首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 949 毫秒
1.
Nitric oxide (NO) in many cells inactivates aconitase and mitochondrial respiratory chain, and influenced glyceraldehyde 3-phosphate dehydrogenase activity. The aim of this study was to evaluate role of nitroglycerin (NTG), a widely used NO donor, on energy metabolism of rat reticulocytes. Rat reticulocyte rich red blood cell suspensions containing 70-100% of reticulocytes, were aerobically incubated without (control) or in the presence of different concentrations of (a) NTG (0.1, 0.25, 0.5, 1.0, 1.5 mmol/l), (b) 8-Br-cGMP (0.1, 0.5, 1.0 mmol/l) and (c) NaNO2 and NaNO3 (1 mmol/l). NTG in dose- and time-dependent manner decreased total (p>0.05; EC50 = 0.78+/-0.05 mmol/l) and coupled (p<0.05; EC50 = 0.50+/-0.04 mmol/l) and increased uncoupled oxygen consumption (p<0.05: EC50 = 0.36+/-0.01 mmol/l). They were accompanied by stimulation of glycolysis, as measured by increased glucose consumption and lactate accumulation (p<0.001 EC50 = 0.53 and 0.53 mmol/l, respectively). Levels of all glycolytic intermediates in the presence of NTG indicate stimulation of HK-PFK, GA3PDH and PK activity. NTG significantly decreased ATP level, which accompanied by increased ADP and AMP levels. However, level of total adenine nucleotides (TAN) was significantly lower, which was consequence of increased catabolism of adenine nucleotides (increased hypoxanthine level; p<0.05). Stimulation of glycolysis accompanied with inhibition of the OxP, activation of HK-PFK, decrease of ATP and simultaneous rise of ADP and AMP levels, all together represent an example of Pasteur effect occurring in NTG-treated reticulocytes. In rat reticulocytes under steady state conditions 93% of overall energy was produced by OxP, but only 7% by glycolysis. Due to decrease of coupled oxygen consumption in the presence of NTG, ATP production via OxP was significantly diminished. Simultaneous increase of glycolytic ATP production is not enough to provide constant either ATP production or concentration. Calculated mean ATP-turnover time was prolonged even for 45% in the presence of 1.5 mmol/l NTG. Metabolic effects of NTG were not mimic by exogenous 8-Br-cGMP, NaNO2 or NaNO3, which indicate that NTG induced a) inhibition of coupled respiration and b) stimulation of glycolysis in rat reticulocytes are mediated by NO as an effector molecule.  相似文献   

2.
The effects of the sodium nitroprusside (SNP), a nitric oxide (NO) donor clinically used in the treatment of hypertensive emergencies on the energy production of rat reticulocytes were investigated. Rat reticulocyte-rich red blood cell suspensions were aerobically incubated without (control) or in the presence of different concentrations of SNP (0.1, 0.25, 0.5, 1.0 mM). SNP decreased total and coupled, but increased uncoupled oxygen consumption. This was accompanied by the stimulation of glycolysis, as measured by increased glucose consumption and lactate accumulation. Levels of all glycolytic intermediates indicate stimulation of hexokinase-phosphofructo kinase (HK-PFK), glyceraldehyde 3-phosphate dehydrogenase (GAPD) and pyruvate kinase (PK) activities in the presence of SNP. Due to the decrease of coupled oxygen consumption in the presence of SNP, ATP production via oxidative phosphorylation was significantly diminished. Simultaneous increase of glycolytic ATP production was not enough to provide constant ATP production. In addition, SNP significantly decreased ATP level, which was accompanied with increased ADP and AMP levels. However, the level of total adenine nucleotides was significantly lower, which was the consequence of increased catabolism of adenine nucleotides (increased hypoxanthine level). ATP/ADP ratio and adenylate energy charge level were significantly decreased. In conclusion, SNP induced inhibition of oxidative phosphorylation, stimulation of glycolysis, but depletion of total energy production in rat reticulocytes. These alterations were accompanied with instability of energy status.  相似文献   

3.
A balance of energy budgeting of Ehrlich mouse ascites tumour cells including mitochondrial and glycolytic ATP production and about 80% of ATP consumption in a high phosphate medium is presented. In the share of glycolysis was about one-third of the total ATP production, more than twice that found in a low phosphate medium. The extent of a single energy reaction was assessed from the decrease of coupled oxygen consumption and lactate formation following the specific inhibition of this process. The inhibitory effects on coupled respiration and glycolysis were identical for the energy consuming processes measured: protein turnover, Na+/K(+)-ATPase, Ca2(+)-transport and RNA synthesis.  相似文献   

4.
The importance of glycolysis, as an ATP-producing and substrate-providing pathway, was studied in anoxia-tolerant (goldfish) and anoxia-intolerant (trout) hepatocytes. Inhibition of glycolysis with iodoacetic acid (IAA) left aerobic ATP production largely unaffected in hepatocytes from both species but caused a significant decrease of ATP contents in the goldfish cells. Ouabain-sensitive oxygen consumption (osVo2), an estimate of mitochondrial ATP production coupled to ATP consumption by the Na(+) pump, was significantly reduced in IAA-treated goldfish hepatocytes, whereas it was unaltered in trout hepatocytes. Partial reduction of mitochondrial respiration, achieved by titration with cyanide (CN), strongly stimulated glycolytic flux but did not affect ATP contents of hepatocytes from both species. Under these conditions, osVo2 became undetectable. Rb(+)-uptake rates, providing a direct estimate of Na(+)-pump activity, were in good agreement with estimates derived from osVo2 in IAA-treated cells, showing a decrease in goldfish and no change in trout. However, they indicated persistent Na(+)-pump activity despite the lack of osVo2 in CN-treated cells. Overall, these data indicate that in goldfish hepatocytes Na(+)-pump activity is more dependent on glycolytic ATP production as compared to trout hepatocytes. Protein synthesis of goldfish hepatocytes was inhibited in IAA- and CN-treated cells, possibly reflecting the hierarchical organization of energy metabolism. In trout hepatocytes, protein synthesis could be sustained at control levels, given that energetic substrate provision was not limited.  相似文献   

5.
We have studied the effects of ATP and ADP on the oxidation of malate by coupled and uncoupled mitochondria prepared from etiolated hypocotyls of mung bean (Vigna radiata L.).

In coupled mitochondria, ATP (1 millimolar) increased pyruvate production and decreased oxaloacetate formation without altering the rate of oxygen consumption. ATP also significantly decreased oxaloacetate production and increased pyruvate production in mitochondria that were uncoupled by carbonyl cyanide p-trifluoromethoxyphenyl hydrazone plus oligomycin.

In coupled mitochondria, ADP (1 millimolar) increased the production of both pyruvate and oxaloacetate concomitantly with the acceleration of oxygen uptake to the state 3 rate. The effects of ADP were largely eliminated in uncoupled mitochondria. These results indicate that, whereas the ADP stimulation of oxaloacetate and pyruvate production in the coupled mitochondria is brought about primarily as the result of the accelerated rates of electron transport and NADH oxidation by the respiratory chain in state 3, ATP has significant regulatory effects independent of those that might be exerted by control of electron transport.

  相似文献   

6.
To understand the role of nitric oxide (NO) in the regulation of cellular metabolism in peritoneal macrophages under physiological low oxygen tension, its effect on the respiration and energy metabolism was examined with casein-induced peritoneal macrophages from the rat. Intraperitoneal injection of casein transiently induced peritoneal infiltration of neutrophils (peaked on day 1) followed by the migration of macrophages that peaked on day 2. Western blotting analysis using antibodies against inducible type of NO synthase (iNOS) revealed that macrophages appeared in the peritoneal cavity during an early stage (approximately day 2) but not during the late stage (day 3 approximately) of inflammation expressed iNOS and generated substantial amounts of NO by a mechanism that was inhibited by N-iminoethyl-L-ornithine (NIO), a specific inhibitor of iNOS. Although NO reversibly but strongly inhibited the respiration of macrophages from both stages particularly under physiologically low oxygen tension, NIO markedly enhanced the respiration of macrophages obtained from the early period but not from the late period of inflammation. The ATP level in the macrophages from the late period but not from the early period was markedly decreased by NO. Biochemical analysis revealed that the glycolytic activity in the macrophages obtained from the early period was significantly higher than that from the late period of inflammation. These results indicate that significant fractions of cellular ATP in iNOS-positive peritoneal macrophages are synthesized by the increased activity of glycolysis particularly under physiological low oxygen tensions where the mitochondrial respiration is strongly inhibited by endogenously generated NO by macrophages and neutrophils.  相似文献   

7.
Rabbit reticulocytes were separated into four fractions of different maturity in order to investigate the changes of cellular respiration and glycolysis, adenine nucleotides, 2,3-biphosphoglycerate (2,3-BPG) as well as cyclic AMP level during the transition from the youngest to the most mature reticulocytes. A significant reduction of total oxygen consumption, mainly due to depression of coupled respiration was found. The decline of respiration was accompanied by a 2-fold increase of the rate of aerobic glycolysis indicating a reduced Pasteur effect during maturation. A decline of ATP and an increase of ADP concentration was found. The oxygen-delivery capacity of the red cells increased by about 26% caused by an increase of the 2,3-BPG level of about 2 mmol/l cells. Cyclic AMP level in the fraction of youngest reticulocytes was about 60-fold higher than that in mature rabbit erythrocytes. The biggest decline of cyclic AMP was registered during the transition from youngest to the intermediate stage of maturity.  相似文献   

8.
Relation of actin fibrils to energy metabolism of endothelial cells   总被引:1,自引:0,他引:1  
Summary The physiological significance of the association of glycolytic enzymes with actin fibrils was investigated in cell culture. Cytochalasin D (CD) was used to induce the known actin-based sequence of events in a culture of an endothelial-cell line (XTH-2) derived from hearts from tadpoles of Xenopus laevis. 1 min following addition of CD, ruptures in the cortical fibrillar meshwork and in stress fibres are seen. At the same time the cellular ATP level decreases by ca. 25%. This and the following reactions resulting in a kind of arborization depend on a continuous supply with metabolic energy. As shown by measurements of oxygen consumption, cells with intact energy metabolism provide the ATP needed from glycolysis; ATP produced by oxidative phosphorylation is not ultilized as long as lactate dehydrogenase (LDH) reoxidizes NADH2. After inhibition of LDH, respiration in XTH-2 cells doubles. CD treatment induces a transient increase in oxygen consumption, indicating an increased energy supply by respiration. From these results we conclude: The energy needed by the actomyosin system is — under normal metabolic conditions — supplied from ATP phosphorylated in glycolysis. The processes of energy metabolism seem to be highly compartmentalized; ATP is not a parameter that is kept constant in time intervals of minutes up to one hour.  相似文献   

9.
Abstract: Effects of nigericin were investigated in rat brain synaptosomes, cultured neurons, and C6 glioma cells to characterize the relations among ATP synthesis, [Na+]i., [K+]i, and [Ca2+]i, and pH under conditions when [H+]i is substantially increased and transmembrane electrical potential is decreased. Intracellular acidification and loss of K+ were accompanied by enhanced oxygen consumption and lactate production and a decrease in cellular energy level. Changes in the last three parameters were attenuated by addition of 1 mM ouabain. In synaptosomes treated with nigericin, neither respiration nor glycolysis was affected by 0.3 μM tetrodotoxin, whereas 1 mM amiloride reduced lactate production by 20% but did not influence respiration. In C6 cells, amiloride decreased the nigericin-stimulated rate of lactate generation by about 50%. The enhancement by nigericin of synaptosomal oxygen uptake and glycolytic rate decreased with time. However, there was only a small reduction in respiration and none in glycolysis in C6 cells. Measurements with ion-selective microelectrodes in neurons and C6 cells showed that nigericin also caused a rise in [Ca2+], and [Na+]., The increase in [Na+], in C6 cells was partially reversed by 1 mM amiloride. It is concluded that nigericin-induced loss of K+ and subsequent depolarization lead to an increase in Na+ influx and stimulation of the Na+/K+ pump with a consequent rise in energy utilization; that acidosis inhibits mitochondrial ATP production; that a rise in [H+] does not decrease glycolytic rate when the energy state (a fall in [ATP] and rises in [ADP] and [AMP]) is simultaneously reduced; that a fall in [K+], depresses both oxidative phosphorylation and glycolysis; and that the nigericin-induced alterations in ion levels and activities of energy-producing pathways can explain some of the deleterious effects of ischemia and hypoxia.  相似文献   

10.
The renal cell line LLC-PK1 contransports Na and D -glucose from the apical to the basolateral side of the cell monolayer, and the short-circuit current (Isc) measures the net amount of Na transported. Under conditions of maximal cotransport, the addition of phlorizin or removal of Na rreversibly decreased oxygen consumption by one-hal. In the absence of glycolytic substrates, α-methyl-D -glucoside stimulated Isc and oxygen consumption, although the Isc came to a steady state 50% less than when glycolytic substrates were present. The addition of other aerobic substrates did not increase Isc; however, when non-contransported glycolytic substrates were introduced the Isc returned to a maximum with an associated fall in oxygen consumption and increased lactate production. Thus, in the absence of glycolytic substrates aerobic ATP formation may be rate-limiting for Na, D -glucose contansport. For this epithelium glycolysis makes an impotant contribution to the provision of energy or transport. Oxygen consumption does not correlate well with Isc and is not a good measured off the energy used in transport.  相似文献   

11.
We investigated the mechanisms by which nitric oxide (NO) from an NO donor (DETA/NO) regulates proliferation of pheochromocytoma PC12 cells. The NO donor stimulated proliferation at low concentrations, but reversibly and completely inhibited proliferation at higher concentrations. The stimulation (but not the inhibition) of proliferation was apparently due to NO stimulation of soluble guanylate cyclase to produce cGMP, as it was prevented by a specific cyclase inhibitor (ODQ), and replicated by a cell-permeable form of cGMP. The NO-induced cytostasis was not reversed by inhibitors of MEK kinase or poly(ADP-ribose)polymerase, or by treatments that bypass inhibition of ribonucleotide reductase or ornithine decarboxylase. Cytostatic concentrations of DETA/NO strongly inhibited respiration of PC12 cells, and specific respiratory inhibitors (rotenone, myxothiazol, or azide) caused complete cytostasis. Uridine and pyruvate reversed the cytostasis induced by the specific respiratory inhibitors, but not that induced by DETA/NO. However, the combination of uridine, pyruvate, and N-acetyl-cysteine did reverse DETA/NO-induced cytostasis. DETA/NO strongly and progressively inhibited glycolysis measured by glucose consumption, lactate production, and ATP level, and a specific glycolytic inhibitor (5 mM 2-deoxy-d-glucose) caused complete cytostasis. Our results indicate that NO at low concentrations increases cell proliferation via cGMP, while high concentrations of NO block proliferation via inhibition of both glycolysis and respiration, causing energy depletion.  相似文献   

12.
The UCP1 [first UCP (uncoupling protein)] that is found in the mitochondria of brown adipocytes [BAT (brown adipose tissue)] regulates the heat production, a process linked to non-shivering thermogenesis. The activity of UCP1 is modulated by GDP and fatty acids. In this report, we demonstrate that respiration and heat released by BAT mitochondria vary depending on the respiratory substrate utilized and the coupling state of the mitochondria. It has already been established that, in the presence of pyruvate/malate, BAT mitochondria are coupled by faf-BSA (fatty-acid-free BSA) and GDP, leading to an increase in ATP synthesis and mitochondrial membrane potential along with simultaneous decreases in both the rates of respiration and heat production. Oleate restores the uncoupled state, inhibiting ATP synthesis and increasing the rates of both respiration and heat production. We now show that in the presence of succinate: (i) the rates of uncoupled mitochondria respiration and heat production are five times slower than in the presence of pyruvate/malate; (ii) faf-BSA and GDP accelerate heat and respiration as a result and, in coupled mitochondria, these two rates are accelerated compared with pyruvate/malate; (iii) in spite of the differences in respiration and heat production noted with the two substrates, the membrane potential and the ATP synthesized were the same; and (iv) oleate promoted a decrease in heat production and respiration in coupled mitochondria, an effect different from that observed using pyruvate/malate. These effects are not related to the production of ROS (reactive oxygen species). We suggest that succinate could stimulate a new route to heat production in BAT mitochondria.  相似文献   

13.
These studies explore the consequences of activating the prolyl hydroxylase (PHD) O(2)-sensing pathway in spontaneously twitching neonatal cardiomyocytes. Full activation of the PHD pathway was achieved using the broad-spectrum PHD inhibitor (PHI) dimethyloxaloylglycine (DMOG). PHI treatment of cardiomyocytes caused an 85% decrease in O(2) consumption and a 300% increase in lactic acid production under basal conditions. This indicates a approximately 75% decrease in ATP turnover rate, inasmuch as the increased ATP generation by glycolysis is inadequate to compensate for the lower respiration. To determine the extent to which decreased ATP turnover underlies the suppressed O(2) consumption, mitochondria were uncoupled with 2,4-dinitrophenol. We were surprised to find that 2,4-dinitrophenol failed to increase O(2) consumption by PHI-treated cells, indicating that electron transport chain activity, rather than ATP turnover rate, limits respiration in PHI-treated cardiomyocytes. Silencing of hypoxia-inducible factor-1alpha (HIF-1alpha) expression restored the ability of uncoupled PHI-treated myocytes to increase O(2) consumption; however, basal O(2) uptake rates remained low because of the unabated suppression of cellular ATP consumption. Thus it appears that respiration is actively "clamped" through an HIF-dependent mechanism, whereas HIF-independent mechanisms are responsible for downregulation of ATP consumption. In addition, we find that PHD pathway activation enables mitochondria to utilize fumarate as a terminal electron acceptor when cytochrome c oxidase is inactive. The source of fumarate for this unusual respiration is derived from aspartate via the purine nucleotide cycle. In sum, these studies show that the O(2)-sensing pathway is sufficient to actively "clamp" O(2) consumption and independently suppress cellular ATP consumption. The PHD pathway also enables the mitochondria to utilize fumarate for respiration.  相似文献   

14.
The sensitivity of the mitochondrial energy production system to propofol (DPP) has been investigated in rat brain synaptosomes. DPP at 0.8 mM concentration produced a partial inhibition of coupled respiration, an apparent decrease of the oxygen uptake stimulation induced by CCCP and a full inhibition of the mitochondrial ATP production by synaptosomes. Higher concentrations of DPP (1 mM) fully abolish uncoupler-dependent stimulation and at 1.3 mM DPP also coupled respiration is completely blocked. Similar results were obtained when dinitrophenol replaced CCCP and phenol or propylbenzene replaced DPP. The presence of the alkyl residues seems critical for the DPP effect. In the presence of 30 mM glutamate both respiration and ATP production are enhanced but DPP effects are similar to those obtained in the absence of glutamate.  相似文献   

15.
The bioenergetic interaction between glycolysis and oxidative phosphorylation in isolated nerve terminals (synaptosomes) from guinea-pig cerebral cortex is characterized. Essentially all synaptosomes contain functioning mitochondria. There is a tight coupling between glycolytic rate and respiration: uncoupler causes a tenfold increase in glycolysis and a sixfold increase in respiration. Synaptosomes contain little endogenous glycolytic substrate and glycolysis is dependent on external glucose. In glucose-free media, or following addition of iodoacetate, synaptosomes continue to respire and to maintain high ATP/ADP ratios. In contrast to glucose, the endogenous substrate can neither maintain high respiration in the presence of uncoupler nor generate ATP in the presence of cyanide. Pyruvate, but not succinate, is an excellent substrate for intact synaptosomes. The in-situ mitochondrial membrane potential (delta psi m) is highly dependent upon the availability of glycolytic or exogenous pyruvate; glucose deprivation causes a 20-mV depolarization, while added pyruvate causes a 6-mV hyperpolarization even in the presence of glucose. Inhibition of pyruvate dehydrogenase by arsenite or pyruvate transport by alpha-cyano-4-hydroxycinnamate has little effect on ATP/ADP ratios; however respiratory capacity is severely restricted. It is concluded that synaptosomes are valuable models for studying the control of mitochondrial substrate supply in situ.  相似文献   

16.
The relation between the effects of glucagon on oxygen consumption and glycolysis in livers from rats under different metabolic conditions was examined. Respiration of substrate-free perfused livers with different glycolytic fluxes, induced by changes in the pattern of food intake, responds differently to the infusion of 1 nM glucagon. The increases in oxygen uptake caused by 1 nM glucagon correlate reasonably well with the absolute decreases in glycolysis. The degree of inhibition of glycolysis is approximately constant (58 per cent) for all metabolic conditions. When no recovery of glycolysis occurs upon cessation of glucagon infusion, the same happens with oxygen consumption, which remains stimulated. It is concluded that in livers with no appreciable biosynthetic activities, the action of glucagon on respiration and glycolysis may be interpreted in terms of an interaction of interpreted in terms of an interaction of cytosolic and mitochondrial ATP generating processes.  相似文献   

17.
The action of carbenoxolone on hepatic energy metabolism was investigated in the perfused rat liver and isolated mitochondria. In perfused livers, carbenoxolone (200-300 microM) increased oxygen consumption, glucose production and glycolysis from endogenous glycogen. Gluconeogenesis from lactate or fructose, an energy-dependent process, was inhibited. This effect was already evident at a concentration of 25 microM. The cellular ATP levels and the adenine nucleotide content were decreased by carbenoxolone, whereas the AMP levels were increased. In isolated mitochondria, carbenoxolone stimulated state IV respiration and decreased the respiratory coefficient with the substrates beta-hydroxybutyrate and succinate. The ATPase of intact mitochondria was stimulated, the ATPase of uncoupled mitochondria was inhibited, and the ATPase of disrupted mitochondria was not altered by carbenoxolone. These results indicate that carbenoxolone acts as an uncoupler of oxidative phosphorylation and, possibly, as an inhibitor of the ATP/ADP exchange system. The inhibitory action of carbenoxolone on mitochondrial energy metabolism could be contributing to induce the mitochondrial permeability transition (MPT), a key phenomenon in apoptosis. The results of the present study can explain, partly at least, the in vivo hepatotoxic actions of carbenoxolone that were found in a previous clinical evaluation.  相似文献   

18.
We investigated the role of energy supplied by long-chain fatty acid oxidation in rat platelet function. Inhibition of the mitochondrial uptake of long-chain fatty acids was achieved by treating rats with 2-tetradecylglycidic acid (TDGA), a potent inhibitor of the overt form of carnitine palmitoyltransferase (CPT-I). The maximum aggregation rate (MAR), CPT-I activity, lactate production, oxygen consumption and adenine nucleotide content of isolated rat platelets were then studied in vitro. 4 h after the in vivo administration of TDGA, the CPT-I activity in saponin-permeabilized platelets was nearly completely inhibited along with a significant reduction in the MAR induced by ADP, thrombin and ionophore A23187. The ATP level, adenylate energy charge (ATP + 1/2 ADP)/(ATP + ADP + AMP) and ATP/ADP ratio in the platelet cytoplasmic pool were also reduced. Platelets from TDGA-treated rats showed lower oxygen consumption rates in both the basal respiratory and oxygen burst states. These results indicate that mitochondrial long-chain fatty acid oxidation coupled to oxidative phosphorylation is an important energy source in rat platelets and is probably involved in the maintenance of platelet function. Enhanced in vitro lactate production in platelets from TDGA-treated rats may have resulted from a compensatory increase in glycolysis which only partly compensated for impaired long-chain fatty acid oxidation.  相似文献   

19.
20.
The effects of sodium propionate, acetate, lactate and citrate on cell proliferation, glucose and oxygen consumption, and ATP production in Listeria monocytogenes were investigated in growing and resting cells. Media pH was 6.7-6.8. Growth inhibition increased while glucose consumption continued in the presence of ≥ 1% propionate, ≥ 3% acetate and ≥ 5% lactate in broth during incubation at 35°C, indicating that glucose consumption was uncoupled from cell proliferation. Acetate and propionate were the most effective antilisterials, whereas citrate (5%) was only slightly inhibitory. Of the four salts, only lactate supported growth, oxygen consumption and ATP production. While concentrations of 1 and 5% propionate, acetate and citrate did not have an effect on oxygen consumption, they inhibited ATP production. ATP production in the presence of the four salts was consistently lower at pH 6.0 than at neutral pH. Lactate served as an alternative energy source for L. monocytogenes in the absence of glucose but became toxic to the organism in the presence of the carbohydrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号