首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of ras oncogene product p21 with guanine nucleotides   总被引:2,自引:0,他引:2  
The nucleotide exchange reaction was observed with purified ras oncogene product p21 overproduced in Escherichia coli (Hattori, S. et al. (1985) Mol. Cell Biol. 5, 1449-1455) under various conditions. (NH4)2SO4 increased the rate of dissociation of bound GDP from c-rasH and v-rasH p21. The dissociation kinetics were those of a first order reaction, and there was a linear relationship between the rate constant and the (NH4)2SO4 concentration. At any concentration of (NH4)2SO4, the exchange rate was faster with v-rasH p21 than that with c-rasH p21. EDTA and (NH4)2SO4 synergetically stimulated the dissociation reaction. Nucleotide-free p21 was prepared by gel filtration on Sephadex G-25 in the presence of 5 mM EDTA and 200 mM (NH4)2SO4 at room temperature. The free p21 was quite thermolabile, but the addition of GDP or GTP completely protected p21 from thermal inactivation. The dissociation constants for GDP and GTP were determined with free p21 to be 8.9 and 8.2 nM, respectively, for v-rasH p21, and 1.0 and 2.6 nM for c-rasH p21. In the presence of 200 mM (NH4)2SO4, these dissociation constants increased 3- to 12-fold.  相似文献   

2.
I Lascu  E Presecan  I Proinov 《FEBS letters》1986,202(2):345-348
The binding of nucleotides to pig heart nucleoside-diphosphate kinase was studied using Rose Bengal as an optical probe. ATP, in the absence of Mg2+, binds slowly to the enzyme, with a second order rate constant of about 3000 M-1 . s-1, whereas in its presence the binding is much faster. This finding suggests the regulation of the nucleoside-diphosphate kinase activity by uncomplexed ATP, and that ATP binds normally to the enzyme via a metal ion bridge.  相似文献   

3.
To examine signal transduction events activated by oncogenic p21ras, we have studied kinases that are activated following the scrape loading of p21ras into quiescent cells. We observe rapid activation of 42 kDa and 46 kDa protein kinases. The 42 kDa kinase is the mitogen and extracellular-signal regulated kinase ERK2, (MAP2 kinase), which is activated by phosphorylation on tyrosine and threonine in response to oncogenic p21ras, while the 46 kDa kinase is likely to be another member of the ERK family. Stimulation of these kinases by oncogenic p21ras does not require the presence of growth factors, showing that oncogenic p21ras uncouples kinase activation from external signals. In ras transformed cell lines, these kinases are constitutively activated. We propose that the kinases are important components of the signal transduction pathway activated by p21ras oncoprotein.  相似文献   

4.
The direct binding protein(s) of ras p21 was (were) investigated in inside-out vesicles of human erythrocyte ghosts using the pure v-Kirsten (Ki)-ras p21 synthesized in E. coli. The bound ras p21 was detected immunochemically using an anti-v-Ki-ras p21 monoclonal antibody, ras p21 bound to vesicles. Prior digestion of the vesicles with trypsin reduced this binding significantly. When ras p21 was laid over vesicle proteins immobilized on a nitrocellulose sheet by transfer from the gel of SDS-polyacrylamide gel electrophoresis, ras p21 bound to bands 4.2 and 6. ras p21 binding to these proteins was reduced by prior incubation of ras p21 with the purified band 4.2 or 6 protein. These results indicate that v-Ki-ras p21 can bind directly to bands 4.2 and 6 of human erythrocyte membranes as far as tested in an in vitro cell-free system.  相似文献   

5.
Point mutations of p21 proteins were constructed by oligonucleotide-directed mutagenesis of the v-rasH oncogene, which substituted amino acid residues within the nucleotide-binding consensus sequence, GXG GXGK. When the glycine residue at position 10, 13, or 15 was substituted with valine, the viral rasH product p21 lost its GTP-binding and autokinase activities. Other substitutions at position 33, 51, or 59 did not impair its binding activity. G418-resistant NIH 3T3 cell lines were derived by transfection with constructs obtained by inserting the mutant proviral DNA into the pSV2neo plasmid. Clones with a valine mutation at position 13 or 15 were incapable of transforming cells, while all other mutants with GTP-binding activity were competent. A mutant with a substitution of valine for glycine at position 10 which had lost its ability to bind GTP and its autokinase activity was fully capable of transforming NIH 3T3 cells. These cells grew in soft agar and rapidly formed tumors in nude mice. The p21 of cell lines derived from tumor explants still lacked the autokinase activity. These findings suggest that the glycine-rich consensus sequence is important in controlling p21 activities and that certain mutations may confer to p21 its active conformation without participation of ligand binding.  相似文献   

6.
R M Pope  C S Raska  S C Thorp  J Liu 《Glycobiology》2001,11(6):505-513
A highly sensitive method to identify and quantify heparan sulfate (HS) oligosaccharides by using nano-electrospray ionization mass spectrometry (nESI-MS) is described. The new approach allows us to detect approximately 50 nM of a chemically synthesized pentasaccharide with a structure of GlcNS6S-GlcA-GlcNS6S-IdoA2S-GlcNS6SOMe (3-OH pentasaccharide). Typically, solutions were infused for a total of 5 min, at an average flow rate of 30 nl/min, and the remaining sample was recovered from the nanovial. The spectra shown were obtained by summing scans for 1--3 min. Hence, our data indicated that as little as 3 x 10(-15) mole of the pentasaccharide was consumed to obtain a reasonable spectrum at the concentration as low as 50 nM. In addition, we found a linear relationship between the relative response of the molecular ion and the concentration of the analyzed 3-OH pentasaccharide, demonstrating that this approach can be used to determine the amount of HS oligosaccharides. To this end, a 3-O-sulfated pentasaccharide was prepared by incubating the 3-OH pentasaccharide with purified HS 3-O-sulfotransferase-1 and 3'-phosphoadenosine-5'-phospho[(35)S]sulfate. The resulting 3-O-sulfated pentasaccharide was purified and analyzed by nESI-MS. Based on the standard curve constructed with the 3-OH pentasaccharide, we calculated the concentration of the 3-O-sulfated pentasaccharide by the relative response. The result indicates that this value is very close to the value measured by [(35)S]sulfate radioactivity. In conclusion, nESI-MS provides both high sensitivity and the capacity to quantify HSs. This approach is likely to become a very important tool for structural analysis and sequencing of HS and heparin oligosaccharides.  相似文献   

7.
Cultured murine erythroleukemia (MEL) cells synthesize a number of low molecular mass GTP-binding proteins that undergo post-translational modification by isoprenoids. We used two-dimensional electrophoresis and immunoblotting to show that a 23-24-kDa protein labeled by the isoprenoid precursor [3H]mevalonate was specifically recognized by an antibody to G25K (Gp), a low molecular mass GTP-binding protein originally purified from placental, platelet, and brain membranes. Several isoelectric variants of G25K were detected in MEL cells, and all were radiolabeled with [3H]mevalonte. The G25K-immunoreactive protein did not cross-react with pan-ras antibody. Although mature p21ras is known to be localized in the cell membrane, most of the isoprenylated G25K was found in the 100,000 x g supernatant fraction when cells were lysed in buffer without detergent. Blocking isoprenoid synthesis by incubation of MEL cells with lovastatin resulted in a decrease in the concentration of G25K in the particulate fraction and a corresponding increase in immunodetectable protein in the soluble fraction. Lovastatin treatment also produced shifts in the electrophoretic mobilities of the G25K isoforms on two-dimensional gels. These observations are consistent with the idea that isoprenylation plays a permissive role in the association of G25K with the cell membrane or other organelles. However, the high proportion of soluble isoprenylated G25K in MEL cells under normal culture conditions suggests that the role of the isoprenoid modification may be more complex than simply serving as a structural anchor for stable insertion of proteins into the lipid bilayer.  相似文献   

8.
We have investigated the kinetics of the binding of guanine nucleotides to bovine brain rhoB p20, a ras p21-like GTP-binding protein with GTPase activity. The initial velocities of the binding of guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) to GDP-bound rhoB p20 and the dissociation of GDP from this protein were markedly increased by decreasing Mg2+ concentrations. The initial velocity of the binding of GTP gamma S to GDP-free rhoB p20 was not affected by changing Mg2+ concentrations. These results indicate that the dissociation of GDP from rhoB p20 limits the binding of GTP to this protein, and suggest that there is a factor stimulating the dissociation of GDP from rhoB p20 and thereby stimulating the binding of GTP to this protein in mammalian tissues. Consistently, the factor stimulating the dissociation of GDP, but not of GTP gamma S, from rhoB p20 was detected in bovine brain cytosol.  相似文献   

9.
p21ras is palmitoylated on a cysteine residue near the C-terminus. Changing Cys-186 to Ser in oncogenic forms produces a non-palmitoylated protein that fails to associate with membranes and does not transform NIH 3T3 cells. To examine whether palmitate acts in a general way to increase ras protein hydrophobicity, or is involved in more specific interactions between p21ras and membranes, we constructed genes that encode non-palmitoylated ras proteins containing myristic acid at their N-termini. Myristoylated, activated ras, without palmitate (61Leu/186Ser) exhibited both efficient membrane association and full transforming activity. Unexpectedly, we found that myristoylated forms of normal cellular ras were also potently transforming. Myristoylated c-ras retained the high GTP binding and GTPase characteristic of the cellular protein and, moreover, bound predominantly GDP in vivo. This implied that it continued to interact with GAP (GTPase-activating protein). While the membrane binding induced by myristate permitted transformation, only palmitate produced a normal (non-transforming) association of ras with membranes and must therefore regulate ras function by some unique property that myristate does not mimic. Myristoylation thus represents a novel mechanism by which the ras proto-oncogene protein can become transforming.  相似文献   

10.
The binding of nucleotides to nucleoside-diphosphate kinase from pig heart was studied using the dye rose Bengal as an optical probe. By difference absorption spectroscopy and by equilibrium dialysis it was shown that one dye molecule strongly bound per enzyme subunit. By competition with nucleotides it was shown that two nucleotide-binding sites exist on each subunit of either unphosphorylated or phosphorylated enzyme: one of them binds ATP or ADP tightly, the other one binds rose Bengal tightly and ADP loosely. As detected by different affinities for rose Bengal the enzyme exists in two conformations: a 'relaxed' conformation induced by the binding of ADP, and a 'tense' conformation induced by the binding of ATP or by phosphorylation.  相似文献   

11.
Renal nephropathy present in male Wistar rats more than 13 months of age was reported as an indication that the rats were in renal failure. In this study, the renal tissue damage at 14 months of age in male Munich Wistar rats was similar to that reported for Wistar rats, indicating that Munich Wistar rats could be another model for study of kidney function in the aging rat. The usual renal response to injury involves increased cell division and/or reparative processes that involve tyrosine kinase activity (TyrK) and/or guanosine triphosphate-binding (G) protein signal trans-duction pathways. This study reveals the presence of renal tissue damage coinciding with significantly reduced activity of Ras, Akt, and p34cdc2 kinase, the signaling proteins that regulate cell division and/or growth, in renal cortical tissues of aging rats compared to young rats (P < 0.005, P < 0.005, and P< 0.001, respectively). These results suggest that proteins involved in signal transduction pathways associated with cell replication are downregulated in the aging kidney cortex at a time when renal cellular damage is also present.  相似文献   

12.
13.
Treatment of confluent rat2 fibroblasts with C2-ceramide (N-acetylsphingosine), sphingomyelinase, or tumor necrosis factor-alpha (TNFalpha) increased phosphatidylinositol (PI) 3-kinase activity by 3-6-fold after 10 min. This effect of C2-ceramide depended on tyrosine kinase activity and an increase in Ras-GTP levels. Increased PI 3-kinase activity was also accompanied by its translocation to the membrane fraction, increases in tyrosine phosphorylation of the p85 subunit, and physical association with Ras. Activation of PI 3-kinase by TNFalpha, sphingomyelinase, and C2-ceramide was inhibited by tyrosine kinase inhibitors (genistein and PP1). The stimulation of PI 3-kinase by sphingomyelinase and C2-ceramide was not observed in fibroblasts expressing dominant-negative Ras (N17) and the stimulation by TNFalpha was decreased by 70%. PI 3-kinase activation by C2-ceramide was not modified by inhibitors of acidic and neutral ceramidases, and it was not observed with the relatively inactive analog, dihydro-C2-ceramide. It is proposed that activation of Ras and PI 3-kinase by ceramide can contribute to signaling effects of TNFalpha that occur downstream of sphingomyelinase activation and result in increased fibroblasts proliferation.  相似文献   

14.
We made a monoclonal antibody specifically recognizing smg p25A among many ras p21-like GTP-binding proteins and investigated the tissue distribution of smg p25A by use of this antibody. By immunoblot analysis, smg p25A was detected in rat brain and bovine adrenal medulla but not in bovine adrenal cortex or other rat tissues including thymus, spleen, lung, heart, liver and kidney. However, by immunocytochemical studies, smg p25A was detected not only in the synaptic areas of rat brain and the chromaffin cells of bovine adrenal medulla but also in the endocrine cells of rat pancreatic islets, the acinar cells of rat exocrine pancreas and the exocrine cells of rat submaxillary gland. These results suggest that smg p25A is involved in the regulation of secretory processes not only in synapses but also in other endocrine and exocrine secretory cells.  相似文献   

15.
A number of growth factors, including insulin and epidermal growth factor (EGF), induce accumulation of the GTP-bound form of p21ras. This accumulation could be caused either by an increase in guanine nucleotide exchange on p21ras or by a decrease in the GTPase activity of p21ras. To investigate whether insulin and EGF affect nucleotide exchange on p21ras, we measured binding of [alpha-32P]GTP to p21ras in cells permeabilized with streptolysin O. For this purpose, we used a cell line which expressed elevated levels of p21 H-ras and which was highly responsive to insulin and EGF. Stimulation with insulin or EGF resulted in an increase in the rate of nucleotide binding to p21ras. To determine whether this increased binding rate is due to the activation of a guanine nucleotide exchange factor, we made use of the inhibitory properties of a dominant negative mutant of p21ras, p21ras (Asn-17). Activation of p21ras by insulin and EGF in intact cells was abolished in cells infected with a recombinant vaccinia virus expressing p21ras (Asn-17). In addition, the enhanced nucleotide binding to p21ras in response to insulin and EGF in permeabilized cells was blocked upon expression of p21ras (Asn-17). From these data, we conclude that the activation of a guanine nucleotide exchange factor is involved in insulin- and EGF-induced activation of p21ras.  相似文献   

16.
ras p21 GTPase-activating protein (GAP) has been proposed to interact with the putative effector domain of ras p21s, and smg p21, a ras p21-like guanine nucleotide binding protein (G protein), has been shown to have the same amino acid sequence as ras p21s in this region. In the present studies, we examined the effects of ras p21 GAP on the GTPase activity of smg p21 purified from human platelets, of smg p21 on the ras p21 GAP-stimulated GTPase activity of c-Ha-ras p21 purified from Escherichia coli, and of c-Ha-ras p21 on the smg p21 GAP1- or -2-stimulated GTPase activity of smg p21. ras p21 GAP stimulated the GTPase activity of c-Ha-ras p21 but not that of smg p21. The GTP-bound form of smg p21, however, inhibited the ras p21 GAP-stimulated GTPase activity of c-Ha-ras p21 in a dose-dependent manner. The half-maximum inhibition by smg p21 was obtained at 0.4 microM which was more potent than previously observed for ras p21 (2-200 microM). The GDP-bound form also inhibited the ras p21 GAP-stimulated GTPase activity of c-Ha-ras p21, but the efficiency was 40-50% that of the GTP-bound form. smg p21 GAP1 and -2 stimulated the GTPase activity of smg p21 but not that of c-Ha-ras p21. c-Ha-ras p21 did not inhibit the smg p21 GAP1- or -2-stimulated GTPase activity of smg p21. These results indicate that ras p21 GAP interacts with smg p21 without the subsequent stimulation of its GTPase activity.  相似文献   

17.
NADPH-oxidase-catalyzed superoxide (O2-) formation in membranes of HL-60 leukemic cells was activated by arachidonic acid in the presence of Mg2+ and HL-60 cytosol. The GTP analogues, guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S] and guanosine 5'-[beta,gamma-imido]triphosphate, being potent activators of guanine-nucleotide-binding proteins (G proteins), stimulated O2- formation up to 3.5-fold. The adenine analogue of GTP[gamma S], adenosine 5'-[gamma-thio]triphosphate (ATP[gamma S]), which can serve as donor of thiophosphoryl groups in kinase-mediated reactions, stimulated O2- formation up to 2.5-fold, whereas the non-phosphorylating adenosine 5'-[beta,gamma-imido]triphosphate was inactive. The effect of ATP[gamma S] was half-maximal at a concentration of 2 microM, was observed in the absence of added GDP and occurred with a lag period two times longer than the one with GTP[gamma S]. HL-60 membranes exhibited nucleoside-diphosphate kinase activity, catalyzing the thiophosphorylation of GDP to GTP[gamma S] by ATP[gamma S]. GTP[gamma S] formation was half-maximal at a concentration of 3-4 microM ATP[gamma S] and was suppressed by removal of GDP by creatine kinase/creatine phosphate (CK/CP). The stimulatory effect of ATP[gamma S] on O2- formation was abolished by the nucleoside-diphosphate kinase inhibitor UDP. Mg2+ chelation with EDTA and removal of endogenous GDP by CK/CP abolished NADPH oxidase activation by ATP[gamma S] and considerably diminished stimulation by GTP[gamma S]. GTP[gamma S] also served as a thiophosphoryl group donor to GDP, with an even higher efficiency than ATP[gamma S]. Transthiophosphorylation of GDP to GTP[gamma S] was only partially inhibited by CK/CP. Our results suggest that NADPH oxidase is regulated by a G protein, which may be activated either by exchange of bound GDP by guanosine triphosphate or by thiophosphoryl group transfer to endogenous GDP by nucleoside-diphosphate kinase.  相似文献   

18.
Hemodynamic forces play a key role in the modulation of the morphology and function of the endothelium by activating several kinases. We have previously shown that cyclic strain, a repetitive mechanical stretch, induces activation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), members of the mitogen activated protein (MAP) kinase family. In order to investigate the upstream pathway of strain-induced ERK1/2 activation, we examined p21ras activation by cyclic strain and the effect of wortmannin and LY294002, phosphatidylinositol-3 kinase (PI 3-kinase) inhibitors on ERK1/2 phosphorylation. Cyclic strain induced a transient and rapid activation of p21ras at 1 min after strain. Wortmannin inhibited strain-induced ERK1/2 activation by 56.3 and 86.3 %, respectively. LY294002 inhibited ERK1 activation completely and ERK2 activation by 42.9%. These results suggest a possible involvement of p21ras and PI 3-kinase in the signal transduction pathway leading to the strain-induced ERK1/2 activation.  相似文献   

19.
Inhibition of yeast adenylate cyclase by antibodies to ras p21.   总被引:2,自引:0,他引:2       下载免费PDF全文
Monoclonal antibody Y13-259 to ras p21 was shown to bind to the highly conserved residues in the region 63-73 and to neutralize ras action in the Saccharomyces cerevisiae adenylate cyclase system. Inhibition of adenylate cyclase activity in isolated membranes by antibody Y13-259 occurred after a lag period of 6 min. This lag corresponded to the time necessary for binding of antibody Y13-259 to the membranes in a ras-dependent manner. The mechanism of inhibition appeared to be steric in nature because antibody Y13-259 neutralized ras p21 bound to a stable GTP analogue. Monoclonal antibodies Y13-4 and Y13-128 also inhibited yeast adenylate cyclase activity, and the epitopes for both the these antibodies were localized to ras region 65-75. However, the ras residues essential for binding of antibodies Y13-4 and Y13-128 to ras p21 (positions 65, 66, 68 and 75) were different from those essential for binding of antibody Y13-259 (positions 63, 65, 66, 67, 70 and 73). These results indicate that residues 63-75 constitute a major neutralizing epitope on ras p21.  相似文献   

20.
A method for ligand screening by automated nano-electrospray ionization mass spectrometry (nano-ESI/MS) is described. The core of the system consisted of a chip-based platform for automated sample delivery from a 96-well plate and subsequent analysis based on noncovalent interactions. Human fatty acid binding protein, H-FABP (heart) and A-FABP (adipose), with small potential ligands was analyzed. The technique has been compared with a previously reported method based on nuclear magnetic resonance (NMR), and excellent correlation with the found hits was obtained. In the current MS screening method, the cycle time per sample was 1.1 min, which is approximately 50 times faster than NMR for single compounds and approximately 5 times faster for compound mixtures. High reproducibility was achieved, and the protein consumption was in the range of 88 to 100 picomoles per sample. Futhermore, a novel protocol for preparation of A-FABP without the natural ligand is presented. The described screening approach is suitable for ligand screening very early in the drug discovery process before conventional high-throughput screens (HTS) are developed and/or used as a secondary screening for ligands identified by HTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号