共查询到20条相似文献,搜索用时 9 毫秒
1.
Olfactory receptor neurons (ORNs) from the squid, Lolliguncula brevis, respond to the odors l-glutamate or dopamine with increases in internal Ca(2+) concentrations ([Ca(2+)](i)). To directly asses the effects of increasing [Ca(2+)](i) in perforated-patched squid ORNs, we applied 10 mM caffeine to release Ca(2+) from internal stores. We observed an inward current response to caffeine. Monovalent cation replacement of Na(+) from the external bath solution completely and selectively inhibited the caffeine-induced response, and ruled out the possibility of a Ca(2+)-dependent nonselective cation current. The strict dependence on internal Ca(2+) and external Na(+) indicated that the inward current was due to an electrogenic Na(+)/Ca(2+) exchanger. Block of the caffeine-induced current by an inhibitor of Na(+)/Ca(2+) exchange (50-100 microM 2',4'-dichlorobenzamil) and reversibility of the exchanger current, further confirmed its presence. We tested whether Na(+)/Ca(2+) exchange contributed to odor responses by applying the aquatic odor l-glutamate in the presence and absence of 2', 4'-dichlorobenzamil. We found that electrogenic Na(+)/Ca(2+) exchange was responsible for approximately 26% of the total current associated with glutamate-induced odor responses. Although Na(+)/Ca(2+) exchangers are known to be present in ORNs from numerous species, this is the first work to demonstrate amplifying contributions of the exchanger current to odor transduction. 相似文献
2.
Functional Differences in Ionic Regulation between Alternatively Spliced Isoforms of the Na+-Ca2+ Exchanger from Drosophila melanogaster
下载免费PDF全文
Alexander Omelchenko Christopher Dyck Mark Hnatowich John Buchko Debora A. Nicoll Kenneth D. Philipson Larry V. Hryshko 《The Journal of general physiology》1998,111(5):691-702
Ion transport and regulation were studied in two, alternatively spliced isoforms of the Na+-Ca2+ exchanger from Drosophila melanogaster. These exchangers, designated CALX1.1 and CALX1.2, differ by five amino acids in a region where alternative splicing also occurs in the mammalian Na+-Ca2+ exchanger, NCX1. The CALX isoforms were expressed in Xenopus laevis oocytes and characterized electrophysiologically using the giant, excised patch clamp technique. Outward Na+-Ca2+ exchange currents, where pipette Ca2+
o exchanges for bath Na+
i, were examined in all cases. Although the isoforms exhibited similar transport properties with respect to their Na+
i affinities and current–voltage relationships, significant differences were observed in their Na+
i- and Ca2+
i-dependent regulatory properties. Both isoforms underwent Na+
i-dependent inactivation, apparent as a time-dependent decrease in outward exchange current upon Na+
i application. We observed a two- to threefold difference in recovery rates from this inactive state and the extent of Na+
i-dependent inactivation was approximately twofold greater for CALX1.2 as compared with CALX1.1. Both isoforms showed regulation of Na+-Ca2+ exchange activity by Ca2+
i, but their responses to regulatory Ca2+
i differed markedly. For both isoforms, the application of cytoplasmic Ca2+
i led to a decrease in outward exchange currents. This negative regulation by Ca2+
i is unique to Na+-Ca2+ exchangers from Drosophila, and contrasts to the positive regulation produced by cytoplasmic Ca2+ for all other characterized Na+-Ca2+ exchangers. For CALX1.1, Ca2+
i inhibited peak and steady state currents almost equally, with the extent of inhibition being ≈80%. In comparison, the effects of regulatory Ca2+
i occurred with much higher affinity for CALX1.2, but the extent of these effects was greatly reduced (≈20–40% inhibition). For both exchangers, the effects of regulatory Ca2+
i occurred by a direct mechanism and indirectly through effects on Na+
i-induced inactivation. Our results show that regulatory Ca2+
i decreases Na+
i-induced inactivation of CALX1.2, whereas it stabilizes the Na+
i-induced inactive state of CALX1.1. These effects of Ca2+
i produce striking differences in regulation between CALX isoforms. Our findings indicate that alternative splicing may play a significant role in tailoring the regulatory profile of CALX isoforms and, possibly, other Na+-Ca2+ exchange proteins. 相似文献
3.
The C terminus of the rat brain Na(+)-Ca(2+) exchanger (RBE-1; NCX1. 4) (amino acids 875-903) is modeled to contain the last transmembrane alpha helix (amino acids 875-894) and an intracellular extramembraneous tail of 9 amino acids (895-903). Truncation of the last 9 C-terminal amino acids, Glu-895 to stop, did not significantly impair functional expression in HeLa or HEK 293 cells. Truncation, however, of 10 amino acids (Leu-894 to stop; mutant C10) reduced Na(+) gradient-dependent Ca(2+) uptake to 35-39% relative to the wild type parent exchanger, and further truncation of 13 or more amino acids resulted in expression of trace amounts of transport activity. Western analysis indicated that Na(+)-Ca(2+) exchanger protein was produced whether transfection was carried out with functional or non-functional mutants. Immunofluorescence studies of HEK 293 cells expressing N-Flag epitope-tagged wild type and mutant Na(+)-Ca(2+) exchangers revealed that transport activity in whole cells correlated with surface expression. All cells expressing the wild type exchanger or C9 exhibited surface expression of the protein. Only 39% of the cells expressing C10 exhibited surface expression, and none was detected in cells transfected with non-functional mutants C13 and C29. Since functional and non-functional mutants were glycosylated, the C terminus is not mandatory to translocation into the endoplasmic reticulum (ER). Endoglycosidase H digestion of [(35)S]methionine-labeled protein derived from wild type Na(+)-Ca(2+) exchanger and from C10 indicated that resistance to the digestion was acquired after 1 and 5 h of chase, respectively. C29 did not acquire detectable resistance to endoglycosidase H digestion even after 10 h of chase. Taken together, these results suggest that the "cellular quality control machinery" can tolerate the structural change introduced by truncation of the C terminus up to Ser-893 albeit with reduced rate of ER-->Golgi transfer and reduced surface expression of the truncated protein. Further truncation of C-terminal amino acids leads to retention of the truncated protein in the ER, no transfer to the Golgi, and no surface expression. 相似文献
4.
Conformational changes of the Ca(2+) regulatory site of the Na(+)-Ca(2+) exchanger detected by FRET 下载免费PDF全文
The Na(+)-Ca(2+) exchanger is a plasma membrane protein expressed at high levels in cardiomyocytes. It extrudes 1 Ca(2+) for 3 Na(+) ions entering the cell, regulating intracellular Ca(2+) levels and thereby contractility. Na(+)-Ca(2+) exchanger activity is regulated by intracellular Ca(2+), which binds to a region (amino acids 371-508) within the large cytoplasmic loop between transmembrane segments 5 and 6. Regulatory Ca(2+) activates the exchanger and removes Na(+)-dependent inactivation. The physiological role of intracellular Ca(2+) regulation of the exchanger is not yet established. Yellow (YFP) and cyan (CFP) fluorescent proteins were linked to the NH(2)- and CO(2)H-termini of the exchanger Ca(2+) binding domain (CBD) to generate a construct (YFP-CBD-CFP) capable of responding to changes in intracellular Ca(2+) concentrations by FRET efficiency measurements. The two fluorophores linked to the CBD are sufficiently close to generate FRET. FRET efficiency was reduced with increasing Ca(2+) concentrations. Titrations of Ca(2+) concentration versus FRET efficiency indicate a K(D) for Ca(2+) of approximately 140 nM, which increased to approximately 400 nM in the presence of 1 mM Mg(2+). Expression of YFP-CBD-CFP in myocytes, generated changes in FRET associated with contraction, suggesting that NCX is regulated by Ca(2+) on a beat-to-beat basis during excitation-contraction coupling. 相似文献
5.
6.
7.
The calcium phosphate-based skeleton of vertebrates serves as the major reservoir for metabolically available calcium ions. The skeleton is formed by osteoblasts which first secrete a proteinaceous matrix and then provide Ca++ for the calcification process. The two calcium efflux ports found in most cells are the plasma membrane Ca-ATPase (PMCA) and the sodium-calcium exchanger (NCX). In osteoblasts, PMCA and NCX are located on opposing sides of the cell with NCX facing the mineralizing bone surface. Two isoforms of NCX have been identified in osteoblasts NCX1, and NCX3. The purpose of this study was to determine the extent to which each of the two NCX isoforms support delivery of Ca++ into sites of calcification and to discern if one could compensate for the other. SiRNA technology was used to knockdown each isoform separately in MC3T3-E1 osteoblasts. Osteoblasts in which either NCX1 or NCX3 was impaired were tested for Ca++ efflux using the Ca++ specific fluorophore, fluo-4, in a sodium-dependent calcium uptake assay adapted for image analysis. NCX3 was found to serve as a major contributor of Ca++ translocation out of osteoblasts into calcifying bone matrix. NCX1 had little to no involvement. 相似文献
8.
Pan Y Iwamoto T Uehara A Nakamura TY Imanaga I Shigekawa M 《American journal of physiology. Cell physiology》2000,279(2):C393-C402
Physiologicalfunctions of the intracellular regulatory domains of theNa+/Ca2+ exchanger NCX1 were studied byexamining Ca2+ handling in CCL39 cells expressing alow-affinity Ca2+ regulatory site mutant (D447V/D498I), anexchanger inhibitory peptide (XIP) region mutant displaying noNa+ inactivation (XIP-4YW), or a mutant lacking most of thecentral cytoplasmic loop (246-672). We found that D447V/D498Iwas unable to efficiently extrude Ca2+ from the cytoplasm,particularly during a small rise in intracellular Ca2+concentration induced by the physiological agonist -thrombin orthapsigargin. The same mutant took up Ca2+ much lessefficiently than the wild-type NCX1 in Na+-free medium whentransfectants were not loaded with Na+, although itappeared to take up Ca2+ normally in transfectantspreloaded with Na+. XIP-4YW and, to a lesser extent,246-672, but not NCX1 and D447V/D498I, markedly accelerated theloss of viability of Na+-loaded transfectants. Furthermore,XIP-4YW was not activated by phorbol ester, whereas XIP-4YW andD447V/D498I were resistant to inhibition by ATP depletion. The resultssuggest that these regulatory domains play important roles in thephysiological and pathological Ca2+ handling by NCX1, aswell as in the regulation of NCX1 by protein kinase C or ATP depletion. 相似文献
9.
In a revised topological model of the cardiac Na(+)-Ca(2+) exchanger, there are nine transmembrane segments (TMSs) and two possible re-entrant loops (Nicoll, D. A., Ottolia, M., Lu, Y., Lu, L., and Philipson, K. D. (1999) J. Biol. Chem. 274, 910-917; Iwamoto, T., Nakamura, T. Y., Pan, Y., Uehara, A., Imanaga, I., and Shigekawa, M. (1999) FEBS Lett. 446, 264-268). The TMSs form two clusters separated by a large intracellular loop between TMS5 and TMS6. We have combined cysteine mutagenesis and oxidative cross-linking to study proximity relationships of TMSs in the exchanger. Pairs of cysteines were reintroduced into a cysteine-less exchanger, one in a TMS in the NH(2)-terminal cluster (TMSs 1-5) and the other in a TMS in the COOH-terminal cluster (TMSs 6-9). The mutant exchanger proteins were expressed in HEK293 cells, and disulfide bond formation between introduced cysteines was analyzed by gel mobility shifts. Western blots showed that S117C/V804C, A122C/Y892C, A151C/T815C, and A151C/A821C mutant proteins migrated at 120 kDa under reducing conditions and displayed a partial mobility shift to 160 kDa under nonreducing conditions. This shift indicates the formation of a disulfide bond between these paired cysteine residues. Copper phenanthroline and the cross-linker N', N'-o-phenylenedimaleimide enhanced the mobility shift to 160 kDa. Our data suggest that TMS7 is close to TMS3 near the intracellular side of the membrane and is in the vicinity of TMS2 near the extracellular surface. Also, TMS2 must adjoin TMS8. This initial packing model of the exchanger brings two functionally important domains in the exchanger, the alpha 1 and alpha 2 repeats, close to each other. 相似文献
10.
Santacruz-Toloza L Ottolia M Nicoll DA Philipson KD 《The Journal of biological chemistry》2000,275(1):182-188
The electrophoretic mobility of the cardiac Na(+)-Ca(2+) exchange protein is different under reducing and nonreducing conditions. This mobility shift is eliminated in a cysteine-less exchanger, suggesting that the presence or absence of an intramolecular disulfide bond alters the conformation and mobility of the exchanger. Using cysteine mutagenesis and biochemical analysis, we have identified the cysteine residues involved in the disulfide bond. Cysteine 792 in loop h of the exchanger forms a disulfide bond with either cysteine 14 or 20 near the NH(2) terminus. Because the NH(2) terminus is extracellular, the data establish that loop h must also be extracellular. A rearrangement of disulfide bonds has previously been implicated in the stimulation of exchange activity by combinations of reducing and oxidizing agents. We have investigated the role of cysteines in the stimulation of the exchanger by the combination of FeSO(4) and dithiothreitol (Fe-DTT). Using the giant excised patch technique, we find that stimulation of the wild type exchanger by Fe-DTT is primarily due to the removal of a Na(+)-dependent inactivation process. Analysis of mutated exchangers, however, indicates that cysteines are not responsible for stimulation of the exchange activity by Fe-DTT. Ca(2+) blocks modification of the exchanger by Fe-DTT. Disulfide bonds are not involved in redox stimulation of the exchanger, and the modification reaction is unknown. Modulation of Na(+)-dependent inactivation may be a general mechanism for regulation of Na(+)-Ca(2+) exchange activity and may have physiological significance. 相似文献
11.
《Cell calcium》2017
Isoform 3 of the Na+-Ca2+ exchanger (NCX3) participates in the Ca2+ fluxes across the plasma membrane. Among the NCX family, NCX3 carries out a peculiar role due to its specific functions in skeletal muscle and the immune system and to its neuroprotective effect under stress exposure. In this context, proper understanding of the regulation of NCX3 is primordial to consider its potential use as a drug target. In this study, we demonstrated the regulation of NCX3 by protein kinase A (PKA) and C (PKC). Disparity in regulation has been previously reported among the splice variants of NCX3 therefore the activity of Ca2+ uptake and extrusion of the two murine variants was measured using fura-2-based Ca2+ imaging and revealed that both variants are similarly regulated. PKC stimulation diminished the Ca2+ uptake performed by NCX3 in the reverse mode, triggered by a rise in [Ca2+]i or [Na+]i, whereas an opposite response was observed upon PKA stimulation, with a significant increase of the Ca2+ uptake after a rise in [Ca2+]i. The latter stimulation affected similarly the efflux capacity of NCX3 whereas Ca2+ extrusion capacity remained unaffected under activation of PKC. Next, using site-directed mutagenesis, the sensitivity of NCX3 to PKC was abolished by singly mutating its predicted phosphorylation sites T529 or S695. The sensitivity to PKC might be due to the influence of T529 phosphorylation on the Ca2+-binding domain 1. Additionally, we showed that stimulation of NCX3 by PKA occurred through residue S524. This effect may well participate in the fight-or-flight response in skeletal muscle and the long-term potentiation in hippocampus. 相似文献
12.
Dunn J Elias CL Le HD Omelchenko A Hryshko LV Lytton J 《The Journal of biological chemistry》2002,277(37):33957-33962
The Na(+)/Ca(2+) exchanger gene NCX1 undergoes alternative splicing leading to several isoforms that differ in a small portion of the large cytoplasmic loop. This loop is involved in many regulatory processes of NCX1, including ionic regulation by the transported substrates Na(+) and Ca(2+). High intracellular Ca(2+) can alleviate intracellular Na(+)-dependent inactivation in exon A (NCX1.4)-containing isoforms but not in those containing the mutually exclusive exon B (NCX1.3). Giant excised patches from Xenopus oocytes expressing various NCX1 constructs were used to examine the specific amino acids responsible for these observed regulatory differences. Using a chimeric approach, the region responsible was narrowed down to the small central part of exon A (IDDEEYEKNKTF). Replacing the second aspartic acid of this sequence with arginine (the corresponding amino acid in exon B) in an exon A background completely prevented the effect of Ca(2+) on intracellular Na(+)-dependent inactivation. Mutating the second lysine to cysteine (exon B) had a similar, but only partial, effect. The converse double mutant, but neither single mutation alone, introduced into an exon B background (arginine to aspartic acid and cysteine to lysine) was able to restore the NCX1.4 regulatory phenotype. These data demonstrate that aspartic acid 610 and lysine 617 (using the rat NCX1.4 numbering scheme) are critical molecular determinants of the unique Ca(2+) regulatory properties of NCX1.4. 相似文献
13.
Sokolow S Luu SH Headley AJ Hanson AY Kim T Miller CA Vinters HV Gylys KH 《Cell calcium》2011,49(4):208-216
Synaptosomal expression of NCX1, NCX2, and NCX3, the three variants of the Na(+)-Ca(2+) exchanger (NCX), was investigated in Alzheimer's disease parietal cortex. Flow cytometry and immunoblotting techniques were used to analyze synaptosomes prepared from cryopreserved brain of cognitively normal aged controls and late stage Alzheimer's disease patients. Major findings that emerged from this study are: (1) NCX1 was the most abundant NCX isoform in nerve terminals of cognitively normal patients; (2) NCX2 and NCX3 protein levels were modulated in parietal cortex of late stage Alzheimer's disease: NCX2 positive terminals were increased in the Alzheimer's disease cohort while counts of NCX3 positive terminals were reduced; (3) NCX1, NCX2 and NCX3 isoforms co-localized with amyloid-beta in synaptic terminals and all three variants are up-regulated in nerve terminals containing amyloid-beta. Taken together, these data indicate that NCX isoforms are selectively regulated in pathological terminals, suggesting different roles of each NCX isoform in Alzheimer's disease terminals. 相似文献
14.
The ability to deliver calcium to the osteoid is critical to osteoblast function as a regulator of bone calcification. There are two known transmembrane proteins capable of translocating calcium out of the osteoblast, the Na(+)/Ca(2+) exchanger (NCX) and the plasma membrane Ca(2+)-ATPase (PMCA). In this study, we reveal the presence of the NCX3 isoform in primary osteoblasts and examine the expression of NCX1, NCX3, and PMCA1 during osteoblast differentiation. The predominant NCX isoform expressed by osteoblasts is NCX3. NCX1 also is expressed, but at low levels. Both NCX isoforms are expressed at nearly static levels throughout differentiation. In contrast, PMCA expression peaks at 8 days of culture, early in osteoblast differentiation, but declines thereafter. Immunocytochemical co-detection of NCX and PMCA reveal that NCX is positioned along surfaces of the osteoblast adjacent to osteoid, while PMCA is localized to plasma membrane sites distal to the osteoid. The expression pattern and spatial distribution of NCX support a role as a regulator of calcium efflux from osteoblasts required for calcification. The expression pattern and spatial distribution of PMCA makes its role in the mineralization process unlikely and suggests a role in calcium homeostasis following signaling events. 相似文献
15.
Role of the Na(+)-Ca(2+) exchanger as an alternative trigger of CICR in mammalian cardiac myocytes 总被引:2,自引:0,他引:2 下载免费PDF全文
Ca(2+) influx through the L-type Ca(2+) channels is the primary pathway for triggering the Ca(2+) release from the sarcoplasmic reticulum (SR). However, several observations have shown that Ca(2+) influx via the reverse mode of the Na(+)-Ca(2+) exchanger current (I(Na-Ca)) could also trigger the Ca(2+) release. The aim of the present study was to quantitate the role of this alternative pathway of Ca(2+) influx using a mathematical model. In our model 20% of the fast sodium channels and the Na(+)-Ca(2+) exchanger molecules are located in the restricted subspace between the sarcolemma and the SR where triggering of the calcium-induced calcium release (CICR) takes place. After determining the strengths of the alternative triggers with simulated voltage-clamps in varied membrane voltages and resting [Na](i) values, we studied the CICR in simulated action potentials, where fast sodium channel current contributes [Na](i) of the subspace. In low initial [Na](i) the Ca(2+) influx via the L-type Ca(2+) channels is the major trigger for Ca(2+) release from the SR, and the Ca(2+) influx via the reverse mode of the Na(+)-Ca(2+) exchanger cannot trigger the CICR. However, depending on the initial [Na](i), the contribution of the Ca(2+) entry via the exchanger may account for 25% (at [Na](i) = 10 mM) to nearly 100% ([Na](i) = 30 mM) of the trigger Ca(2+). The shift of the main trigger from L-type calcium channels to the exchanger reduced the delay between the action potential upstroke and the intracellular calcium transient. This may contribute to the function of the myocyte in physiological situations where [Na](i) is elevated. These main results remain the same when using different estimates for the most crucial parameters in the modeling or different models for the exchanger. 相似文献
16.
Mapping the in vitro interactome of cardiac sodium (Na+)‐calcium (Ca2+) exchanger 1 (NCX1) 下载免费PDF全文
Tandekile Lubelwana Hafver Pimthanya Wanichawan Ornella Manfra Gustavo Antonio de Souza Marianne Lunde Marita Martinsen William Edward Louch Ole Mathias Sejersted Cathrine Rein Carlson 《Proteomics》2017,17(17-18)
The sodium (Na+)‐calcium (Ca2+) exchanger 1 (NCX1) is an antiporter membrane protein encoded by the SLC8A1 gene. In the heart, it maintains cytosolic Ca2+ homeostasis, serving as the primary mechanism for Ca2+ extrusion during relaxation. Dysregulation of NCX1 is observed in end‐stage human heart failure. In this study, we used affinity purification coupled with MS in rat left ventricle lysates to identify novel NCX1 interacting proteins in the heart. Two screens were conducted using: (1) anti‐NCX1 against endogenous NCX1 and (2) anti‐His (where His is histidine) with His‐trigger factor‐NCX1cyt recombinant protein as bait. The respective methods identified 112 and 350 protein partners, of which several were known NCX1 partners from the literature, and 29 occurred in both screens. Ten novel protein partners (DYRK1A, PPP2R2A, SNTB1, DMD, RABGGTA, DNAJB4, BAG3, PDE3A, POPDC2, STK39) were validated for binding to NCX1, and two partners (DYRK1A, SNTB1) increased NCX1 activity when expressed in HEK293 cells. A cardiac NCX1 protein–protein interaction map was constructed. The map was highly connected, containing distinct clusters of proteins with different biological functions, where “cell communication” and “signal transduction” formed the largest clusters. The NCX1 interactome was also significantly enriched with proteins/genes involved in “cardiovascular disease” which can be explored as novel drug targets in future research. 相似文献
17.
The Na(+)-Ca2+ exchanger contains internal regions of sequence homology known as the alpha repeats. The first region (alpha-1 repeat) includes parts of transmembrane segments (TMSs) 2 and 3 and a linker modeled to be a reentrant loop. To determine the involvement of the reentrant loop and TMS 3 portions of the alpha-1 repeat in exchanger function, we generated a series of mutants and examined ion binding and transport and regulatory properties. Mutations in the reentrant loop did not substantially modify transport properties of the exchanger though the Hill coefficient for Na+ and the rate of Na(+)-dependent inactivation were decreased. Mutations in TMS 3 had more striking effects on exchanger activity. Of mutations at 10 positions, 3 behaved like the wild-type exchanger (V137C, A141C, M144C). Mutants at two other positions expressed no activity (Ser139) or very low activity (Gly138). Six different mutations were made at position 143; only N143D was active, and it displayed wild-type characteristics. The highly specific requirement for an asparagine or aspartate residue at this position may indicate a key role for Asn143 in the transport mechanism. Mutations at residues Ala140 and Ile147 decreased affinity for intracellular Na+, whereas mutations at Phe145 increased Na+ affinity. The cooperativity of Na+ binding was also altered. In no case was Ca2+ affinity changed. TMS 3 may form part of a site that binds Na+ but not Ca2+. We conclude that TMS 3 is involved in Na+ binding and transport, but previously proposed roles for the reentrant loop need to be reevaluated. 相似文献
18.
Regulation of the cardiac Na(+)-Ca2+ exchanger by Ca2+. Mutational analysis of the Ca(2+)-binding domain 总被引:1,自引:0,他引:1 下载免费PDF全文
《The Journal of general physiology》1995,105(3):403-420
The sarcolemmal Na(+)-Ca2+ exchanger is regulated by intracellular Ca2+ at a high affinity Ca2+ binding site separate from the Ca2+ transport site. Previous data have suggested that the Ca2+ regulatory site is located on the large intracellular loop of the Na(+)-Ca2+ exchange protein, and we have identified a high-affinity 45Ca2+ binding domain on this loop (Levitsky, D. O., D. A. Nicoll, and K. D. Philipson. 1994. Journal of Biological Chemistry. 269:22847-22852). We now use electrophysiological and mutational analyses to further define the Ca2+ regulatory site. Wild-type and mutant exchangers were expressed in Xenopus oocytes, and the exchange current was measured using the inside- out giant membrane patch technique. Ca2+ regulation was measured as the stimulation of reverse Na(+)-Ca2+ exchange (intracellular Na+ exchanging for extracellular Ca2+) by intracellular Ca2+. Single-site mutations within two acidic clusters of the Ca2+ binding domain lowered the apparent Ca2+ affinity at the regulatory site from 0.4 to 1.1-1.8 microM. Mutations had parallel effects on the affinity of the exchanger loop for 45Ca2+ binding (Levitsky et al., 1994) and for functional Ca2+ regulation. We conclude that we have identified the functionally important Ca2+ binding domain. All mutant exchangers with decreased apparent affinities at the regulatory Ca2+ binding site also have a complex pattern of altered kinetic properties. The outward current of the wild-type Na(+)-Ca2+ exchanger declines with a half time (th) of 10.8 +/- 3.2 s upon Ca2+ removal, whereas the exchange currents of several mutants decline with th values of 0.7-4.3 s. Likewise, Ca2+ regulation mutants respond more rapidly to Ca2+ application. Study of Ca2+ regulation has previously been possible only with the exchanger operating in the reverse mode as the regulatory Ca2+ and the transported Ca2+ are then on opposite sides of the membrane. The use of exchange mutants with low affinity for Ca2+ at regulatory sites also allows demonstration of secondary Ca2+ regulation with the exchanger in the forward or Ca2+ efflux mode. In addition, we find that the affinity of wild-type and mutant Na(+)-Ca2+ exchangers for intracellular Na+ decreases at low regulatory Ca2+. This suggests that Ca2+ regulation modifies transport properties and does not only control the fraction of exchangers in an active state. 相似文献
19.
Nucleosides are accumulated by cells via a family of equilibrative transport proteins (ENTs). An alternative splice variant of the most common subtype of mouse ENT (ENT1) has been identified which is missing a protein kinase CK2 (casein kinase 2) consensus site (Ser254) in the central intracellular loop of the protein. We hypothesized that this variant (mENT1a) would be less susceptible to modulation by CK2-mediated phosphorylation compared to the variant containing the serine at position 254 (mENT1b). Each splice variant was transfected into nucleoside transporter deficient PK15 cells, and stable transfectants assessed for their ability to bind the ENT1-selective probe [3H]nitrobenzylthioinosine (NBMPR) and to mediate the cellular uptake of [3H]2-chloroadenosine, with or without treatment with the CK2 selective inhibitor, 4,5,6,7-tetrabromobenzotriazole (TBB). mENT1a had a higher affinity for NBMPR relative to mENT1b – measured both directly by the binding of [3H]NBMPR, and indirectly via inhibition of [3H]2-chloroadenosine influx by NBMPR. Furthermore, incubation of mENT1b-expressing cells with 10 µM TBB for 48 h decreased both the KD and Bmax of [3H]NBMPR binding, as well as the Vmax of 2-chloroadenosine uptake, whereas similar treatment of mENT1a-expressing cells with TBB had no effect. PK15 cells transfected with hENT1, which has Ser254, was similar to mENT1b in its response to TBB. In conclusion, inhibition of CK2 activity, or deletion of Ser254 from mENT1, enhances transporter affinity for the inhibitor, NBMPR, and reduces the number of ENT1 proteins functioning at the level of the plasma membrane. 相似文献
20.
Na(+)-Ca(2+) exchanger (NCX) controls cytosolic Ca(2+) and Na(+) concentrations ([Ca(2+)](i) and [Na(+)](i)) in eukaryotic cells. Here we investigated by immunocytochemistry the cellular and subcellular localization of the three known NCX isoforms, NCX1, NCX2 and NCX3, in adult rat neocortex and hippocampus. NCX1-3 were widely expressed in both brain areas: NCX1 immunoreactivity (ir) was exclusively associated to neuropilar puncta, while NCX2-3 were also detected in neuronal somata and dendrites. NCX1-3 ir was often identified around blood vessels. In both neocortex and hippocampus, all NCX isoforms were prominently expressed in dendrites and dendritic spines contacted by asymmetric axon terminals, whereas they were poorly expressed in presynaptic boutons. In addition, NCX1-3 ir was detected in astrocytes, notably in distal processes ensheathing excitatory synapses. All NCXs were expressed in perivascular astrocytic endfeet and endothelial cells. The robust expression of NCX1-3 in heterogeneous cell types in the brain in situ emphasizes their role in handling Ca(2+) and Na(+) in both excitable and non-excitable cells. Perisynaptic localization of NCX1-3 in dendrites and spines indicates that all isoforms are favourably located for buffering [Ca(2+)](i) in excitatory postsynaptic sites. NCX1-3 expressed in perisynaptic glial processes may participate in shaping astrocytic [Ca(2+)](i) transients evoked by ongoing synaptic activity. 相似文献