary Embryogenic microspore and pollen culture followed by subculture of microspore-derived plantlets enabled the production of clones ofBrassica napus cv. Topas. Flow-cytometric analysis revealed that most microspore- and pollen-derived embryos (pEMs) were haploid initially. Spontaneous diploidization occurred at the globular stage of the pEMs, and was expressed as the relative increase of the 2C and 4C nuclear DNA content. Diploidization occurred throughout various organs of the pEMs and resulted in the formation of haploid and doubled haploid chimerics. In some embryos, nearly all cells were doubled haploid. From early cotyledon stage onward, pure haploid embryos were not observed anymore. At late cotyledon and germination stages, pure doubled haploid embryos and plantlets increased in number. Tetraploid pEMs were found occasionally. A culture regime was established to induce somatic embryos on the pEM-derived young plantlets. The ploidy of the somatic embryos varied highly and tended to be the same as that of the tissue at the initiation site on the pEM-plant. The results show that during the embryogenic development ofB. napus microspores, spontaneous diploidization occurs at globular stage, and increases progressively, resulting in the formation of chimerical haploid and doubled haploid plants as well as pure doubled haploid plants; ploidy neither affects pEM development at embryo developmental stages nor somatic embryogenesis, that starts on young pEM-derived plantlets; doubled haploid somatic embryos can be cloned from single pEM-derived plantlets; and doubled haploid embryos develop to fertile plants.  相似文献   

5.
Summary Wheat (Triticum aestivum L.) haploids and doubled haploids have been used in breeding programs and genetic studies. Wheat haploids and doubled haploids via anther culture are usually produced by a multiple step culture procedure. We improved a wheat haploid and doubled haploid production system via anther culture in which plants are produced from microspore-derived embryos using one medium and one culture environment. In the improved protocol, tillers of donor plants were pretreated at 4°C for 1–2 wk before anthers were plated on a modified 85D12 basal medium with phenylacetic acid (PAA) and zeatin and cultured at 30°C with a 12-h daylength (43 μEs−1m−2) in an incubator. Microspore-derived embryos developed in 2–3 wk and the plants were produced 3–4 wk after anther plating. In the improved system, as much as 53% of the anthers of Pavon 76 were responsive with multiple embryos. For plant regeneration, as many as 22 green and 25 albino plants were produced from 100 anthers. Sixty-five green plants were grown to maturity and 32 (49%) plants were fertile and produced seeds (indicating spontaneous chromosome doubling) while 33 plants did not produce seed. Of five Nebraska breeding lines tested using the protocol, NE96675 was very responsive and the other lines less so, indicating that the protocol is genotype-dependent.  相似文献   

6.
The objective of this work was to produce doubled haploid plants from durum wheat through the induction of androgenesis. A microspore culture technique was developed and used to produce fertile doubled haploid plants of agronomic interest. Five cultivars, one selected line, plus a collection of 20 F1 crosses between different genotypes of high breeding value were used. Studies on several factors such as pre-treatments and media components were carried out in order to develop a protocol to regenerate green haploid plantlets. Anthers were pre-treated in 0.7 M mannitol. Microspores, from anther maceration, were plated on a C17 induction culture medium with ovary co-culture. The optimum regeneration medium J25–8 was used. From 35 microspore isolations, 407 green plantlets were obtained. With this technique mature embryos were obtained. Green plants were regenerated from all genotypes used and approximately 67% of them were spontaneously doubled haploids. Some haploids and a very few polyploids plants were obtained. From the 407 plants, 275 were completely fertile and gave enough seeds to be assayed in the field. This protocol could be used complementary to or instead of the intergeneric crossing with maize as an economically feasible method to obtain doubled haploids from most durum wheat genotypes.  相似文献   

7.
Maize (Zea mays L.) doubled haploid lines are typically produced from F1 plants. Studies have suggested that the low frequency of recombinants in doubled haploids may reduce the response to selection. My objective was to determine if, for sustaining long-term response, doubled haploids should be induced in F1 or F2 plants during maize inbred development. In simulation experiments, I examined the response to multiple cycles of testcross selection among doubled haploid lines derived from F1 plants (denoted by DH), doubled haploid lines derived from F2 plants (DHF2), and recombinant inbred (RI) lines derived by single-seed descent. For a trait controlled by 100 or more quantitative trait loci (QTL), the cumulative responses to selection were up to 4–6% larger among DHF2 lines than among DH lines. The cumulative responses were up to 5–8% larger among RI lines than among DH lines. The QTL become unlinked as the number of QTL in a finite genome decreases, and the responses among RI, DH, and DHF2 lines were equal or nearly equal when only 20 QTL controlled the trait. Metabolic-flux epistasis reduced the differences in the response among RI, DH, and DHF2 lines. Overall, the results indicated that doubled haploids should be induced from F2 plants rather than from F1 plants. If year-round nurseries are used and new F1 crosses for inbred development are initially created on a speculative basis, the development of doubled haploids from F2 rather than F1 plants should not cause a delay in inbred development.  相似文献   

8.
从快速生长的甘蓝型油菜的小孢子培养中共获得23个再生植株。经倍性鉴定,其中自发加倍成二倍体的有10株,单倍体13株。单倍体再用秋水仙碱处理后获得DH系,所得材料对油菜功能基因组学的研究可能有一定的价值。  相似文献   

9.
There is a requirement of haploid and double haploid material and homozygous lines for cell culture studies and breeding in flax. Anther culture is currently the most successful method producing doubled haploid lines in flax. Recently, ovary culture was also described as a good source of doubled haploids. In this review we focus on tissue and plants regeneration using anther culture, and cultivation of ovaries containing unfertilized ovules. The effect of genotype, physiological status of donor plants, donor material pre-treatment and cultivation conditions for flax anthers and ovaries is discussed here. The process of plant regeneration from anther and ovary derived calli is also in the focus of this review. Attention is paid to the ploidy level of regenerated tissue and to the use of molecular markers for determining of gametic origin of flax plants derived from anther and ovary cultures. Finally, some future prospects on the use of doubled haploids in flax biotechnology are outlined here.  相似文献   

10.
Three doubled haploid lines of durum wheat [Triticum turgidum ssp. durum (Desf.) Husn.] were crossed with maize (Zea mays L.), and five hormone treatments were applied to test their effect on the production of caryopses, embryos and haploid plants. The auxin treatments consisted of 100 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D), 5 mg/l or 50 mg/l dicamba and two combination mixtures of 95/5 mg/l and 50/50 mg/l 2,4-D plus dicamba, respectively. Hormones were added to the culture medium of the detached tillers. Differences were not observed among the four hormone treatments that contained dicamba, nevertheless, these treatments significantly increased the production of caryopses, embryos and haploid plants. On average, 8.9 caryopses, 2.6 embryos and 1.3 haploid plants per spike were obtained following the treatment with 100 mg/l 2,4-D, and 15.0 caryopses, 6.0 embryos and 3.0 haploid plants per spike were obtained following the various treatments with dicamba. We propose the application of dicamba alone, or dicamba plus 2,4-D, as a means for improving the yield of haploid plants of durum wheat through crosses with maize.  相似文献   

11.
An efficient method for producing doubled haploid plants of oilseed rape (Brassica napus L.) was established using in vitro colchicine treatment of haploid embryos. Haploid embryos in the cotyledonary stage were treated with one of four colchicine concentrations (125, 250, 500 and 1,000 mg/L); for one of three treatment durations (12, 24 and 36 h) at one of the two temperatures (8 and 25°C) and were compared to control embryos (without colchicine treatment). The number of chromosomes, seed recovery, size and density of leaf stomata, and pollen grain size from regenerated plants were determined. No doubled haploid plants were regenerated from control embryos; however, the doubled haploid plants were regenerated from colchicine-treated embryos. A high doubling efficiency, 64.29 and 66.66% of regenerated plants, was obtained from 250 mg/L colchicine treatment for 24 h and 500 mg/L colchicine treatment for 36 h, respectively, at 8°C. Following 500 mg/L colchicine treatment for 36 h, a few plants regenerated (9 plants). At the higher colchicine concentration (1,000 mg/L), no plant regenerated. These results indicate that the colchicine treatment of embryos derived from microspores can induce efficient chromosome doubling for the production of doubled haploid lines of oilseed rape.  相似文献   

12.
Summary Random amplified polymorphic DNA analysis was used to determine the occurrence and extent of variation in rice (Oryza sativa L.) plants regenerated from anther culture. Androclonal variation in morphologically uniform progenies was detected using 40 10-mer oligonueleotide arbitrary primers. Among 27 plants from nine anther culture-derived lines, variation was detected in three plants from two lines by two primers, namely UBC 160 and UBC 209. Primer UBC 160 amplified a polymorphic band on one of the three progenies from DH-34, while UBC 209 detected polymorphisms on two out of three progenies from line DH-58. Apart from these, the amplification produets were monomorphic across all the regenerants from anther culture-derived plants. Out of 40 tested primers, no difference in the banding pattern was observed in three seed-derived plants. The significance of possible androclonal variation at the DNA level in rice doubled haploid breeding and genetic mapping is discussed.  相似文献   

13.
We have developed improved procedures for recovery of haploid and doubled haploid (DH) melon plants, using hybrids derived from crosses of lines with multiple virus resistance. Seeds formed after pollination with irradiated pollen were cultured in liquid medium for 10 days before excision of the embryos for further culture. This made it easier to identify the seeds containing parthenogenetic embryos, thereby reducing the effort required and increasing the percentage of plants recovered. The plants obtained (approximately 175) were transferred to a greenhouse for evaluation. Three fertile lines were identified, and selfed seeds were obtained for evaluating virus resistance. Flow cytometry of leaf tissues showed that two of these lines were spontaneous DH and the third was a mixoploid containing haploid and diploid cells. The other plants remained sterile through the flowering stage. Flow cytometry of 20 sterile plants showed that all were haploid. Attempts to induce chromosome doubling by applying colchicine to greenhouse-grown plants were unsuccessful. Shoot tips from the haploid plants were used to establish new in vitro cultures. In vitro treatment of 167 micropropagated haploid shoots with colchicine produced 10 diploid plants as well as 100 mixoploid plants. Pollen from male flowers that formed in vitro on the colchicine-treated plants was examined. High percentages of viable pollen that stained with acetocarmine were found not only in the diploids but also in >60% of the plants scored as mixoploid or haploid by flow cytometry. Efficient recovery of DH from hybrid melon lines carrying combinations of important horticultural traits will be a valuable tool for melon breeders.  相似文献   

14.
As compared to doubled haploid plants of the same origin, haploid tobacco plants are characterized by narrow leaves and in these leaves the endogenous concentration of gibberellins was considerably higher than in doubled haploids. This higher GA activity is almost entirely due to elevated levels of polar gibberellins. The same leaf shape as in haploids could be induced by GA3 sprays to doubled haploids. A similar leaf shape was also observed on tissue culture derived so called NICA plants displaying the morphology of tobacco plants as described by Dudits et al. (1987) from whom the plant material was obtained as a gift. Here, in the leaves of a special strain with narrow lamina again a much higher gibberellin activity was detected than in the leaves of plants of the original tobacco strain. Histochemical determination of the relative DNA content indicated that leaves of NICA were chimaeras containing 1C cells besides cells with higher C values. Obviously, haploidy is somehow related to the endogenous gibberellin activity in tobacco plant material with consequences on the morphological appearance of 1n plants. Comparing some haploid and doubled haploid strains in tissue culture and pot and field experiments in several years apparently the genotype of the plant material is more significant for nicotine concentration than the ploidy level.Abbreviations DW dry weight - FW fresh weight - LSI leaf shape index  相似文献   

15.
Summary The use of haploidy to introgress recessive traits into Brassica napus canola is illustrated by describing the properties of doubled haploids obtained by microspore culture from crosses between a yellow-seeded rapeseed line (low erucic acid, high glucosinolate) and black-seeded canola. Of the 99 doubled haploid lines that were produced, 3 were yellow-seeded canola lines. This result was not significantly different than the predicted frequency of 1 in 64 for the homozygous recessive phenotype in a doubled haploid population segregating for six recessive genes. Thus, the study supports previous models of inheritance determined for yellow seededness and glucosinolate content in Brassica napus. Also, since the chances of obtaining a plant with the same characteristics in a F2 population are 1 in 4,096, the underscore results the advantages of using haploidy to introgress recessive traits into Brassica napus canola.  相似文献   

16.
Homozygous genotypes are valuable for genetic and genomic studies in higher plants. However, obtaining homozygous perennial plants using conventional breeding techniques is currently a challenge because of a long juvenile period, high heterozygosity and the substantial inbreeding depression. In vitro androgenesis has been used to develop haploid and doubled haploid plants. In this study, we report the regeneration of doubled haploid lines of Valencia sweet orange cv. Rohde Red (Citrus sinensis [L.] Osbeck) via anther culture. Anthers at the uninucleate stage were induced and two embryogenic calli were obtained that further regenerated to embryoids (2/400). Plantlets were obtained after transferring the embryoids to a shoot regeneration medium, but were short-lived. Ploidy analysis via both flow cytometry and chromosome counting verified that these two lines were diploids. Additionally, 43 simple sequence repeat (SSR) markers which showed to be heterozygous in the Valencia sweet orange donor line confirmed homozygosity and doubled haploids in the anther-derived lines. Furthermore, analysis of the doubled haploids via cleaved amplified polymorphic sequence (CAPS) markers and target region sequencing confirmed the allelic state of two genes (LCYE and LCYB) involved in the carotenoid biosynthesis of sweet oranges.  相似文献   

17.
Extracts of cotyledons of Brassica napus plants (seed progenies of doubled haploid plants) were separated by electrophoresis on polyacrylamide gels and stained for acid phosphatase (ACP-E.C. 3.1.3.2.) and leucine aminopeptidase (LAP-E.C. 3.4.11.1.) enzymes to investigate the possibility of utilising isozymes as markers of homogeneity (purity) of plant populations. One zone of activity for acid phosphatase and two zones of activity for leucine aminopeptidase were identified on gels, some variation in isozyme patterns occurred in several androgenetic lines. This method is appropriate and consistent for testing the homogeneity of breeding lines-progenies of double haploid (D.H.) plants.  相似文献   

18.
Significant improvements were achieved in the production of haploid and doubled haploid plants from isolated microspore culture of wheat c.v. Chris on a defined media. Procedures found to be of benefit included: A 7-day pretreatment of anthers in 0.4M mannitol plus the macronutrients from FHG medium; the inclusion of 4.5 mg/liter abscisic acid in the pretreatment solution; the isolation of microspores from pretreated anthers by vortexing; and the use of phenylacetic acid (PAA) as the auxin source in MS medium. The best response was achieved with 4.0 mg/liter PAA in MS medium containing 90 g/liter maltose as the sugar source. Under these conditions, 68% of viable microspores underwent division, and an average of 93 embryos and 92 green plants were regenerated per 100 anthers used. The root-tip chromosome number and the fertility of 114 regenerating green plants revealed that 75% were completely fertile spontaneously doubled haploids.  相似文献   

19.
A double-gene construct with one chitinase and one β-1,3-glucanase gene from barley, both driven by enhanced 35S promoters, was transformed into oilseed rape. From six primary transformants expressing both transgenes 10 doubled haploid lines were produced and studied for five generations. The number of inserted copies for both the genes was determined by Southern blotting and real-time PCR with full agreement between the two methods. When copy numbers were analysed in different generations, discrepancies were found, indicating that at least part of the inserted sequences were lost in one of the alleles of some doubled haploids. Chitinase and β-1,3-glucanase expression was analysed by Western blotting in all five doubled haploid generations. Despite that both the genes were present on the same T-DNA and directed by the same promoter their expression pattern between generations was different. The β-1,3-glucanase was expressed at high and stable levels in all generations, while the chitinase displayed lower expression that varied between generations. The transgenic plants did not show any major impact on fungal resistance when assayed in greenhouse, although purified β-1,3-glucanase and chitinase caused retardment of fungal growth in vitro.  相似文献   

20.
Isolated wheat microspore culture   总被引:10,自引:0,他引:10  
The use of doubled haploid plants in a wheat breeding program requires an efficient haploid production system. While the techniques for producing doubled haploids from anther culture are well established, those for isolated microspores are complicated and inefficient. Four methods of isolating microspores from anthers (blending, stirring, macerating, and floating) were compared. Isolated microspores were washed and cultured in liquid medium. The effects of pre-isolation mannitol conditioning, cell density, culture dilution, and sucrose centrifugation on microspore viability were evaluated. Isolation by blending gave the highest initial microspore viability (75%). Mannitol conditioning and purification by sucrose centrifugation had a detrimental effect on initial viability. An initial microspore density of 2 × 105 microspores per ml was necessary for continued microspore viability. One hundred and nine haploid or spontancously doubled haploid plants were regenerated from microspores isolated without mannitol conditioning using the blending method. Based on this research, blender isolation with an initial density of 2 × 105 microspores per ml is recommended for isolated microspore culture.Abbreviations LSmean least square mean - MES 2-N-morpholinoethane sulfonic acid - 2,4-d 2,4-dichlorophenoxyacetic acid - NAA -naphtaleneacetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号