首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
It has been shown previously that certain bacteria rapidly (3 h) up-regulated in vivo microfold cell (M cell)-mediated transport of Ag across the follicle-associated epithelium of intestinal Peyer's patch. Our aim was to determine whether soluble mediators secreted following host-bacteria interaction were involved in this event. A combination of proteomics and immunohistochemical analyses was used to identify molecules produced in the gut in response to bacterial challenge in vivo; their effects were then tested on human intestinal epithelial cells in vitro. Macrophage migration inhibitory factor (MIF) was the only cytokine produced rapidly after in vivo bacterial challenge by CD11c(+) cells located beneath the M cell-rich area of the follicle-associated epithelium of the Peyer's patch. Subsequently, in vitro experiments conducted using human Caco-2 cells showed that, within hours, MIF induced the appearance of cells that showed temperature-dependent transport of microparticles and M cell-specific bacterium Vibrio cholerae, and acquired biochemical features of M cells. Furthermore, using an established in vitro human M cell model, we showed that anti-MIF Ab blocked Raji B cell-mediated conversion of Caco-2 cells into Ag-sampling cells. Finally, we report that MIF(-/-) mice, in contrast to wild-type mice, failed to show increased M cell-mediated transport following in vivo bacterial challenge. These data show that MIF plays a role in M cell-mediated transport, and cross-talk between bacteria, gut epithelium, and immune system is instrumental in regulating key functions of the gut, including M cell-mediated Ag sampling.  相似文献   

2.
The oral route is considered to be the main entry site of several transmissible spongiform encephalopathies or prion diseases of animals and man. Following natural and experimental oral exposure to scrapie, sheep first accumulate disease associated prion protein (PrPd) in Peyer’s patch (PP) lymphoid follicles. In this study, recombinant ovine prion protein (rPrP) was inoculated into gut loops of young lambs and the transportation across the intestinal wall studied. In particular, the immunohistochemical phenotypes of cells bearing the inoculated prion protein were investigated. The rPrP was shown to be transported across the villi of the gut, into the lacteals and submucosal lymphatics, mimicking the transport route of PrPd from scrapie brain inoculum observed in a previous intestinal loop experiment. The cells bearing the inoculated rPrP were mainly mononuclear cells, and multicolor immunofluorescence procedures were used to show that the rPrP bearing cells were professional antigen presenting cells expressing Major histocompatibility complex II (MHCII). In addition, the rPrP bearing cells labeled with CD205, CD11b and the macrophage marker CD68, and not with the dendritic cell markers CD11c and CD209. Others have reported that cells expressing CD205 and CD11b in the absence of CD11c have been shown to induce T cell tolerance or regulatory T cells. Based on this association, it was speculated that the rPrP and by extension PrPd and scrapie infective material may exploit the physiological process of macromolecular uptake across the gut, and that this route of entry may have implications for immune surveillance.  相似文献   

3.
《朊病毒》2013,7(3):261-275
The oral route is considered to be the main entry site of several transmissible spongiform encephalopathies or prion diseases of animals and man. Following natural and experimental oral exposure to scrapie, sheep first accumulate disease associated prion protein (PrPd) in Peyer’s patch (PP) lymphoid follicles. In this study, recombinant ovine prion protein (rPrP) was inoculated into gut loops of young lambs and the transportation across the intestinal wall studied. In particular, the immunohistochemical phenotypes of cells bearing the inoculated prion protein were investigated. The rPrP was shown to be transported across the villi of the gut, into the lacteals and submucosal lymphatics, mimicking the transport route of PrPd from scrapie brain inoculum observed in a previous intestinal loop experiment. The cells bearing the inoculated rPrP were mainly mononuclear cells, and multicolor immunofluorescence procedures were used to show that the rPrP bearing cells were professional antigen presenting cells expressing Major histocompatibility complex II (MHCII). In addition, the rPrP bearing cells labeled with CD205, CD11b and the macrophage marker CD68, and not with the dendritic cell markers CD11c and CD209. Others have reported that cells expressing CD205 and CD11b in the absence of CD11c have been shown to induce T cell tolerance or regulatory T cells. Based on this association, it was speculated that the rPrP and by extension PrPd and scrapie infective material may exploit the physiological process of macromolecular uptake across the gut, and that this route of entry may have implications for immune surveillance.  相似文献   

4.
Mammalian Peyer's Patches possess specialized epithelium, the follicle associated epithelium (FAE), and specialized cells called M cells which mediate transcytosis of antigens to underlying lymphoid tissue. To identify FAE specific genes, we used TOGA gene expression profiling of microdissected mouse Peyer's Patch tissue. We found expression of laminin beta3 across the FAE, and scattered expression of peptidoglycan recognition protein (PGRP)-S. Using the M cell specific lectin Ulex europaeus agglutinin 1 (UEA-1), PGRP-S expression was nearly exclusively co-localized with UEA-1+ M cells. By contrast, the related gene PGRP-L was expressed among a subset of UEA-1 negative FAE cells. Expression of these proteins in transfected cells demonstrated distinct subcellular localization. PGRP-S showed a vesicular pattern and extracellular secretion, while PGRP-L showed localization to both the cytoplasm and the cell surface. The potential function of these PGRP proteins as pattern recognition receptors and their distinctive cellular distribution suggests a complex coordination among specialized cells of the FAE in triggering mucosal immunity and innate immune responses.  相似文献   

5.
The M cell is a remarkable cell type found in the epithelium that covers mucosa-associated lymphoid tissue in the digestive tract and the airways. M cells internalize macromolecules and microorganisms efficiently and deliver them to the underlying lymphoid tissue. In the gut, M cells, unlike the neighbouring absorptive enterocytes, lack a highly organized apical brush border and glycocalyx, and are poorly equipped with digestive enzymes. An insight into the role of immune cells in the differentiation of this unique cell type has been gained recently by using immunodeficient mice and an in vitro model of M cells. These and other recent findings suggest that M cells have a highly plastic phenotype and raise interesting questions about how cell differentiation is controlled in the gut.  相似文献   

6.
Transepithelial transport and mucosal defence I: the role of M cells   总被引:5,自引:0,他引:5  
How do cells of the immune system encounter the majority of antigens that enter the body through the gut and airways? The epithelia lining these systems contain a remarkable cell type, the M cell, that delivers antigens across the epithelium to lymphocytes and macrophages. In this article, Marian Neutra and Jean-Pierre Kraehenbuhl describe the structure of the M cell, its function in promoting the immune response and its exploitation by invading pathogens. In the next issue of Trends in Cell Biology, these authors will review the other immunological function of epithelia, secretion of polymeric IgA.  相似文献   

7.
Enteropathogenic Escherichia coli (EPEC) is an extracellular pathogen that utilizes a type III secretion system (TTSS) to modulate diverse host cell processes including cytoskeletal dynamics, tight junction permeability and macrophage phagocytosis. Some EPEC strains exhibit selective tropism for the specialized follicle-associated epithelium (FAE) overlying lymphoid follicles in the gut, which is a major site of uptake of inert particulates and pathogens, but do not translocate from the intestinal lumen in significant numbers. We have investigated the interaction of EPEC with FAE using an established in vitro model of the specialized FAE in which polarized enterocyte-like Caco-2 cells cocultured with the Raji B cell line undergo a phenotypic switch to a form that morphologically and functionally resembles the specialized antigen-transporting M cells found within FAE. Having confirmed that coculture with Raji B cells induces brush border reorganization and enhances particle transport across Caco-2 cells, we investigated translocation of bacteria across the M cell model. While Salmonella translocation was markedly upregulated by Raji coculture, transport of wild-type EPEC occurred at similarly low levels across both native Caco-2 and Caco-2/Raji-cocultured layers. Translocation rates were markedly higher for EPEC strains lacking either functional TTSS or the effector protein EspF. These observations resemble previously reported data on the inhibition of macrophage phagocytosis by EPEC, which has also been reported to be dependent on TTSS and EspF. Furthermore, as with macrophage phagocytosis, enhanced translocation of a TTSS mutant was blocked by wortmannin, implicating inhibition of phosphatidyl inositol 3-kinase-mediated signalling in the regulation of M cell translocation by EPEC.  相似文献   

8.
9.
IgE-mediated allergic inflammation occurs when allergens cross-link IgE on the surface of immune cells, thereby triggering the release of inflammatory mediators as well as enhancing Ag presentations. IgE is frequently present in airway secretions, and its level can be enhanced in human patients with allergic rhinitis and bronchial asthma. However, it remains completely unknown how IgE appears in the airway secretions. In this study, we show that CD23 (FcεRII) is constitutively expressed in established or primary human airway epithelial cells, and its expression is significantly upregulated when airway epithelial cells were subjected to IL-4 stimulation. In a transcytosis assay, human IgE or IgE-derived immune complex (IC) was transported across a polarized Calu-3 monolayer. Exposure of the Calu-3 monolayer to IL-4 stimulation also enhanced the transcytosis of either human IgE or the IC. A CD23-specific Ab or soluble CD23 significantly reduced the efficiency of IgE or IC transcytosis, suggesting a specific receptor-mediated transport by CD23. Transcytosis of both IgE and the IC was further verified in primary human airway epithelial cell monolayers. Furthermore, the transcytosed Ag-IgE complexes were competent in inducing degranulation of the cultured human mast cells. Because airway epithelial cells are the first cell layer to come into contact with inhaled allergens, our study implies CD23-mediated IgE transcytosis in human airway epithelial cells may play a critical role in initiating and contributing to the perpetuation of airway allergic inflammation.  相似文献   

10.
Summary The transport of protein across the cells of the epididymal epithelium was studied using horseradish peroxidase. Transient vascular perfusion of the epididymis of the rat and golden hamster was achieved by pulsatile retrograde infusion into the testicular artery. Peroxidase was found in the interstitium and in the epithelium, located in vesicles, vacuoles and multivesicular bodies of principal, clear and apical cells. Similar findings were obtained in mice after systemic injection of the tracer. In the rat, discharge to the lumen was confirmed by the appearance of enzyme activity in luminal fluid from the caput epididymidis after local injection. The extent of transport amounted to no more than what has been considered leakage in physiological experiments, and the time-course of appearance complemented that found by electron microscopy. The level of transcytosis after pulsatile administration of peroxidase in vivo, as judged from the occurrence of tracer in the epithelium, was much less than that obtained during constant immersion in vitro. The protein was present in multivesicular bodies of principal cells and in vesicles of clear cells at short times after presentation in vitro, when it could not have arrived by endocytosis from the lumen. This suggests that routing of basal endocytic vesicles to the lysosomal apparatus occurs.  相似文献   

11.
The 185/333 proteins of sea urchins represent a family of highly variable immune response molecules with unknown functions. In this study, we show that 185/333 proteins are expressed by three cell types: amoebocytes, colourless spherule cells and gut-associated amoebocytes. A sub-population of amoebocytes express 185/333 proteins on the membranes of vesicles emanating from the trans-Golgi and which later fuse with the plasma membranes of the cells. The previously uncharacterized gut-associated amoebocytes also show a high level of 185/333 protein expression on their internal vesicles and plasma membranes. Colourless spherule cells contain 185/333 proteins within large spherules (specialized intracellular vesicles). In the presence of bacteria and yeast, the ultrastucture of colourless spherule cells changes and 185/333 proteins disappear. In contrast, 185/333 proteins were not found in the phagosomes of coelomocytes. The 185/333-positive gut amoebocytes were often associated with anuclear bodies, which appeared to incorporate material of microbial origin that was surrounded by 185/333 proteins. The association between 185/333 proteins on gut amoebocytes and anuclear bodies suggests that these proteins may be involved in the phagocytosis of microbes in the gut epithelium.  相似文献   

12.
The interaction between polystyrene microspheres and the follicle-associated epithelium of rabbit Peyer's patches has been examined. Microspheres bind selectively to, and are transcytosed by, membranous or microfold (M) cells within the follicle-associated epithelium. M cells are able to transport, in 45 min, approximately 105 microspheres of 0.46 μm diameter across the epithelium overlying each lymphoid follicle dome of rabbit Peyer's patches. The high capacity of M cells for particulate transcytosis and the subsequent delivery of these particulates to the mucosal immune system highlights the potential importance of this portal in the delivery of antigens and drugs. In addition, the selective binding and uptake of microspheres may be utilised as a functional marker in the identification and isolation of M cells.  相似文献   

13.
The Junonia coenia densovirus rapidly traverses the gut epithelium of the host lepidopteran without replicating in the gut cells.The ability of this virus to transcytose across the gut epithelium is of interest for the potential use of virus structural proteins as delivery vehicles for insecticidal peptides that act within the insect hemocoel,rather than in the gut.In this study,we used fall armyworm,Spodoptera frugiperda to examine the binding of the virus to brush border membrane vesicle proteins by two-dimensional ligand blot analysis.We also assessed the rate of flux of the primary viral structural protein,VP4 fused to eGFP with a proline-rich linker(VP4-P-eGFP)through the gut epithelium ex vivo in an Ussing chamber.The mechanisms involved with transcytosis of VP4-P-eGFP were assessed by use of inhibitors.Bovine serum albumin(BSA)and eGFP were used as positive and negative control proteins,respectively.In contrast to BSA,which binds to multiple proteins on the brush border membrane,VP4-P-eGFP binding was specific to a protein of high molecular mass.Protein flux was significantly higher for VP4-P-eGFP after 2 h than for albumin or eGFP,with rapid transcytosis of VP4-P-eGFP within the first 30 min.In contrast to BSA which transcytosed following clathrin-mediated endocytosis,the movement of VP4-P-eGFP was vesicle-mediated but clathrin-independent.The specificity of binding combined with the efficiency of transport across the gut epithelium suggest that VP4 will provide a useful carrier for insecticidal peptides active within the hemocoel of key lepidopteran pests including S.frugiperda.  相似文献   

14.
Summary M cells in Peyer's patch epithelium conduct transepithelial transport of luminal antigens to cells of the mucosal immune system. To determine the distribution of specific lectin-binding sites on luminal membranes of living M cells and to follow the transport route of membranebound molecules, lectin-ferritin conjugates and cationized ferritin were applied to rabbit Peyer's patch mucosa in vivo and in vitro. The degree to which binding enhances transport was estimated by comparing quantitatively the transport of an adherent probe, wheat germ agglutinin-ferritin, to that of a nonadherent BSA-colloidal gold probe. When applied to fixed tissue, the lectins tested bound equally well to M cells and columnar absorptive cells. On living mucosa, however, ferritin conjugates of wheat germ agglutinin and Ricinus communis agglutinins I and II bound more avidly to M cells. Absorptive cells conducted little uptake and no detectable transepithelial transport. Lectins on M cell membranes were endocytosed from coated pits, rapidly transported in a complex system of tubulocisternae and vesicles, and remained adherent to M cell basolateral membranes. Cationized ferritin adhered to anionic sites and was similarly transported, but was released as free clusters at M cell basolateral surfaces. When applied simultaneously to Peyer's patch mucosa, wheat germ agglutinin-ferritin was transported about 50 times more efficiently than was bovine serum albumin-colloidal gold.  相似文献   

15.
The inside of our gut is inhabited with enormous number of commensal bacteria. The mucosal surface of the gastrointestinal tract is continuously exposed to them and occasionally to pathogens. The gut-associated lymphoid tissue (GALT) play a key role for induction of the mucosal immune response to these microbes1, 2. To initiate the mucosal immune response, the mucosal antigens must be transported from the gut lumen across the epithelial barrier into organized lymphoid follicles such as Peyer''s patches. This antigen transcytosis is mediated by specialized epithelial M cells3, 4. M cells are atypical epithelial cells that actively phagocytose macromolecules and microbes. Unlike dendritic cells (DCs) and macrophages, which target antigens to lysosomes for degradation, M cells mainly transcytose the internalized antigens. This vigorous macromolecular transcytosis through M cells delivers antigen to the underlying organized lymphoid follicles and is believed to be essential for initiating antigen-specific mucosal immune responses. However, the molecular mechanisms promoting this antigen uptake by M cells are largely unknown. We have previously reported that glycoprotein 2 (Gp2), specifically expressed on the apical plasma membrane of M cells among enterocytes, serves as a transcytotic receptor for a subset of commensal and pathogenic enterobacteria, including Escherichia coli and Salmonella enterica serovar Typhimurium (S. Typhimurium), by recognizing FimH, a component of type I pili on the bacterial outer membrane 5. Here, we present a method for the application of a mouse Peyer''s patch intestinal loop assay to evaluate bacterial uptake by M cells. This method is an improved version of the mouse intestinal loop assay previously described 6, 7. The improved points are as follows: 1. Isoflurane was used as an anesthetic agent. 2. Approximately 1 cm ligated intestinal loop including Peyer''s patch was set up. 3. Bacteria taken up by M cells were fluorescently labeled by fluorescence labeling reagent or by overexpressing fluorescent protein such as green fluorescent protein (GFP). 4. M cells in the follicle-associated epithelium covering Peyer''s patch were detected by whole-mount immunostainig with anti Gp2 antibody. 5. Fluorescent bacterial transcytosis by M cells were observed by confocal microscopic analysis. The mouse Peyer''s patch intestinal loop assay could supply the answer what kind of commensal or pathogenic bacteria transcytosed by M cells, and may lead us to understand the molecular mechanism of how to stimulate mucosal immune system through M cells.  相似文献   

16.
An emerging concept of normal brain immune surveillance proposes that recently and moderately activated central memory T lymphocytes enter the central nervous system (CNS) directly into the cerebrospinal fluid (CSF) via the choroid plexus. Within the CSF space, T cells inspect the CNS environment for cognate antigens. This gate of entry into the CNS could also prevail at the initial stage of neuroinflammatory processes. To actually demonstrate T cell migration across the choroidal epithelium forming the blood-CSF barrier, an in vitro model of the rat blood-CSF barrier was established in an “inverse” configuration that enables cell transmigration studies in the basolateral to apical, i.e. blood/stroma to CSF direction. Structural barrier features were evaluated by immunocytochemical analysis of tight junction proteins, functional barrier properties were assessed by measuring the monolayer permeability to sucrose and the active efflux transport of organic anions. The migratory behaviour of activated T cells across the choroidal epithelium was analysed in the presence and absence of chemokines. The migration pathway was examined by confocal microscopy. The inverse rat BCSFB model reproduces the continuous distribution of tight junction proteins at cell margins, the restricted paracellular permeability, and polarized active transport mechanisms, which all contribute to the barrier phenotype in vivo. Using this model, we present experimental evidence of T cell migration across the choroidal epithelium. Cell migration appears to occur via a paracellular route without disrupting the restrictive barrier properties of the epithelial interface. Apical chemokine addition strongly stimulates T cell migration across the choroidal epithelium. The present data provide evidence for the controlled migration of T cells across the blood-CSF barrier into brain. They further indicate that this recruitment route is sensitive to CSF-borne chemokines, extending the relevance of this migration pathway to neuroinflammatory and neuroinfectious disorders which are typified by elevated chemokine levels in CSF.  相似文献   

17.
In the human gut mucosa, specialized M cells deliver intact foreign macromolecules and commensal bacteria from the lumen to organized mucosal lymphoid tissues triggering immune responses. M cells are also major sites of adhesion and invasion for enteric pathogens. The molecular features of M cell apical surfaces that promote microbial normal attachment are still largely unknown. We have demonstrated previously that in the human colonic epithelium, carcinoembryonic antigen (CEA) and CEA-related cell adhesion molecule 1 (CEACAM1) are integral components of the apical glycocalyx which participate in epithelial–microbial interactions. In this study, based on the reactivity of specific monoclonal antibodies and on immunoelectron microscopy, we show that M cells of human colonic solitary lymphoid follicles express CEA and CEACAM1 on the apical surface. Recently these highly glycosylated molecules have been characterized as protein receptors for different bacteria. This leads us to propose a role for CEA and CEACAM1 in the adherence of enteric bacteria to the apical membrane of colonic M cells. We also hypothesize that, unlike colonic enterocytes, M cells lack the defense mechanism that eliminates CEA and CEACAM1 upon microbial binding and which is based on vesiculation of microvillus plasma membrane.  相似文献   

18.
The follicle associated epithelium (FAE) which separates the lymphoid follicle of Peyer's patch from the gut lumen is known to have specialized cells called M cells or "microfold" cells in man and certain animals. These cells are considered to be involved in antigen uptake and transport. Our light microscopic study of the small intestine of bonnet monkeys suggested the presence of such specialised cells in FAE. We have confirmed the presence of M cells in bonnet monkey FAE having ultrastructural features very similar to those of human M cells.  相似文献   

19.
We have cloned, overexpressed, and purified the catalytic domain (residues Gly106 to Asn268) of human macrophage metalloelastase (MMP-12) in Escherichia coli. This construct represents a truncated form of the enzyme, lacking the N-terminal propeptide domain and the C-terminal hemopexin-like domain. The overexpressed protein was localized exclusively to insoluble inclusion bodies, in which it was present as both an intact form and an N-terminally truncated form. Inclusion bodies were solubilized in an 8 M guanidine-HCl buffer and purified by gel filtration chromatography under denaturing conditions. Partial refolding of the protein by dialysis into a 3 M urea buffer caused selective degradation of the truncated form of the protein, while the intact catalytic domain was unaffected by proteolysis. An SP-Sepharose chromatography step purified the protein to homogeneity and served also to complete the refolding. The purified protein was homogeneous by mass spectrometry and had an activity similar to that of the recombinant enzyme purified from mammalian cells. The protein was both soluble and monodisperse at a concentration of 9 mg/ml. This purification procedure enables the production of 23 mg of protein per liter of E. coli culture and is amenable to large-scale protein production for structural studies.  相似文献   

20.
The mantle epithelium of the barnacle Chthamalus fragilis (Darwin) exhibits several ultrastructural features which may serve to regulate the calcification process. At the basis-mural plate and intermural plate junctions where rapid shell growth occurs, cells are characterized by long apical cytoplasmic projections and large intercellular spaces. These features may increase the functional surface area of the epithelium and enable more rapid deposition of calcium. The cells underlying the general shell surfaces contain numerous electron-dense inclusion bodies and show frequent cellular disintegration near the growing shell interface. Release of the granular contents of these inclusion bodies has been observed in both disintegrating and non-disintegrating cells. X-ray microanalysis revealed significantly higher calcium levels in the inclusion bodies than in the surrounding cytoplasm. This suggests a calcium transport role for these inclusion bodies. Cellular debris produced as a result of the disintegration of the mantle cells near the shell may play some role in the formation of the organic matrix of the shell. The presence of large numbers of mitochondria and well-developed apical microvilli in the cells of the inner mantle epithelium suggest that these cells serve to transport calcium into the mantle from the ambient sea water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号