首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capability of a bacterial population to degrade oil hydrocarbons and naphthalene was found to be markedly enhanced by an optimized P:N ratio as well as by proper application of a surface-active compound. The importance of this optimization procedure was shown by both laboratory and technological performed experiments. Presented at the 4th Mini-Symposium on Biosorption and Microbial Degradation Prague, Czech Republic, November 26–29, 1996.  相似文献   

2.
The effect of successive inoculation with hydrocarbon-degrading bacteria on the dynamics of petroleum hydrocarbons degradation in soil was investigated in this study. Oily sludge was used as a source of mixed hydrocarbons pollutant. Two bacterial consortia composed of alkanes and polycyclic aromatic hydrocarbon degraders were constructed from bacteria isolated from soil and oily sludge. These consortia were applied to incubated microcosms either in one dose at the onset of the incubation or in two doses at the beginning and at day 62 of the incubation period, which lasted for 198 days. During this period, carbon mineralization was evaluated by respirometry while total petroleum hydrocarbons and its fractions were gravimetrically evaluated by extraction from soil and fractionation. Dosing the bacterial consortia resulted in more than 30% increase in the overall removal of total petroleum hydrocarbons from soil. While alkane removal was only slightly improved, aromatic and asphaltic hydrocarbon fraction removal was significantly enhanced by the addition of the second consortium. Polar compounds (resins) were enriched only as a result of aromatics and asphaltene utilization. Nonetheless, their concentration declined back to the original level by the end of the incubation period.  相似文献   

3.
Summary The changes in the bacterial flora after application of oily sludge and fertilizer to two different soils, both sandy, but one somewhat richer in organic material, have been studied. Application of oily sludge and fertilizer to the soils had no influence on direct counts. The CFUs increased in the low-organic soil when sludge was applied, but did not change in the richer soil by the same treatment. When both sludge and fertilizer were applied together, strong increases in CFUs were found in both soils. Application of fertilizer together with sludge excluded sporeforming rods and actinomycetes from the poorer soil and strongly stimulated pleomorphic rods+ cocci and non-sporeforming regular rods. The same treatment of the richer soil resulted in an enhancement of CFUs of all tested groups.  相似文献   

4.
以大庆油田原油和含油污泥为对象,研究不同结构配比鼠李糖脂表面活性剂乳化活性及其对含油污泥清洗效果的影响,并优化清洗工艺参数。结果表明:单鼠李糖脂比例越高,其表面活性越好;双鼠李糖脂比例越高,其对原油的乳化能力越强;临界胶束浓度随着双鼠李糖脂比例的增加而逐渐加大;单、双鼠李糖脂配比不同的表活剂对油泥的清洗效果也不同,质量比为50∶50时清洗效率最高;鼠李糖脂浓度为1.0 g·L-1、热洗时间为1.5h、热洗温度为65℃、洗脱强度为220 r·min-1、固液质量比为1∶5条件下,油泥的清洗效率最高,可达81.3%;含油率为29.6%的落地油泥,经一级洗涤后油泥残油率降至5.5%,原油回收率达到87.3%,清洗出的原油无明显乳化,易于分离。由此可知,鼠李糖脂的单、双糖脂比例不同对其理化性质和清洗含油污泥的效果均有不同程度的影响。  相似文献   

5.
Summary The effect of sludge adaptation on biodegradation of phenol was studied. The adapted sludge was obtained in a fermenter by stepwise increase in the concentration of phenol. The microorganisms within sludge, adapted to the utilization of phenol, subsequently degraded phenol more rapidly (14 mg/l/day) than organisms within unadapted sludge (8.8 mg/l/day). When the phenol concentration was increased, the organisms within adapted sludge grew almost without change up to 500 mg/phenol/l while a sharp decline in growth was observed for organisms within the unadapted sludge. Microbial isolates in the adapted sludge differed in their phenol-degrading capacity showing that the adaptation ability to degrade phenol was dependent on the presence of specific microorganisms. Among the isolates,Pseudomonas sp. andArthrobacter sp. showed the higher degradation rates. However, they were inferior to that of the adapted sludge, suggesting the existence of a synergistic effect between the organisms present.
Influence de l'adaptation de la boue sur la biodégradation du phénol
Résumé On étudie l'effet de l'adaptation de la boue sur la biodégradation du phénol. La boue adaptée est obtenue en fermenteur par l'augmentation étagée de la concentration en phénol. Les microorganismes dans la boue, adaptés à l'utilisation du phénol, dégradent par la suite plus rapidement le phénol (14 mg par litre par jour) que les microorganismes dans la boue non adaptée (8.8 mg par litre par jour). Quand on augmente la concentration en phénol, les microorganismes dans la boue adaptée croissent quasi sans modification jusqu'à 500 mg de phénol par litre, tandis qu'on observe une diminution remarquable de la croissance chez les microorganismes dans la boue non adaptée. Les souches microbiennes isolées à partir de la boue adaptée démontrent des capacités différentes de dégradation du phénol, ce qui montre que le capacité adaptée de dégrader le phénol dépend de la présence de microorganismes spécifiques. Parmi les isolats,Pseudomonas sp. etArthrobacter sp. démontrent les vitesses de dégradation les plus élevées. Toutefois, celles-ci sont inférieures à celles de la boue adaptée, ce qui suggère l'existence d'un effet synergique entre les microorganismes présents.
  相似文献   

6.
The aim of the investigation was to study if improved nutrient status in Scots pine (Pinus sylvestris L) trees would be reflected in decreased concentrations of arginine in the needles. The studies trees had imbalanced mineral nutrient composition and elevated needle arginine concentrations caused by long-term fertilization with N. Concentrations of arginine and mineral nutrients in needles were followed over three consecutive years of additional fertilization with N alone or with P, K, Mg and micronutrients in combination with and without N.Analysis of needle mineral concentrations suggested that there were deficiencies only in K and Mg. The N concentration increased both in trees fertilized with N alone and in trees fertilized with N in combination with mineral nutrients. In the control treatment and in trees fertilized with mineral nutrients other than N the N concentration remained fairly constant. The highest Ca/N, K/N and P/N ratios were found in trees fertilized with mineral nutrients other than N while the lowest ratios were found in trees fertilized with N alone. Arginine concentrations in needles from trees fertilized with N alone remained at a high level throughout the experiment while arginine concentrations in trees given the other treatments decreased.The results show that the mineral nutrient balance can be improved with appropriate fertilization and that this improvement is reflected in decreasing arginine levels. Furthermore the study demonstrates that when N supply is reduced the arginine concentration also decreases also as an effect of reduced N supply per se. The study also indicates that arginine may be a better measure of the N status in pine trees than total N.  相似文献   

7.
矿质养分输入对森林生物固氮的影响   总被引:1,自引:0,他引:1  
郑棉海  陈浩  朱晓敏  毛庆功  莫江明 《生态学报》2015,35(24):7941-7954
生物固氮是森林生态系统重要的氮素来源,并且在全球氮循环中占有重要的地位。近代以来,因人类活动加剧而导致氮沉降的增加以及其它矿质养分元素(如磷、钼、铁等)输入的改变已成为影响森林生态系统生物固氮的重要因素之一,并引起了学术界的普遍关注。综述了国内外关于森林生物固氮对矿质养分输入的响应及机理。主要内容包括:(1)森林生物固氮的概念及主要的测定方法;(2)矿质养分输入对森林生物固氮的影响。整体上讲,氮素输入抑制了森林生物固氮,磷和其他营养元素输入则表现为促进作用。氮和磷、磷和微量元素同时添加均提高了森林的固氮量;(3)矿质养分改变森林生物固氮的机理。包括生物作用机制(如改变地表层固氮菌的数量或群落丰度、改变结瘤植物的根瘤生物量和附生植物的丰度或盖度)和环境作用机制(如引起土壤酸化、改变碳源物质的含量);(4)探讨了矿质养分输入对森林生物固氮影响研究中所存在的问题,并对未来该领域的研究提出建议。  相似文献   

8.
High rate granular methanogenic fermentations were performed in one-phase upflow anaerobic sludge blanket (UASB) reactors treating synthetic wastewaters containing starch, sucrose, ethanol, and butyrate plus propionate. All granules formed showed high settling velocities which enabled high cell mass retention and accommodation of high loading rates. The maximum COD removal rates (g COD/l-reactor·d) obtained after 500-d operations were 7.6 for starch, 10.5 for sucrose, 32.1 for ethanol, and 42.6 for butyrate-propionate. Long-term growth on various defined substrates altered the population of bacterial trophic groups and overall characteristics of granules. The starch- and sucrose-grown granules were characterized by larger size and more abundant extracellular polymeric substances (EPS) than the ethanol- or fatty acids-grown granules. The fatty acids-grown granules contained a considerable amount of inorganic salts (ash content: 56 to 63%) but a small amount of EPS, and showed a denser ultrastructure than the other three types of granules. The granules grown on ethanol under slightly acidic conditions showed the lowest specific gravity and volatile suspended solids (VSS) density as well as ash content among all of the granules. As aceticlastic methanogens, Methanothrix spp. were predominant in the starch-, sucrose-, and fatty acids-grown granules, whereas comparable numbers of Methanosarcina spp. were observed only in the ethanol-grown granules. The populations of hydrogenotrophic methanogens were the largest of all bacterial trophic groups in the respective granules. The data confirm that the prevalence of Methanothrix spp. and high methanogenic activity for H2 are general characteristics of methanogenic granucles and that EPS and inorganic deposits contribute chemically to the enhancement of structural stability and mechanical strength of granules.  相似文献   

9.
The occurrence, vertical distribution, and the physiological state of microorganisms in a petrochemical oily sludge deposit were studied. The total number and the number of viable microbial cells at depths of 0.2 and 3 m were about 10 and 10(8) cells/g dry wt. sludge. Most microbial cells taken from the middle (1 m deep) and the bottom (3 m deep) sludge horizons showed a delayed colony-forming ability, which suggested that the cells occurred in a hypometabolic state. The relative number of microaerobic denitrifying microorganisms steeply increased with depth. The amount of microorganisms tolerant to 3, 5, and 10% NaCl and capable of growing at 7 and 40 degrees C varied from 10(2) to 10(8) CFU/g dry wt. sludge. Petrochemical oily sludge was found to maintain the growth of heterotrophs, among which the degraders of oily sludge and ten different individual polycyclic aromatic hydrocarbons were detected. The occurrence of highly adaptable microorganisms with an adequate metabolic potential in the petrochemical oily sludge deposit implies that its bioremediation is possible without introducing special microorganisms.  相似文献   

10.
The biodegradation capacity of aliphatic and aromatic hydrocarbons of petrochemical oily sludge in liquid medium by a bacterial consortium and five pure bacterial cultures was analyzed. Three bacteria isolated from petrochemical oily sludge, identified as Stenotrophomonas acidaminiphila, Bacillus megaterium and Bacillus cibi, and two bacteria isolated from a soil contaminated by petrochemical waste, identified as Pseudomonas aeruginosa and Bacillus cereus demonstrated efficiency in oily sludge degradation when cultivated during 40 days. The bacterial consortium demonstrated an excellent oily sludge degradation capacity, reducing 90.7% of the aliphatic fraction and 51.8% of the aromatic fraction, as well as biosurfactant production capacity, achieving 39.4% reduction of surface tension of the culture medium and an emulsifying activity of 55.1%. The results indicated that the bacterial consortium has potential to be applied in bioremediation of petrochemical oily sludge contaminated environments, favoring the reduction of environmental passives and increasing industrial productivity.  相似文献   

11.
增铵营养对小麦氮及矿质营养含量和积累的影响   总被引:5,自引:1,他引:5  
1 引  言增铵营养 (EAN)即混合形态N营养 ,是相对于单一NO-3 营养而提出的旱地作物N营养的新方法 .旱地作物在NO-3 营养下生长优于NH+ 4 营养[6] ,但在增铵营养下小麦等旱地作物的干物质积累和产量显著高于两种单一形态N营养[1~ 3 ,5,7] .同时 ,我们的研究表明 ,增铵营养对小麦生长的促进效应具有明显的基因型差异[3 ] ,但其生理基础尚不明确 .由于植株对两种形态N的吸收和积累也影响对其它无机离子的吸收 ,因此 ,在增铵营养下 ,不同小麦基因型对N及P、K、Ca、Mg等营养元素的吸收和积累也会存在差异 ,可能影响小麦…  相似文献   

12.
Summary The biodegradation of five weathered crude oils by two species ofAeromonas, (B59-4 and E. BOB) was investigated in varying concentrations of sodium chloride. A minimal salts medium whose NaCl concentration increased serially by 0.5% w/v up to 1.5% w/v was used to investigate the growth of these strains in glucose, and their biodegradation of the crude oils. The latter was also investigated in fresh and aged sea water. Strain B59-4 was more potent than E. BOB in the degradation of all five crude oils and at all four levels of salt concentration tested. The amount of oil degraded by each strain increased initially to a maximum level at 0.5% w/v NaCl, but thereafter decreased with increasing salt concentration, and the patterns were similar to those of aged and fresh sea water, respectively. The Forties and Nigerian crude oils with lower specific gravity, were more readily degraded than the Libyan and Venezuelan with higher specific gravity. The growth of the two strains ofAeromonas in glucose and their biodegradation of crude oils was optimal at 0.5% w/v NaCl, and thereafter decreased with increasing salt concentration of the basal medium.  相似文献   

13.
This study evaluated the chronic impact of erythromycin, a macrolide antibiotic, on microbial activities, mainly focusing on changes in process kinetics induced on substrate biodegradation and all related biochemical processes of microbial metabolism. Experiments involved two fill/draw reactors sustained at steady state at two different sludge ages of 10 and 2.0 days, fed with peptone mixture and continuous erythromycin dosing of 50 mg/L. Oxygen uptake rate profiles were generated in a series of parallel batch reactors seeded with biomass from fill/draw systems at selected periods of steady-state operation. Experimental data were evaluated by model calibration reflecting inhibitory effect on process kinetics: continuous erythromycin dosing inhibited microbial growth, reduced the rate of hydrolysis, blocked substrate storage and accelerated endogenous respiration. Adverse impact was mainly due to changes inflicted on the composition of microbial community. Interruption of erythromycin feeding resulted in partial recovery of microbial response. Sludge age affected the nature of inhibition, indicating different process kinetics for faster growing microbial community. Kinetic evaluation additionally revealed the toxic effect of erythromycin, which inactivated a fraction of biomass. Mass balance using oxygen uptake rate data also identified a stoichiometric impact, where a fraction of available substrate, although completely removed, could not be utilized in metabolic activities.  相似文献   

14.
Effect of environmental parameters on the biodegradation of oil sludge.   总被引:24,自引:0,他引:24  
A laboratory study was conducted with the aim of evaluating and optimizing the environmental parameters of "landfarming", i.e., the disposal by biodegradation in soil of oily sludges generated in the refining of crude oil and related operations. Oil sludge biodegradation was monitored by CO2 evolution and by periodic analysis of residual hydrocarbons. The parameters studied were soil moisture, pH, mineral nutrients, micronutrients, organic supplements, treatment rate, teratment frequency, and incubation temperature. Oil sludge biodegradation was optimal at a soil water-holding capacity of 30 to 90%, a pH of 7.5 to 7.8, C:N and C:P ratios of 60:1 and 800:1, respectively, and a temperature of 20 degrees C or above. Addition of micronutrients and organic supplements was not beneficial; sewage sludge interfered with hydrocarbon biodegradation. Breakdown of the saturated hydrocarbon (alkane and cycloalkane) fraction was the highest at low application rates, but higher application rates favored the biodegradation of the aromatic and asphaltic fractions. An application rate of 5% (wt/wt) oil sludge hydrocarbon to the soil (100,000 liters/hectare) achieved a good compromise between high biodegradation rates and efficient land use and resulted in the best overall biodegradation rate of all hydrocarbon classes. Frequent small applications resulted in higher biodegradation than single large applications. Two 100,000-liter/hectare (255 barrels per acre) or four 50,000-liter/hectare oil sludge hydrocarbon applications per growing season seem appropriate for most temperate zone disposal sites.  相似文献   

15.
We investigated the anaerobic biodegradation of mono- and dichlorophenol isomers by fresh (unacclimated) sludge and by sludge acclimated to either 2-chlorophenol, 3-chlorophenol, or 4-chlorophenol. Biodegradation was evaluated by monitoring substrate disappearance and, in selected cases, production of 14CH4 from labeled substrates. In unacclimated sludge, each of the monochlorophenol isomers was degraded. The relative rates of disappearance were in this order: ortho greater than meta greater than para. For the dichlorophenols in unacclimated sludge, reductive dechlorination of the Cl group ortho to phenolic OH was observed, and the monochlorophenol compounds released were subsequently degraded. 3,4-Dichlorophenol and 3,5-dichlorophenol were persistent. Sludge acclimated to 2-chlorophenol cross-acclimated to 4-chlorophenol but did not utilize 3-chlorophenol. This sludge also degraded 2,4-dichlorophenol. Sludge acclimated to 3-chlorophenol cross-acclimated to 4-chlorophenol but not to 2-chlorophenol. This sludge degraded 3,4- and 3,5-dichlorophenol but not 2,3- or 2,5-dichlorophenol. The specific cross-acclimation patterns observed for monochlorophenol degradation demonstrated the existence of two unique microbial activities that were in turn different from fresh sludge. The sludge acclimated to 4-chlorophenol could degrade all three monochlorophenol isomers and 2,4- and 3,4-dichlorophenol. The active microbial population in this sludge appeared to be a mixture of populations present in the 2-chlorphenol- and 3-chlorophenol-acclimated sludges, both of which could utilize 4-chlorophenol. Experiments with 14C-radiolabeled p-chlorophenol, o-chlorophenol, and 2,4-dichlorophenol demonstrated that these compounds were converted to 14CH4 and 14CO2.  相似文献   

16.
17.
Dairy wastewater containing different oil and grease contents was treated in batch activated sludge systems with and without (control) an enzymatic pre-hydrolysis stage [with 0.2% (w/v) of fermented babassu cake containing Penicillium restrictum lipases]. When the oil and grease concentration in the control bioreactor was increased (400, 600 and 800 mg l–1), the COD removal efficiency fell (86%, 75% and 0%). However, in the reactor fed with pre-hydrolysed wastewater, COD removal efficiency was maintained (93%, 92% and 82%). At an oil and grease concentration of 800 mg l–1, the control bioreactor presented final volatile suspended solids (VSS) values ten times greater (2225 mg l–1) than those obtained for bioreactor fed with pre-hydrolysed wastewater (200 mg l–1).  相似文献   

18.
19.
为探讨连作花生土壤中酚酸类物质的累积与花生连作障碍的关系,通过大田盆栽试验,研究了对羟基苯甲酸、肉桂酸对花生花针期(出苗后45 d)、结荚初期(出苗后75 d)、结荚末期(出苗后105 d)根部土壤养分、酶活性及产量的影响.结果表明: 经两种酚酸类物质处理后,花生根部土壤养分和酶活性均发生了明显的变化,以在花针期受到的影响最大,土壤碱解氮、有效磷、有效钾和土壤脲酶、蔗糖酶、中性磷酸酶活性均显著降低;到花生结荚初期和结荚末期,两种物质对土壤养分、酶活性的抑制作用有减弱趋势.初始含量相同时,肉桂酸的化感作用相对较强.高浓度(80 mg·kg-1干土)对羟基苯甲酸、肉桂酸处理分别使每盆花生荚果产量降低了45.9%、52.8%,单株结果数降低了46.2%、48.9%.  相似文献   

20.
Sequencing-batch reactors were used to develop an activated sludge enrichment culture capable of degrading 1-naphthylamine (1NA). Approximately 5 months acclimation with salicylic acid (1600 mg l–1) as the primary source of carbon were required to obtain an enrichment culture able to degrade even small quantities of 1NA. After an additional 4 months acclimation, during which the concentration of salicyclic acid was decreased to 50 mg l–1, a culture developed that degraded 1NA concentrations as high as 300 mg l–1. Kinetic determinations showed that 1NA degradation (in the presence of salicylate) followed Michaelis-Menten kinetics with K m and V m values of 32.5±2.2 mg l–1 and 375±18 ng 1NA mg–1 cells h–1, respectively. The same enrichement was able to degrade 1NA when present as the sole source of carbon and energy and to convert approximately 87% to CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号