首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
将洋葱的胚珠置于酶液中酶解50~110 min后剥去其珠被,可清楚地看到珠心中的胚囊轮廓。用解剖针将珠心从中部横切,然后挤压其珠孔部位,卵器细胞从胚珠的切口处逸出。再用显微操作仪的玻璃针将卵细胞和两个助细胞分开,达到分离洋葱卵细胞的目的。酶对分离卵细胞具有重要作用,在最佳的酶液浓度[0.02%果胶酶Y23、0.08%果胶酶(Serva)、0.05%纤维素酶和0.05%半纤维素酶]下酶解胚珠110 min后,解剖1 h可从24个胚珠中分离出10个卵细胞(41.67%)。随着胚囊的发育,两个助细胞的体积出现明显的二形性。洋葱生活卵细胞的分离为开展洋葱离体受精建立了基础,也为研究洋葱卵器细胞的发育创造了条件。  相似文献   

2.
葱卵细胞的分离   总被引:1,自引:0,他引:1  
将大葱(Allium fistulosum)胚珠置于酶液中30分钟可将其外珠被去掉。可清楚地看到由内珠被包裹的胚珠中胚囊的轮廓。将胚珠转移至不含酶的相同溶液中, 用解剖针从胚珠中部切割, 然后挤压胚珠的珠孔部位, 卵器细胞从胚珠的切口处逸出。再用显微操作仪将卵细胞和2个助细胞分开, 达到葱卵细胞分离的目的。酶对分离卵细胞具有重要的作用, 经0.2%果胶酶Y23、0.8%果胶酶、0.8%纤维素酶和0.5%半纤维素酶的处理, 可在2小时内从30 个胚珠中分离出18个卵细胞。随着胚囊的发育, 2个助细胞的体积出现明显差异。生活的葱卵细胞的成功分离, 为建立葱离体受精体系创造了条件。  相似文献   

3.
将大葱(Allium fistulosum)胚珠置于酶液中30分钟可将其外珠被去掉。可清楚地看到由内珠被包裹的胚珠中胚囊的轮廓。将胚珠转移至不含酶的相同溶液中,用解剖针从胚珠中部切割,然后挤压胚珠的珠孔部位,卵器细胞从胚珠的切口处逸出。再用显微操作仪将卵细胞和2个助细胞分开,达到葱卵细胞分离的目的。酶对分离卵细胞具有重要的作用,经0.2%果胶酶Y23、0.8%果胶酶、0.8%纤维素酶和0.5%半纤维素酶的处理,可在2小时内从30个胚珠中分离出18个卵细胞。随着胚囊的发育,2个助细胞的体积出现明显差异。生活的葱卵细胞的成功分离,为建立葱离体受精体系创造了条件。  相似文献   

4.
用两个解剖针挤压胡萝卜花粉使其破裂释放出精细胞。用酶解-解剖方法分离胡萝卜胚囊中的卵细胞、助细胞和中央细胞。胡萝卜胚珠先在酶液中酶解40~50min,然后将其转移到不含酶的分离液中用解剖针解剖胚珠。将胚珠的合点端切破,轻轻挤压胚珠的珠孔,卵细胞、助细胞和中央细胞即可逸出。在最佳条件下,20min可从20个胚珠中分离出5个卵细胞。对分离胚囊细胞的渗透压和酶液成分进行了筛选。分离出的卵细胞用显微操作仪收集。胡萝卜精、卵细胞的成功分离为在双子叶植物中进行离体受精探索创造了条件。  相似文献   

5.
莴苣胚囊细胞分离   总被引:3,自引:0,他引:3  
用酶解和解剖方法分离了莴苣的卵细胞,助细胞,中央细胞和合子。莴苣子房先在酶液中酶解40~50min,然后在不含酶的分离液中用解剖针解剖子房。在解剖出的胚囊中,可看到卵细胞,两个助细胞和中央细胞的轮廓。将胚囊的合点端切破,轻轻挤压胚囊的珠孔端,四个细胞即可逸出。在最佳条件下,90min可从40个子房中分离出29个胚囊,进一步从中分离出11个卵细胞。分离出的胚囊细胞用显微操作仪收集备用。莴苣卵细胞的成功分离为进行离体受精探索创造了条件。  相似文献   

6.
用酶解和解剖方法分离了莴苣的卵细胞,助细胞,中央细胞和合子。莴苣子房先在酶液中酶解40~50min,然后在不含酶的分离液中用解剖针解剖子房。在解剖出的胚囊中,可看到卵细胞,两个助细胞和中央细胞的轮廓。将胚囊的合点端切破,轻轻挤压胚囊的珠孔端,四个细胞即可逸出。在最佳条件下,90min可从40个子房中分离出29个胚囊,进一步从中分离出11个卵细胞。分离出的胚囊细胞用显微操作仪收集备用。莴苣卵细胞的成功分离为进行离体受精探索创造了条件。  相似文献   

7.
蓝猪耳卵细胞和合子的分离   总被引:9,自引:0,他引:9  
蓝猪耳(Torenia fournieri)胚囊部分裸露出胚珠,在光学显微镜下能清楚观察到卵细胞和助细胞的形态结构.用解剖和酶解-解剖两种方法都能分离出生活卵细胞.用前种方法机械分离出的卵细胞数量较少(5%),但避免了酶对配子识别研究的干扰.在后种方法中加入0.1%纤维素酶和0.1%果胶酶既能使分离更加容易操作,又对卵细胞没有致命伤害,能在短时间内分离出较多的卵细胞(18%).用酶解-解剖方法也可分离出授粉14 h后的合子细胞.  相似文献   

8.
大叶杨配囊及胚珠的形成和发育   总被引:3,自引:0,他引:3  
本文应用细胞化学方法研究了大叶杨胚珠、胚囊的形成和发育过程中核酸、蛋白质及不溶性多糖的分布和消长。大孢子母细胞、大孢子四分体及功能大孢子中含较少不溶性多糖,但却含丰富的RNA和蛋白质。功能大孢子经分裂发育成八核的蓼型胚囊。四核胚囊开始积累细胞质多糖,成熟胚囊中除反足细胞外充满淀粉粒。反足细胞形成后不久即退化。助细胞具多糖性质的丝状器,受精前两个助细胞退化。卵细胞核对Feulgen反应呈负反应。二极核受精前由胚囊中部移向卵器,与卵器接触后融合形成次生核。发育早期的胚珠为厚珠心,双珠被。晚期,内珠被退化,故成熟胚珠为单珠被。四核胚囊时期,珠孔端珠心组织退化,胚囊伸向珠孔形成胚囊喙。合点端珠心组织含丰富的蛋白质和核酸,这一性质与绒毡层性质相似,可能涉及胚囊的营养运输。胚囊的营养来源于子房和胎座细胞内贮存的淀粉粒。  相似文献   

9.
水稻胚囊卵器细胞发育期间超微结构变化的观察   总被引:4,自引:0,他引:4  
通过透射电镜对水稻(OryzasativaL.)胚囊卵器发育过程中超微结构的变化进行观察,结果表明:卵器刚形成时,3个细胞均有完整的细胞壁,壁上分布着许多胞间连丝,不久各细胞合点极壁出现突起解体。随着卵器细胞进一步发育,合点极壁不断解体。到胚囊成熟时,卵细胞的合点极壁消失,仅留下一层质膜;助细胞由于出现退化,侧边近合点端壁出现断裂破碎解体。此时,3个细胞只在弯钩壁上观察到胞间连丝。卵器细胞不同发育阶段各种细胞器的变化很明显,其中最为明显的是质体和液泡。卵细胞在整个发育过程中大部分的质体都含有淀粉粒,而助细胞的质体在2个极核移向卵器上方时,质体内淀粉粒已消失,直至胚囊成熟也未重新出现;卵细胞液泡的出现时间、大小和位置与助细胞的有所不同,卵细胞液泡出现较迟,但到发育后期,液泡体积却明显比助细胞的大,液泡除了主要位于合点极外,珠孔极也有些液泡,而助细胞的则主要位于合点极。助细胞中脂滴的出现存在一个高峰期,即发生在胚囊近成熟时。助细胞核在发育早期呈椭圆形,位于近中部偏珠孔端,在发育中后期呈不规则形,位于近珠孔端壁旁边。水稻卵器发育过程中各细胞的超微结构变化充分反映其代谢规律。  相似文献   

10.
对高频率多胚水稻(Oryza sativa L.) ApⅢ受精前后卵器的细胞结构和组织化学变化进行了观察,并同已报道的正常水稻和多胚水稻大至相同发育时期的卵器进行了比较,结果表明: ApⅢ的2 932个幼嫩子房中,每个子房只有一个胚囊.没有看到含有一对胚囊和每个胚囊里有一套卵器的现象.除解体的和含胚的胚囊外, 1 655个胚囊中,含1个卵细胞和2个助细胞组成的正常卵器为1 643个 (99.27%), 含2个卵细胞和2个助细胞的4细胞卵器为12个(0.73%).没有观察到大量4细胞卵器、5细胞卵器(即由3个卵细胞和2个助细胞组成)和卵状细胞,以及其他4卵、5卵卵器的变异类型.卵细胞位于对着子房壁维管束一侧.细胞质含丰富的蛋白质和多糖颗粒;细胞核位于细胞中下部,少有偏远轴端的,直到合子分裂前由蛋白质物质和多糖颗粒聚成的环所包裹. 成熟胚囊中常见2个助细胞.助细胞位于珠孔端靠子房壁维管束一侧,多数为长颈烧瓶状,少有长形和星月形的.其珠孔端壁内侧丝状器发达,细胞质的结构,蛋白质物质和多糖颗粒的积累、分布及消长,细胞核的大小、组织化学反应和周围物质的动态与卵细胞的相同.此外,ApⅢ的2个助细胞存留时间较长.当花粉管进入助细胞的早期,助细胞的丝状器和帽颈端被花粉管损伤,中下部细胞质和核所在区仍保持完好.由以上结果得出结论: 多胚水稻ApⅢ高频率的额外胚(1或2个)主要来自3细胞正常卵器,极少来源于4细胞卵器; ApⅢ的助细胞除在受精和胚胎发生早期具特殊功能外,与卵细胞相似的细胞质结构、物质代谢过程以及崩溃较晚可能与胚胎发生有关; 在ApⅢ的少数胚囊中,接受助细胞可能有发生胚的潜能.  相似文献   

11.
Isolation of fixed and fresh embryo sacs has been reported. However,the isolation of protoplasts of embryo sac elements is reported here for the first time.The protoplasts of egg cell, synergids, central cell and antipodal cells have been isolated with the retaining of their viability. Though this is a preliminary work, it indicatesthe potentiality of isolation of naked female gametes of angiosperms, which may beused in genetic manipulation and plant biotechnology. Nicotiana tabacum was grown in the greenhouse of the Department of Biology,Peking University. From opened and unpollinated flowers, the ovaries were removedand sterilized with 70% alcohol. The ovules were dissected out from those ovaries andfollowed by incubation (4–8 hrs. 28℃) in anenzyme solution containing 2% driselase, 0.65 M mannitol and 0.25% potassium dextran sulfate. Ovules from 3 4 ovariescould be incubated with 1 ml of enzyme solution in a 3 cm petri dish. All these manipulations and the following procedures were carried out under sterile conditions. Afterincubation, ovules were washed 3 times with a washing solution of 0.65 M mannitol.The isolated embryo, sacs and their protoplasts were obtained by gently squashing digested ovules in a small volume of washing solution on a slide. When the fresh ovules were incubated 3–3.5 hrs in the enzyme solution, the embryosacs may be successfully isolated in an intact manner, either for mature or immatureembryo sacs. The isolated embryo sac looked plump, viable and very distinct in itsstructure. If the isolated embryo sacs were incubated in 0.01% fluorescein diacetate(FDA) used as a test for the viability of the embryo sac, and observed under fluorescein microscope, the cytoplasm of all embryo sac elements, including egg cell, synergids,central cell and antipodal cells, showed strong fluorescence. It is proved that these iso-lated embryo sacs are still viable. When the incubation of ovules was prolonged as to 8 hrs in certain cases, theboundary wall of the embryo sac may be partially digested and the protoplasts of embryo sac elements came out from micropylar or chalazal end after squashing. The difference of the protoplasts derived from different embryo sac elements could be recognized by their relative size and other characteristics. The egg protoplast is smallerthan that of the synergid. However, the protoplasts of antipodal cells were. obviouslysmaller than that of egg. But the central cell protoplast was the largest among theseprotoplasts and possessed two polar nuclei and a very large central vacuole. All theseisolated protoplasts of embryo sac elements were also proved viable with FDA method. The importance of isolated protoplasts of embryo sac elements is discussed withrespect to genetic manipulations.  相似文献   

12.
The enzymatic maceration method was used to isolate an intact embryo sac ofCrinum asiaticum and its component cells. Best results were obtained when using enzyme solutions that contained pectinase hemicellulase, cellulase and pectolyase. Aseptic ovules were incubated in the enzyme solution for 1.5 hr at 25 C. This allowed the isolation of embryo sacs to yield up to 20% of the amount present. An isolated embryo sac usually consists of an egg cell, synergids, antipodals and a central cell. Some embryo sacs can be digested as gametophytic protoplast. The size, shape and position of the isolated embryo sac seemingly possessed similarities with those of the fixed embryo sac in the ovary. An isolated embryo sac can be in a living state when the result of the fluorochromatic reaction (FCR) and protoplasmic streaming is positive. When cultured in proper media, 68% of the isolated gametophytic protoplasts were observed to have sustained their positive FCR for more than 1 month.  相似文献   

13.
Ultrastructure of the embryo sac lacking antipodals in prefertilization stages in Arabidopsis thaliana has been examined 2 hr before and 5 hr after manual cross pollination. The cytoplasm of both synergids before fertilization is rich in ribosomes, mitochondria, and rough endoplasmic reticulum, and also contains several microbodies and spherosomes. The filiform apparatus includes electron-dense material and a fibrous part. Many cortical microtubules appear in the filiform apparatus area. One of the two synergids degenerates before fertilization. The synergids, the egg cell, and central cell have a rich cytoskeleton of microtubules; only the synergids appear to contain microfilaments. At the chalazal end, the antipodals are initially present but degenerate by the time of pollination in most embryo sacs in the starchless line studied. The embryo sac is completely surrounded by a wall containing an electron-dense layer, separating it from the nucellus, including the chalazal end. When the antipodals have degenerated, the electron-dense layer disappears at the chalazal end only, and the wall between the central cell and the nucellus is homogeneous. Between the central cell and nucellar cells no plasmodesmata are found. The membranes of both antipodal cells at the chalazal end of the embryo sac appear sinuous, like those of transfer cells. The central cell has plastids preferentially distributed around the nucleus, but the other organelles are randomly distributed. The central cell in the embryo sac and the adjacent chalazal nucellar cells show a transfer-cell function in the embryo sac after the antipodals degenerate.  相似文献   

14.
在野外居群调查的启示下,本文以组件观点对柳叶野豌豆复合种和歪头菜幼苗亚单位的时序变化与开花关系进行了分析。结果发现在柳叶野豌豆复合种栽培居群中存在打破物种间形体结构特征的个体,即在复叶由一对小叶组成的植株就已开花而进入生殖时期。另外,在歪头菜的野生居群中发现由三或四枚小叶组成复叶的个体,因此,我们推测这种形体结构的变化可能暗示着柳叶野豌豆复合种和歪头菜有着共同的祖先。  相似文献   

15.
A new method combining enzymatic maceration with osmotic shock was developed for isolation of living embryo sac and its protoplasts in Nicotiana tabacum L. The principle of this method was that the ovules submitted to enzymatic treatment and osmotic shock could release embryo sacs along with some internal ovular cells through either the funicle cut end or the micropyle. Factors affecting embryo sac isolation were investigated, including concentration of mannitol as a shock osmoticum and in enzymesolution ,duration of enzymatic maceration,and duration of osmotic shock. As a result a procedure was established: Ovules at mature embryo sac stage were macerated for 2. S h in 1 %–1.5% cellulase R-10 and 0. 5% macerozyme R-10 (or 1% Pectinase,Serva) dissolved in 13% mannitol solution using microshaker,followed by osmotic shock for 15–30 min with enzyme free 8% mannitol solution and gentle agitation using a pipette. Using a capillary,50–70 embryo sacs could be collected manually in one hour. The embryo sacs thus isolated could be kept viable from which protoplasts of egg cell and other componcnt cells could be further isolated. An additional interesting phenomenon was that osmotic shock often caused in situ fusion the protoplasts of egg cell and synergids. The rate of fusion ranging 9%—71.9% could be controlled by modification of the procedure. This phenomenon merits further attention both from basic and practical point of view. The present method gives the advantages of faciliting isolation and promoting good harvest of viable embryo sacs/female protoplasts within a relative short time.  相似文献   

16.
The structural and histochemical changes of the egg apparatus in the polyembryonic rice (Oryza sativa L.), ApⅢ with the highest frequence of additional embryos among the polyembryonic rice investigated, before and after fertilization were studied and compared with those of normal and other polyembryonic rices in a similar developmental period. A total of 2 932 ovules were observed and each of them contained only asingle embryo sac with a set of egg apparatus. Among 1 655 embryo sacs, there were 1 643 embryo sacs (99.27%) with one normal egg apparatus in each embryo sac, and only 12 embryo sacs (0.73%) from the remainder with 4 celled egg apparatus, i.e. two eggs and two synergids. Neither the numerous poly egg apparatus and egg like cells, nor the double set of embryo sacs each containing one egg apparatus and other abnormal egg apparatus in single ovary, which were reported by earlier investigators to have high frequency of embryo production in SB 1 and ApⅣ, were observed. The egg cell was located at the subterminal site of the micropylar end of embryo sac. The cytoplasm of egg cell was rich in protein materials and poly saccharide grains, which did not disappear until the division of zygote. The prominent nucleus was closely surrounded by protein and polysaccharide grains, which did not disappear until the division of zygote. No cytological difference was found between egg cells from the normal and abnormal egg apparatus. The two synergids were fully developed and situated at the upper most part of the micropylar end of the mature embryo sac. In most embryo sacs, the synergids were flask shaped with longer necks, and a widened cap shaped top, in close contact with the micropyle. The synergids had a well developed filiform apparatus. The characteristic appearance of the filiform apparatus as well as the cap neck region of synergids before and after pollen tube penetration were easily distinguishable from the egg cell. The structure, the stainability with Coomassie Brilliant Blue and PAS reaction, the process of accumulation, distribution and disapperance of the cytoplasmic protein materials and polysaccharide grains of the two synergids, the persistent and rarely the receptive synergids before and after pollen tube penetration, were closely similar to those of egg cell of the same developmental stage. In comparison with normal and other polyembryonic rice reported, the size of nucleus and nucleolus and their stainability also strongly resembled those of egg cell. Based on the results observed, the main conclusions are summarized as follows: (1) the additional embryos very frequently developed in the young and mature seed of polyembryonic rice ApⅢ were produced by one or two synergids of normal egg apparatus, rarely by 4 celled egg apparatus; (2) during fertilization, the synergids, in addition to the natural specific function of introducing pollen tube and transferring sperms to egg cell and central cell, could be closely associated with the potentiality to breed one or two additional embryos; and (3) as compared with that of normal or other polyembryonic rice it is firstly disclosed that in a few embryo sacs of ApⅢ, the cytoplasmic and nuclear structure, the active anabolism and catabolism of protein and polysaccharide materials and the delayed disorganization at the mid basal region of the receptive and persistent synergid still remained unchanged before the division of zygote. Such salient features could be the predisposition for the origin of additional embryos in ApⅢ.  相似文献   

17.
八角莲大孢子发生和雌配子体形成   总被引:4,自引:2,他引:2  
黄衡宇  马绍宾 《植物研究》2004,24(3):309-315
首次报道了八角莲(Dysosma versipellis (Hance)M.cheng)大孢子发生和雌配子体形成的过程.结果:双珠被,多为厚珠心胚珠,少数为假厚珠心,胚珠多为横生,少数为弯生;边缘胎座,子房一室,多胚珠,珠孔由两层珠被共同形成,呈"之"字形;多为单孢原,位于珠心表皮下:偶见2~3个孢原细胞位于珠心表皮下;大孢子母细胞有两种发生方式;直线形大孢子四分体,合点端的大孢子发育为功能大孢子,蓼型胚囊;成熟胚囊中,二个极核在受精前合并为次生核;三个反足细胞不发达,较早退化;"品"字形卵器极性明显,其中卵细胞与助细胞极性相反;助细胞发达,其丝状器在不同发育时期形态及大小不同,且具吸器功能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号