首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Kinetic properties of purified chloroplast isoenzyme of the "malic" enzyme from corn leaves were studied. The enzyme had optimum activity at pH 8.0 and 36 degrees C. Under standart conditions the Michaelis constants for the "malic" enzyme with Mn2+ as cofactor are 0.091 mM for malate and 0.04 mM for NADP. In case of Mg2+ as cofactor they are 0.66 and 0.02 mM respectively. Respective Km values for the cofactors Mn2+ and Mg2+ are 0.018 and 0.091 mM. The activity of the "malic" enzyme was inhibited by reduced NADP and NAD, ATP, ADP, fructose-1,6-diphosphate, oxaloacetic, oxalic, glyoxylic, glycolic and alpha-ketoglutaric acids, as well as by phosphate anions and pyrophosphate. The inhibitory effect of all metabolites and ions is more pronounced in case of Mn, rather than Mg, used as cofactors for the reaction. A possibility of metabolic regulation of NADP-"malic" enzyme activity in the leaves of C4-plants, is discussed.  相似文献   

3.
A new purification method for cytosolic malate dehydrogenases from several sources has been developed. The procedure, employing chromatographies on 5'AMP-Sepharose, DEAE-Sephacel and Blue-Sepharose, allows for a rapid isolation of the enzyme (approximately 40 hours), in large quantities, with good yields (45-54%). The specific activity of final preparations were around 1300 I.U./mg and were judged homogeneous by polyacrylamide gradient gel and sodium dodecyl sulfate polyacrylamide gel electrophoresis, high performance size exclusion chromatography and isoelectric focusing.  相似文献   

4.
  • 1.1. The purification and characterization of the cytoplasmic and mitochondrial forms of malate dehydrogenase from human placenta are described.
  • 2.2. Both enzymes are composed of two subunits and have similar molecular weights and similar pH optima.
  • 3.3. However, they differ with respect to thermal stability, excess substrate inhibition and electrophoretic mobility.
  相似文献   

5.
Mitochondrial malate dehydrogenase (m-MDH; EC 1.1.1.37), from mycelial extracts of the thermophilic, aerobic fungus Talaromyces emersonii, was purified to homogeneity by sequential hydrophobic interaction and biospecific affinity chromatography steps. Native m-MDH was a dimer with an apparent monomer mass of 35 kDa and was most active at pH 7.5 and 52 degrees C in the oxaloacetate reductase direction. Substrate specificity and kinetic studies demonstrated the strict specificity of this enzyme, and its closer similarity to vertebrate m-MDHs than homologs from invertebrate or mesophilic fungal sources. The full-length m-MDH gene and its corresponding cDNA were cloned using degenerate primers derived from the N-terminal amino acid sequence of the native protein and multiple sequence alignments from conserved regions of other m-MDH genes. The m-MDH gene is the first oxidoreductase gene cloned from T. emersonii and is the first full-length m-MDH gene isolated from a filamentous fungal species and a thermophilic eukaryote. Recombinant m-MDH was expressed in Escherichia coli, as a His-tagged protein and was purified to apparent homogeneity by metal chelate chromatography on an Ni2+-nitrilotriacetic acid matrix, at a yield of 250 mg pure protein per liter of culture. The recombinant enzyme behaved as a dimer under nondenaturing conditions. Expression of the recombinant protein was confirmed by Western blot analysis using an antibody against the His-tag. Thermal stability studies were performed with the recombinant protein to investigate if results were consistent with those obtained for the native enzyme.  相似文献   

6.
7.
Antiserum prepared against the denatured form of mammalian malate dehydrogenase was found to immunoprecipitate the denatured but not the native form of the mature enzyme. In contrast, the antiserum immunoprecipitated the enzyme's precursor, synthesized in a rabbit reticulocyte lysate, either before or after denaturation. The mature form of the enzyme but not the precursor bound to an affinity column of 5'-AMP-Sepharose. These results indicate that the mature and precursor forms of malate dehydrogenase have different conformations.  相似文献   

8.
Three enzymes (DD1, DD2, and DD3) having dihydrodiol dehydrogenase activity were purified to homogeneity from bovine cytosol. DD1 and DD2 were identified as 3 alpha-hydroxysteroid dehydrogenase and high-Km aldehyde reductase, respectively, as judged from their molecular weights, substrate specificities and inhibitor sensitivities. DD3 was a unique enzyme which could specifically catalyze the dehydrogenation of trans-benzenedihydrodiol and trans-naphthalenedihydrodiol without any activity toward the other tested alcohols, aldehydes, ketones, and quinones. The Km value of DD3 (0.18 mM) for benzenedihydrodiol was lower than those of other dihydrodiol dehydrogenases so far reported. DD3 immunologically crossreacted with DD1, but showed no crossreactivity with DD2. Additionally, DD3 was inhibited in a competitive manner, with a low Ki value of 1 microM, by androsterone, which was a good substrate for DD1. It was assumed that DD3 is a novel enzyme which is specific to dihydrodiols, exhibiting similarity to DD1 in immunological and structural properties.  相似文献   

9.
Crystals of the mitochondrial form of malate dehydrogenase from pig heart have been prepared using polyethylene glycol and ammonium sulfate. The monoclinic crystalline form obtained from polyethylene glycol is suitable for X-ray analysis and contains two molecules of the dimeric malate dehydrogenase, molecular weight 74,000, in the asymmetric unit. A new crystalline form of a related enzyme, β-hydroxyacyl coenzyme A dehydrogenase has been prepared and characterized. Heavy-atom compounds causing isomorphous changes in the X-ray intensities of the mitochondrial malate dehydrogenase have been identified.  相似文献   

10.
The isolation and sequence of a cDNA clone encoding the complete mitochondrial malate dehydrogenase (mMDH) of watermelon cotyledons is presented. Taking advantage of the polymerase chain reaction technology partial cDNA clones from the central part, the 3 part and the 5 part of the mRNA were obtained with oligonucleotides based on directly determined amino acid sequences. Subsequently, two complete cDNA clones for mMDH were synthesized with a sense primer corresponding to the nucleotide sequence of the amino terminal end of pre-mMDH and two antisense primers corresponding to the major alternative adenylation sites found in the mRNA.The amino acid residues for substrate and cofactor binding identified by X-ray crystallography for pig heart cytoplasmic MDH are conserved in the 320 amino acid long mature higher-plant mMDH. A presequence of 27 amino acids is present at the amino terminal end of the precursor protein.  相似文献   

11.
12.
Isolated cell walls from horseradish contain NAD-specific malate dehydrogenase which is not released on treatment with 2 M NaCl. This enzyme catalyses a rapid reduction of oxalacetate. Its physiological role, however, is assumed to be the oxidation of malate, thus providing NADH as electron donor in the formation of H2O2, by a wall-bound peroxidase. In the presence of malate, NAD and Mn2+ ions, cell walls catalyse the synthesis of H2O2 which might be utilized in lignin formation. In analogy to the known malate-oxalacetate shuttles, the possibility is discussed that this cell wall-associated malate dehydrogenase is involved in the transport of cytoplasmic reducing equivalents through the plasmalemma into the cell wall.  相似文献   

13.
Malate dehydrogenase and malic enzyme each possess supernatant and mitochondrial molecular forms which are structurally and genetically independent. We describe electrophoretic variants of the mitochondrial enzymes of malate dehydrogenase and malic enzyme in mice. Progeny testing from genetic crosses indicated that the genes which code for mitochondrial malate dehydrogenase and malic enzyme were not inherited maternally but as independent unlinked nuclear autosomal genes. The locus for mitochondrial malic enzyme was located on linkage group I. Linkage analysis with a third mitochondrial enzyme marker, glutamic oxaloacetic transaminase, showed that the nuclear genes which code for the three mitochondrial enzymes were not closely linked to each other. This evidence suggests that clusters of nuclear genes coding for mitochondrial function are unlikely in mice.Supported by U.S. Public Health Service grants 5F2 HD-35,531 and GM-09966.  相似文献   

14.
The structure of the tricarboxylic acid cycle enzyme malate dehydrogenase is highly conserved in various organisms. To test the extent of functional conservation, the rat mitochondrial enzyme and the enzyme from Escherichia coli were expressed in a strain of Saccharomyces cerevisiae containing a disruption of the chromosomal MDH1 gene encoding yeast mitochondrial malate dehydrogenase. The authentic precursor form of the rat enzyme, expressed using a yeast promoter and a multicopy plasmid, was found to be efficiently targeted to yeast mitochondria and processed to a mature active form in vivo. Mitochondrial levels of the polypeptide and malate dehydrogenase activity were found to be similar to those for MDH1 in wild-type yeast cells. Efficient expression of the E. coli mdh gene was obtained with multicopy plasmids carrying gene fusions encoding either a mature form of the procaryotic enzyme or a precursor form with the amino terminal mitochondrial targeting sequence from yeast MDH1. Very low levels of mitochondrial import and processing of the precursor form were obtained in vivo and activity could be demonstrated for only the expressed precursor fusion protein. Results of in vitro import experiments suggest that the percursor form of the E. coli protein associates with yeast mitochondria but is not efficiently internalized. Respiratory rates measured for isolated yeast mitochondria containing the mammalian or procaryotic enzyme were, respectively, 83 and 62% of normal, suggesting efficient delivery of NADH to the respiratory chain. However, expression of the heterologous enzymes did not result in full complementation of growth phenotypes associated with disruption of the yeast MDH1 gene.  相似文献   

15.
16.
  • 1.1. The reaction kinetic mechanism (pH 7.4) of the molecular forms of chicken liver m-MDH is of the ordered bi-bi ternary complex type with the existence of the E-oxaloacetate, E-L-malate, E-NAD+ oxaloacetate, E-NADH-l-malate, E-NAD+-NADH, E-NAD+-NAD+, E-NADH-NAD+ and E-NADH-NADH abortive complexes.
  • 2.2. The saturating concentration values of the substrates are notably modified, in certain cases, in the presence of the reaction products.
  相似文献   

17.
A five-step procedure was used to obtain electrophoretically pure preparations of malate dehydrogenase (EC 1.1.1.37) from Rhodobacter sphaeroides and Rhodopseudomonas palustris. The procedure included extraction, ammonium sulfate fractionation, gel filtration, and ion exchange and gel permeation chromatography. The enzyme was found to exist in two isoforms, dimeric and tetrameric, formed by the oligomerization of identical subunits. The isoforms are assumed to be involved in different metabolic processes.  相似文献   

18.
Trypanosoma brucei procyclic forms possess three different malate dehydrogenase isozymes that could be separated by hydrophobic interaction chromatography and were recognized as the mitochondrial, glycosomal and cytosolic malate dehydrogenase isozymes. The latter is the only malate dehydrogenase expressed in the bloodstream forms, thus confirming that the expression of malate dehydrogenase isozymes is regulated during the T. brucei life cycle. To achieve further biochemical characterization, the genes encoding mitochondrial and glycosomal malate dehydrogenase were cloned on the basis of previously reported nucleotide sequences and the recombinant enzymes were functionally expressed in Escherichia coli cultures. Mitochondrial malate dehydrogenase showed to be more active than glycosomal malate dehydrogenase in the reduction of oxaloacetate; nearly 80% of the total activity in procyclic crude extracts corresponds to the former isozyme which also catalyzes, although less efficiently, the reduction of p-hydroxyphenyl-pyruvate. The rabbit antisera raised against each of the recombinant isozymes showed that the three malate dehydrogenases do not cross-react immunologically. Immunofluorescence experiments using these antisera confirmed the glycosomal and mitochondrial localization of glycosomal and mitochondrial malate dehydrogenase, as well as a cytosolic localization for the third malate dehydrogenase isozyme. These results clearly distinguish Trypanosoma brucei from Trypanosoma cruzi, since in the latter parasite a cytosolic malate dehydrogenase is not present and mitochondrial malate dehydrogenase specifically reduces oxaloacetate.  相似文献   

19.
3-Hydroxybutyrate dehydrogenase (EC 1.1.1.30) and malate dehydrogenase (EC 1.1.1.37) were purified to homogeneity on a large scale involving only two sequential affinity-chromatography steps on two triazine dye-Sepharose matrices. Recoveries of both enzymes were in excess of 60%. Malate dehydrogenase could also be purified by a combination of triazine dye affinity chromatography and gel filtration on Ultrogel AcA-44, but this offered no significant advantage over the purely affinity procedure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号