首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel L-threonine transport system is induced in Escherichia coli cells when incubated in amino acid-rich medium under anaerobic conditions. Genetic and biochemical analyses with plasmids harboring mutations in the anaerobically expressed tdcABC operon indicated that the tdcC gene product was responsible for L-threonine uptake. Competition experiments revealed that the L-threonine transport system is also involved in L-serine uptake and is partially shared for L-leucine transport; L-alanine, L-valine, and L-isoleucine did not affect L-threonine uptake. Transport of L-threonine was inhibited by the respiratory chain inhibitors KCN and carbonyl cyanide m-chlorophenylhydrazone and was Na+ independent. These results identify for the first time an E. coli gene encoding a permease specific for L-threonine-L-serine transport that is distinct from the previously described threonine-serine transport systems. A two-dimensional topological model predicted from the amino acid composition and hydropathy plot showed that the TdcC polypeptide appears to be an integral membrane protein with several membrane-spanning domains exhibiting a striking similarity with other bacterial permeases.  相似文献   

2.
Amino acid transport was studied in membranes of the peptidolytic, thermophilic, anaerobic bacterium Clostridium fervidus. Uptake of the negatively charged amino acid L-glutamate, the neutral amino acid L-serine, and the positively charged amino acid L-arginine was examined in membrane vesicles fused with cytochrome c-containing liposomes. Artificial ion diffusion gradients were also applied to establish the specific driving forces for the individual amino acid transport systems. Each amino acid was driven by the delta psi and delta mu Na+/F and not by the Z delta pH. The Na+ stoichiometry was estimated from the amino acid-dependent 22Na+ efflux and Na(+)-dependent 3H-amino acid efflux. Serine and arginine were symported with 1 Na+ and glutamate with 2 Na+. C. fervidus membranes contain Na+/Na+ exchange activity, but Na+/H+ exchange activity could not be demonstrated.  相似文献   

3.
Uptake of Li+ induced by the addition of proline to a cell suspension of Escherichia coli was detected using an Li+-selective electrode. This Li+ uptake was inhibited by L-azetidine 2-carboxylic acid, a competitive inhibitor of the proline transport system. Thus, direct evidence for Li+-proline cotransport via the proline transport system was obtained. Kinetic parameters of the Li+ uptake were determined.  相似文献   

4.
The characteristics of the transport systems of L-glutamine in lactating mouse mammary gland have been studied. L-glutamine uptake was mediated by three Na+-dependent and one Na+-independent systems. The 2-(methylamino)isobutyric acid-sensitive component of Na+-dependent uptake exhibited the usual characteristics of system A. The other two Na+-dependent systems, which we have named BCI(-)-dependent and BCl(-)-independent, are the new systems identified. These are broad specificity systems and were discriminated on the basis of inhibition analysis, Cl- dependency and the effect of preloading mammary tissue with amino acids. While L-aspargine inhibited the uptake of L-glutamine via both these broad specificity systems, L-homoserine inhibited the uptake of L-glutamine via only BCl(-)-dependent system. The uptake of L-glutamine via the BCl(-)-independent system was upregulated by preloading mammary tissue with L-serine, while BCl(-)-dependent system was unaffected. The Na+-independent uptake of L-glutamine was inhibited by 2-aminobicyclo-(2,2,1)heptane carboxylic acid and other neutral amino acids, and identified as the system L.  相似文献   

5.
The transport of L-threonine and L-glutamine into murine P388 leukemia cells has been characterized. Threonine appears to be a specific substrate for a Na+-dependent amino acid transport system similar to system ASC of the HTC hepatoma cell. Threonine transport is uninhibited by 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid and alpha-(methylamino)isobutyric acid, shows a pattern of transport similar to that seen in HTC hepatoma cells over the pH range of 5.5-7.5, and is inhibited by L-serine and L-cysteine. Approximately two-thirds of glutamine transport into P388 cells also appears to enter P388 cells via this ASC-analogous system. However, based upon (a) inhibition studies with threonine (where the K1 of threonine inhibition of glutamine transport was 7-fold the Km of threonine transport), (b) inhibition analysis of glutamine transport with various amino acids and amino acid analogues, and (c) different patterns of transport between threonine and glutamine over the pH range of 5.5-7.5, approximately one-third of glutamine transport can be attributed to a second Na+-dependent amino acid transport system. This system appears to be similar to the system N of rat hepatocytes. Glutamine and threonine do not appear to enter P388 cells via systems A or L to any significant degree. P388 cells do not appear to exhibit 'adaptive regulation' of amino acid transport. Differences in 'adaptive regulation' could therefore not be utilized for comparing threonine and glutamine transport.  相似文献   

6.
The pH dependence of transport of the neutral amino acids L-serine and L-alanine by membrane vesicles of Streptococcus cremoris have been studied in detail. The rates of four modes of facilitated diffusion (e.g., influx, efflux, exchange, and counterflow) of L-serine and L-alanine increase with increasing H+ concentration. Rates of artificially imposed electrical potential across the membrane (delta psi)-driven transport of L-serine and L-alanine show an optimum at pH 6 to 6.5. Under similar conditions, delta psi- and pH gradient across the membrane (delta pH)-driven transport of L-leucine is observed within the pH range studied (pH 5.5 to 7.5). The effect of ionophores on the uptake of L-alanine and L-serine has been studied in membrane vesicles of S. cremoris fused with proteoliposomes containing beef heart mitochondrial cytochrome c oxidase as a proton motive force (delta p)-generating system (Driessen et al., Proc. Natl. Acad. Sci. USA 82:7555-7559, 1985). An increase in the initial rates of L-serine and L-alanine uptake is observed with decreasing pH, which is not consistent with the pH dependency of delta p. Nigericin, an ionophore that induced a nearly complete interconversion of delta pH into delta psi, stimulated both the rate and the final level of L-alanine and L-serine uptake. Valinomycin, an ionophore that induced a collapse of delta psi with a noncompensating increase in delta pH, inhibited L-alanine and L-serine uptake above pH 6.0 more efficiently than it decreased delta p. Experiments which discriminate between the effects of the internal pH and the driving force (delta pH) on solute transport indicate that at high internal pH the transport systems for L-alanine and L-serine are inactivated. A unique relation exists between the internal pH and the initial rate of uptake of L-serine and L-alanine with an apparent pK of 7.0. The rate of L-alanine and L-serine uptake decreases with increasing internal pH. The apparent complex relation between the delta p and transport of L-alanine and L-serine can be explained by a regulatory effect of the internal pH on the activity of the L-serine and L-alanine carriers.  相似文献   

7.
8.
M Takano  K Inui  T Okano  R Hori 《Life sciences》1985,37(17):1579-1585
The transport of cimetidine by rat renal brush border and basolateral membrane vesicles has been studied in relation to the transport system of organic cation. Cimetidine inhibited [3H]tetraethylammonium uptake by basolateral membrane vesicles in a dose dependent manner, and the degree of the inhibition was almost the same as that by unlabeled tetraethylammonium. In contrast, cimetidine inhibited the active transport of [3H]tetraethylammonium by brush border membrane vesicles more strongly than unlabeled tetraethylammonium did. In agreement with the transport mechanism of tetraethylammonium in brush border membranes, the presence of an H+ gradient ([H+]i greater than [H+]o) induced a marked stimulation of cimetidine uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was inhibited by unlabeled tetraethylammonium. These results suggest that cimetidine can share common carrier transport systems with tetraethylammonium in renal brush border and basolateral membranes, and that cimetidine transport across brush border membranes is driven by an H+ gradient via an H+-organic cation antiport system.  相似文献   

9.
The characteristics of tryptophan uptake in isolated human placental brush-border membrane vesicles were investigated. Tryptophan uptake in these vesicles was predominantly Na+-independent. Uptake of tryptophan as measured with short incubations occurred exclusively by a carrier-mediated process, but significant binding of this amino acid to the membrane vesicles was observed with longer incubations. The carrier-mediated system obeyed Michaelis-Menten kinetics, with an apparent affinity constant of 12.7 +/- 1.0 microM and a maximal velocity of 91 +/- 5 pmol/15 s per mg of protein. The kinetic constants were similar in the presence and absence of a Na+ gradient. Competition experiments showed that tryptophan uptake was effectively inhibited by many neutral amino acids except proline, hydroxyproline and 2-(methylamino)isobutyric acid. The inhibitory amino acids included aromatic amino acids as well as other system-1-specific amino acids (system 1 refers to the classical L system, according to the most recent nomenclature of amino acid transport systems). The transport system showed very low affinity for D-isomers, was not affected by phloretin or glucose but was inhibited by p-azidophenylalanine and N-ethylmaleimide. The uptake rates were only minimally affected by change in pH over the range 4.5-8.0. Tryptophan uptake markedly responded to trans-stimulation, and the amino acids capable of causing trans-stimulation included all amino acids with system-1-specificity. The patterns of inhibition of uptake of tryptophan and leucine by various amino acids were very similar. We conclude that system t, which is specific for aromatic amino acids, is absent from human placenta and that tryptophan transport in this tissue occurs via system 1, which has very broad specificity.  相似文献   

10.
The effect of bivalent cations on phosphate uptake by Saccharomyces cerevisiae was investigated. Phosphate uptake via the Na+-dependent transport system at pH 7.2 is stimulated by bivalent cations. The apparent affinity of phosphate for the transport mechanism is increased, but the apparent affinity for Na+ is decreased. Uptake of phosphate via the Na+-independent transport system is accompanied by a net proton influx of 2H+ and an efflux of 1 K+ for each phosphate ion taken up. At pH 4.5 phosphate uptake via the Na+-independent system is stimulated by bivalent cations, whereas at pH 7.2 uptake is inhibited. The effect of bivalent cations on phosphate uptake can be ascribed to a decrease in the surface potential.  相似文献   

11.
Basolateral amino acid transport systems have been characterized in the perfused exocrine pancreas using a high-resolution paired-tracer dilution technique. Significant epithelial uptakes were measured for L-alanine, L-serine, alpha-methylaminoisobutyric acid, glycine, methionine, leucine, phenylalanine, tyrosine and L-arginine, whereas L-tryptophan and L-aspartate had low uptakes. alpha-Methylaminoisobutyric acid transport was highly sodium dependent (81 +/- 3%), while uptake of L-serine, L-leucine and L-phenylalanine was relatively insensitive to perfusion with a sodium-free solution. Cross-inhibition experiments of L-alanine and L-phenylalanine transport by twelve unlabelled amino acids indicated overlapping specificities. Unidirectional L-phenylalanine transport was saturable (Kt = 16 +/- 1 mM, Vmax = 12.3 +/- 0.4 mumol/min per g), and weighted non-linear regression analysis indicated that influx was best described by a single Michaelis-Menten equation. The Vmax/Kt ratio (0.75) for L-phenylalanine remained unchanged in the presence of 10 mM L-serine. Although extremely difficult to fit, L-serine transport appeared to be mediated by two saturable carriers (Kt1 = 5.2 mM, Vmax1 = 7.56 mumol/min per g; Kt2 = 32.8 mM, Vmax2 = 22.9 mumol/min per g). In the presence of 10 mM L-phenylalanine the Vmax/Kt ratio for the two L-serine carriers was reduced, respectively, by 79% and 50%. Efflux of transported L-[3H]phenylalanine or L-[3H]serine was accelerated by increasing perfusate concentrations of, respectively, L-phenylalanine and L-serine, and trans-stimulated by other amino acids. In the pancreas neutral amino acid transport appears to be mediated by Na+-dependent Systems A and ASC, the classical Na+-independent System L and another Na+-independent System asc recently identified in erythrocytes. The interactions in amino acid influx and efflux may provide one of the mechanisms by which the supply of extracellular amino acids for pancreatic protein synthesis is regulated.  相似文献   

12.
Uptake of guanidine, an endogenous organic cation, into brush-border membrane vesicles isolated from human term placentas was investigated. Initial uptake rates were manyfold greater in the presence of an outward-directed H+ gradient ([pH]o greater than [pH]i) than in the absence of a H+ gradient ([pH]o = [pH]i). Guanidine was transiently accumulated inside the vesicles against a concentration gradient in the presence of the H+ gradient. The H+ gradient-dependent stimulation of guanidine uptake was not due to a H+-diffusion potential because an ionophore (valinomycin or carbonylcyanide p-trifluoromethoxyphenylhydrazone)-induced inside-negative membrane potential failed to stimulate the uptake. In addition, uphill transport of guanidine could be demonstrated even in voltage-clamped membrane vesicles. The H+ gradient-dependent uptake of guanidine was inhibited by many exogenous as well as endogenous organic cations (cis-inhibition) but not by cationic amino acids. The presence of unlabeled guanidine inside the vesicles stimulated the uptake of labeled guanidine (trans-stimulation). These data provide evidence for the presence of an organic cation-proton antiporter in human placental brush-border membranes. Kinetic analysis of guanidine uptake demonstrated that the uptake occurred via two saturable, carrier-mediated transport systems, one being a high affinity, low capacity type and the other a low affinity, high capacity type. Studies on the effects of various cations on the organic cation-proton antiporter and the Na+-H+ exchanger revealed that these two transport systems are distinct.  相似文献   

13.
Uptake and inhibitory kinetics of [3H]L-threonine were evaluated in preparations of pig jejunal brush border membrane vesicles. Uptake of [3H]L-threonine under O-trans, Na+ gradient, and O-trans, Na(+)-free conditions was best described by high affinity transport (Km < 0.01 mM) plus a nonsaturable component. The maximal velocity of transport was 3-fold greater under Na+ gradient conditions. 100 mM concentrations of all of the dipolar amino acids and 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid caused complete inhibition of [3H]L-threonine transport under Na+ gradient and Na(+)-free conditions. Imino acids, anionic amino acids, cationic amino acids, and methylamino-isobutyric acid caused significant partial inhibition of L-threonine uptake. Inhibitor concentration profiles for proline and lysine were consistent with low affinity competitive inhibition. The Ki values of alanine and phenylalanine approximated 0.2 and 0.5 mM, respectively, under both Na+ gradient and Na(+)-free conditions. These data indicate that the transport system available for L-threonine in the intestinal brush border membrane (system B) is functionally distinct from other amino acid transport systems. Comparison of kinetics parameters in the presence and absence of a Na+ gradient suggests that both partially and fully loaded forms of the carrier can function to translocate substrate and that Na+ serves to accelerate L-threonine transport by a mechanism that does not involve enhanced substrate binding.  相似文献   

14.
Two- and four-cell mouse embryos exhibited both Na+-dependent and Na+-independent components of zwitterionic alpha-amino acid transport, which we tentatively ascribe to the A and L amino acid transport systems, respectively. Uptake of taurine was virtually all Na+-dependent and is probably via the beta system. Na+-independent L-lysine uptake by two-cell embryos may have been via system y+. The small amount of lysine transport which was Na+-dependent (30% of the total) could not be attributed to any well known transport system and may have been due to the early ontogenetic expression of a newly described transport system which predominates in preimplantation blastocysts. We conclude that the rate of Na+-dependent amino acid transport in two-cell mouse embryos could be significantly affected in situ by changes in the [Na+] which are known to occur in oviductal fluid.  相似文献   

15.
T Kusano  G Y Ji  C Inoue    S Silver 《Journal of bacteriology》1990,172(5):2688-2692
Mercuric reductase activity determined by the Thiobacillus ferrooxidans merA gene (cloned and expressed constitutively in Escherichia coli) was measured by volatilization of 203Hg2+. (The absence of a merR regulatory gene in the cloned Thiobacillus mer determinant provides a basis for the constitutive synthesis of this system.) In the absence of the Thiobacillus merC transport gene, the mercury volatilization activity was cryptic and was not seen with whole cells but only with sonication-disrupted cells. The Thiobacillus merC transport function was compared with transport via the merT-merP system of plasmid pDU1358. Both systems, cloned and expressed in E. coli, governed enhanced uptake of 203Hg2+ in a temperature- and concentration-dependent fashion. Uptake via MerT-MerP was greater and conferred greater hypersensitivity to Hg2+ than did uptake with MerC. Mercury uptake was inhibited by N-ethylmaleimide but not by EDTA. Ag+ salts inhibited mercury uptake by the MerT-MerP system but did not inhibit uptake via MerC. Radioactive mercury accumulated by the MerT-MerP and by the MerC systems was exchangeable with nonradioactive Hg2+.  相似文献   

16.
Carrier-mediated uptake of cephalexin in human intestinal cells   总被引:2,自引:0,他引:2  
A transport carrier for cephalexin, a cephalosporin antibiotic, was identified in a human intestinal cell line, HT-29. Uptake via the carrier was inhibited by dipeptides, phe-gly, gly-pro, carnosine, and cefaclor, a close drug analog. Uptake was unaffected by the presence of amino acids. The pH optimum for uptake was 6.2. Drug uptake was not dependent on the presence of sodium and was insensitive to metabolic inhibitors. The efflux of cephalexin was stimulated by extracellular carnosine, indicating counter-transport. Taken together, drug uptake is mediated by a dipeptide transport carrier and not by an amino acid transport carrier. This is the first demonstration of the carrier in an established cell line.  相似文献   

17.
L-Alanine transport across the isolated duodenal mucosa of the lizard Gallotia galloti has been studied in Ussing chambers under short-circuit conditions. Net L-alanine fluxes, transepithelial potential difference (PD), and short-circuit current (Isc) showed concentration-dependent relationships. Na(+)-dependent L-alanine transport was substantially inhibited by the analog alpha-methyl aminoisobutyric acid (MeAIB). Likewise, MeAIB fluxes were completely inhibited by L-alanine, indicating the presence of system A for neutral amino acid transport. System A transport activity was electrogenic and exhibited hyperbolic relationships for net MeAIB fluxes, PD, and Isc, which displayed similar apparent K(m) values. Na(+)-dependent L-alanine transport, but not MeAIB transport, was partially inhibited by L-serine and L-cysteine, indicating the participation of system ASC. This transport activity represents the major pathway for L-alanine absorption and seemed to operate in an electroneutral mode with a negligible contribution to the L-alanine-induced electrogenicity. It is concluded from the present study that the active Na(+)-dependent L-alanine transport across the isolated duodenal mucosa of Gallotia galloti results from the independent activity of systems A and ASC for neutral amino acid transport.  相似文献   

18.
Melibiose transport of Escherichia coli.   总被引:4,自引:3,他引:1       下载免费PDF全文
K Tanaka  S Niiya    T Tsuchiya 《Journal of bacteriology》1980,141(3):1031-1036
Transport of [3H]melibiose, prepared from [3H]raffinose, was investigated in Escherichia coli. Na+ stimulated the transport of melibiose via the melibiose system, whereas Li+ inhibited it. Kinetic parameters of melibiose transport were determined. The Kt values were 0.57 mM in the absence of Na+ or Li+, 0.27 mM in the presence of 10 mM NaCl, and 0.29 mM in the presence of 10 mM LiCl. The Vmax values were 40 and 46 nmol/min per mg of protein in the absence and in the presence of NaCl and 18 nmol/min per mg of protein in the presence of LiCl. Melibiose transport via the melibiose system was temperature sensitive in a wild-type strain of Escherichia coli and was not inhibited by lactose. On the other hand, melibiose uptake via the lactose system was not temperature sensitive, was inhibited by lactose, and was not affected by Na+ and Li+. Methyl-beta-D-thiogalactoside, a substrate for both systems, inhibited the transport of melibiose via both systems.  相似文献   

19.
1. The occurrence and characterization of acidic amino acid transport in the plasma membrane of a variety of cells and tissues of a number of organisms is reviewed. 2. Several cell types, especially in brain, possess both high- and low-affinity transport systems for acidic amino acids. 3. High-affinity systems in brain may function to remove neurotransmitter amino acid from the extracellular environment. 4. Many cell systems for acidic amino acid transport are energized by an inwardly directed Na+ gradient. Moreover, certain cell types, such as rat brain neurons, human placental trophoblast and rabbit and rat kidney cortex epithelium, respond to an outwardly directed K+ gradient as an additional source of energization. This simultaneous action may account for the high accumulation ratios seen with acidic amino acids. 5. Rabbit kidney has been found to have a glutamate-H+ co-transport system which is subject to stimulation by protons in the medium. 6. Acidic amino acid transport in rat brain neurons occurs with a stoichiometric coupling of 1 mol of amino acid to 2 mol of Na+. For rabbit intestine, one Na+ is predicted to migrate for each mol of amino acid. 7. Uptake in rat kidney cortex and in high-K+ dog erythrocytes is electrogenic. However, uptake in rabbit and newt kidney and in rat and rabbit intestine is electroneutral. 8. Na+-independent acidic amino acid transport systems have been described in the mouse lymphocyte, the human fibroblast, the mouse Ehrlich cell and in rat hepatoma cells. 9. In a number of cell systems, D-acidic amino acids have substantial affinity for transport; D-glutamate, in a number of systems, however, appears to have little reactivity. 10. Acidic amino acid transport in some cell systems appears to occur via the "classical" routes (Christensen, Adv. Enzymol. Relat. Areas Mol. Biol. 49, 41-101, 1979). For example, uptake in the Ehrlich cell is partitioned between the Na+-dependent A system (which transports a wide spectrum of neutral amino acids), the Na+-dependent ASC system (which transports alanine, serine, threonine, homoserine, etc.), and the Na+-independent L system (which shows reactivity centering around neutral amino acids such as leucine and phenylalanine). Also, a minor component of uptake in mouse lymphocytes occurs by a route resembling the A system. 11. Human fibroblasts possess a Na+-independent adaptive transport system for cystine and glutamate that is enhanced in activity by cystine starvation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Analyses of amino acid transport systems in JapaneseParamecium symbiont F36-ZK were performed using14C-amino acids. Kinetic analyses of amino acid uptake and competitive experiments revealed three transport systems; a basic amino acid transport system, which catalyzed transport of L-Arg and L-Lys, a general amino acid transport system, which had broad specificity for 19 amino acids (but not L-Arg), and an alanine transport system. These three systems were considered to be capable of active transport. Amino acid-proton symport was indicated by the following data: decreases in pH of the medium observed during L-Ser and L-Ala uptake, and uptake of L-Arg, L-Ser and L-Ala being inhibited by carbonyl cyanide m-chlorophenylhydrazone, sodium azide and vanadate. The optimal pH for uptake of neutral amino acids and L-Arg was around 5 and 5 to 6.5, respectively. Uptake of L-Asp and L-Glu was very sensitive to pH and little uptake of L-Asp was measured above pH 6.0. Amino acid uptake was not inhibited by nitrate or ammonium, and cultured cells with ammonium also possessed constitutive uptake systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号