首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deletion of F508 in the first nucleotide binding domain (NBD1) of cystic fibrosis transmembrane conductance regulator protein (CFTR) is the commonest cause of cystic fibrosis (CF). Functional interactions between CFTR and CK2, a highly pleiotropic protein kinase, have been recently described which are perturbed by the F508 deletion. Here we show that both NBD1 wild type and NBD1 DeltaF508 are phosphorylated in vitro by CK2 catalytic alpha-subunit but not by CK2 holoenzyme unless polylysine is added. MS analysis reveals that, in both NBD1 wild type and DeltaF508, the phosphorylated residues are S422 and S670, while phosphorylation of S511 could not be detected. Accordingly, peptides encompassing the 500-518 sequence of CFTR are not phosphorylated by CK2; rather they inhibit CK2alpha catalytic activity in a manner which is not competitive with respect to the specific CK2 peptide substrate. In contrast, 500-518 peptides promote the phosphorylation of NBD1 by CK2 holoenzyme overcoming inhibition by the beta-subunit. Such a stimulatory efficacy of the CFTR 500-518 peptide is dramatically enhanced by deletion of F508 and is abolished by deletion of the II507 doublet. Kinetics of NBD1 phosphorylation by CK2 holoenzyme, but not by CK2alpha, display a sigmoid shape denoting a positive cooperativity which is dramatically enhanced by the addition of the DeltaF508 CFTR peptide. SPR analysis shows that NBD1 DeltaF508 interacts more tightly than NBD1 wt with the alpha-subunit of CK2 and that CFTR peptides which are able to trigger NBD1 phosphorylation by CK2 holoenzyme also perturb the interaction between the alpha- and the beta-subunits of CK2.  相似文献   

2.
The most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in individuals with cystic fibrosis, DeltaF508, causes retention of DeltaF508-CFTR in the endoplasmic reticulum and leads to the absence of CFTR Cl(-) channels in the apical plasma membrane. Rescue of DeltaF508-CFTR by reduced temperature or chemical means reveals that the DeltaF508 mutation reduces the half-life of DeltaF508-CFTR in the apical plasma membrane. Because DeltaF508-CFTR retains some Cl(-) channel activity, increased expression of DeltaF508-CFTR in the apical membrane could serve as a potential therapeutic approach for cystic fibrosis. However, little is known about the mechanisms responsible for the short apical membrane half-life of DeltaF508-CFTR in polarized human airway epithelial cells. Accordingly, the goal of this study was to determine the cellular defects in the trafficking of rescued DeltaF508-CFTR that lead to the decreased apical membrane half-life of DeltaF508-CFTR in polarized human airway epithelial cells. We report that in polarized human airway epithelial cells (CFBE41o-) the DeltaF508 mutation increased endocytosis of CFTR from the apical membrane without causing a global endocytic defect or affecting the endocytic recycling of CFTR in the Rab11a-specific apical recycling compartment.  相似文献   

3.
Mutations in the cystic fibrosis transmembrane conductance regulator protein (CFTR) cause cystic fibrosis. The most common disease-causing mutation, DeltaF508, is retained in the endoplasmic reticulum (ER) and is unable to function as a plasma membrane chloride channel. To investigate whether the ER retention of DeltaF508-CFTR is caused by immobilization and/or aggregation, we have measured the diffusional mobility of green fluorescent protein (GFP) chimeras of wild type (wt)-CFTR and DeltaF508-CFTR by fluorescence recovery after photobleaching. GFP-labeled DeltaF508-CFTR was localized in the ER and wt-CFTR in the plasma membrane and intracellular membranes in transfected COS7 and Chinese hamster ovary K1 cells. Both chimeras localized to the ER after brefeldin A treatment. Spot photobleaching showed that CFTR diffusion (diffusion coefficient approximately 10(-9) cm(2)/s) was not significantly slowed by the DeltaF508 mutation and that nearly all wt-CFTR and DeltaF508-CFTR diffused throughout the ER without restriction. Stabilization of molecular chaperone interactions by ATP depletion produced remarkable DeltaF508-CFTR immobilization ( approximately 50%) and slowed diffusion (6.5 x 10(-10) cm(2)/s) but had little effect on wt-CFTR. Fluorescence depletion experiments revealed that the immobilized DeltaF508-CFTR in ATP-depleted cells remained in an ER pattern. The mobility of wt-CFTR and DeltaF508-CFTR was reduced by maneuvers that alter CFTR processing or interactions with molecular chaperones, including tunicamycin, geldanamycin, and lactacystin. Photobleaching of the fluorescent ER lipid diOC(4)(3) showed that neither ER restructuring nor fragmentation during these maneuvers was responsible for the slowing and immobilization of CFTR. These results suggest that (a) the ER retention of DeltaF508-CFTR is not due to restricted ER mobility, (b) the majority of DeltaF508-CFTR is not aggregated or bound to slowly moving membrane proteins, and (c) DeltaF508-CFTR may interact to a greater extent with molecular chaperones than does wt-CFTR.  相似文献   

4.
Deletion of Phe-508 (Delta F508) is the most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) causing cystic fibrosis. Delta F508-CFTR has defects in both channel gating and endoplasmic reticulum-to-plasma membrane processing. We identified six novel classes of high affinity potentiators of defective Delta F508-CFTR Cl- channel gating by screening 100,000 diverse small molecules. Compounds were added 15 min prior to assay of iodide uptake in epithelial cells co-expressing Delta F508-CFTR and a high sensitivity halide indicator (YFP-H148Q/I152L) in which Delta F508-CFTR was targeted to the plasma membrane by culture at 27 degrees C for 24 h. Thirty-two compounds with submicromolar activating potency were identified; most had tetrahydrobenzothiophene, benzofuran, pyramidinetrione, dihydropyridine, and anthraquinone core structures (360-480 daltons). Further screening of >1000 structural analogs revealed tetrahydrobenzothiophenes that activated DeltaF508-CFTR Cl- conductance reversibly with Kd < 100 nm. Single-cell voltage clamp analysis showed characteristic CFTR currents after Delta F508-CFTR activation. Activation required low concentrations of a cAMP agonist, thus mimicking the normal physiological response. A Bayesian computational model was developed using tetrahydrobenzothiophene structure-activity data, yielding insight into the physical character and structural features of active and inactive potentiators and successfully predicting the activity of structural analogs. Efficient potentiation of defective Delta F508-CFTR gating was also demonstrated in human bronchial epithelial cells from a Delta F508 cystic fibrosis subject after 27 degrees C temperature rescue. In conjunction with correctors of defective Delta F508-CFTR processing, small molecule potentiators of defective Delta F508-CFTR gating may be useful for therapy of cystic fibrosis caused by the Delta F508 mutation.  相似文献   

5.
In cystic fibrosis (CF), the DeltaF508-CFTR anterograde trafficking from the endoplasmic reticulum to the plasma membrane is inefficient. New strategies for increasing the delivery of DeltaF508-CFTR to the apical membranes are thus pathophysiologically relevant targets to study for CF treatment. Recent studies have demonstrated that PDZ-containing proteins play an essential role in determining polarized plasma membrane expression of ionic transporters. In the present study we have hypothesized that the PDZ-containing protein NHE-RF1, which binds to the carboxy terminus of CFTR, rescues DeltaF508-CFTR expression in the apical membrane of epithelial cells. The plasmids encoding DeltaF508-CFTR and NHE-RF1 were intranuclearly injected in A549 or Madin-Darby canine kidney (MDCK) cells, and DeltaF508-CFTR channel activity was functionally assayed using SPQ fluorescent probe. Cells injected with DeltaF508-CFTR alone presented a low chloride channel activity, whereas its coexpression with NHE-RF1 significantly increased both the basal and forskolin-activated chloride conductances. This last effect was lost with DeltaF508-CFTR deleted of its 13 last amino acids or by injection of a specific NHE-RF1 antisense oligonucleotide, but not by NHE-RF1 sense oligonucleotide. Immunocytochemical analysis performed in MDCK cells transiently transfected with DeltaF508-CFTR further revealed that NHE-RF1 specifically determined the apical plasma membrane expression of DeltaF508-CFTR but not that of a trafficking defective mutant potassium channel (KCNQ1). These data demonstrate that the modulation of the expression level of CFTR protein partners, like NHE-RF1, can rescue DeltaF508-CFTR activity.  相似文献   

6.
Cystic fibrosis (CF) is caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In CF, the most common mutant DeltaF508-CFTR is misfolded, is retained in the ER and is rapidly degraded. If conditions could allow DeltaF508-CFTR to reach and to stabilize in the plasma membrane, it could partially correct the CF defect. We have previously shown that annexin V (anxA5) binds to both the normal CFTR and the DeltaF508-CFTR in a Ca(2+)-dependent manner and that it regulates the chloride channel function of Wt-CFTR through its membrane integration. Our aim was to extend this finding to the DeltaF508-CFTR. Because some studies show that thapsigargin (Tg) increases the DeltaF508-CFTR apical expression and induces an increased [Ca(2+)](i) and because anxA5 relocates and binds to the plasma membrane in the presence of Ca(2+), we hypothesized that the Tg effect upon DeltaF508-CFTR function could involve anxA5. Our results show that raised anxA5 expression induces an augmented function of DeltaF508-CFTR due to its increased membrane localization. Furthermore, we show that the Tg effect involves anxA5. Therefore, we suggest that anxA5 is a potential therapeutic target in CF.  相似文献   

7.
The gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), an ATP binding cassette (ABC) transporter that functions as a phosphorylation- and nucleotide-regulated chloride channel, is mutated in cystic fibrosis (CF) patients. Deletion of a phenylalanine at amino acid position 508 (DeltaF508) in the first nucleotide binding domain (NBD1) is the most prevalent CF-causing mutation and results in defective protein processing and reduced CFTR function, leading to chloride impermeability in CF epithelia and heterologous systems. Using a STE6/CFTRDeltaF508 chimera system in yeast, we isolated two novel DeltaF508 revertant mutations, I539T and G550E, proximal to and within the conserved ABC signature motif of NBD1, respectively. Western blot and functional analysis in mammalian cells indicate that mutations I539T and G550E each partially rescue the CFTRDeltaF508 defect. Furthermore, a combination of both revertant mutations resulted in a 38-fold increase in CFTRDeltaF508-mediated chloride current, representing 29% of wild type channel activity. The G550E mutation increased the sensitivity of CFTRDeltaF508 and wild type CFTR to activation by cAMP agonists and blocked the enhancement of CFTRDeltaF508 channel activity by 2 mm 3-isobutyl-1-methylxanthine. The data show that the DeltaF508 defect can be significantly rescued by second-site mutations in the nucleotide binding domain 1 region, that includes the LSGGQ consensus motif.  相似文献   

8.
The cystic fibrosis transmembrane conductance regulator (CFTR), in addition to its Cl(-) channel properties, has regulatory interactions with other epithelial ion channels including the epithelial Na(+) channel (ENaC). Both the open probability and surface expression of wild type CFTR Cl(-) channels are increased significantly when CFTR is co-expressed in Xenopus oocytes with alphabetagamma-ENaC, and conversely, the activity of ENaC is inhibited following wild type CFTR activation. Using the Xenopus oocyte expression system, a lack of functional regulatory interactions between DeltaF508-CFTR and ENaC was observed following activation of DeltaF508-CFTR by forskolin and isobutylmethylxanthine (IBMX). Whole cell currents in oocytes expressing ENaC alone decreased in response to genistein but increased in response to a combination of forskolin and IBMX followed by genistein. In contrast, ENaC currents in oocytes co-expressing ENaC and DeltaF508-CFTR remained stable following stimulation with forskolin/IBMX/genistein. Furthermore, co-expression of DeltaF508-CFTR with ENaC enhanced the forskolin/IBMX/genistein-mediated activation of DeltaF508-CFTR. Our data suggest that genistein restores regulatory interactions between DeltaF508-CFTR and ENaC and that combinations of protein repair agents, such as 4-phenylbutyrate and genistein, may be necessary to restore DeltaF508-CFTR function in vivo.  相似文献   

9.
Misfolding accounts for the endoplasmic reticulum-associated degradation of mutant cystic fibrosis transmembrane conductance regulators (CFTRs), including deletion of Phe508 (DeltaF508) in the nucleotide-binding domain 1 (NBD1). To study the role of Phe508, the de novo folding and stability of NBD1, NBD2 and CFTR were compared in conjunction with mutagenesis of Phe508. DeltaF508 and amino acid replacements that prevented CFTR folding disrupted the NBD2 fold and its native interaction with NBD1. DeltaF508 caused limited alteration in NBD1 conformation. Whereas nonpolar and some aliphatic residues were permissive, charged residues and glycine compromised the post-translational folding and stability of NBD2 and CFTR. The results suggest that hydrophobic side chain interactions of Phe508 are required for vectorial folding of NBD2 and the domain-domain assembly of CFTR, representing a combined co- and post-translational folding mechanism that may be used by other multidomain membrane proteins.  相似文献   

10.
Cystic fibrosis is caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR), commonly the deletion of residue Phe-508 (DeltaF508) in the first nucleotide-binding domain (NBD1), which results in a severe reduction in the population of functional channels at the epithelial cell surface. Previous studies employing incomplete NBD1 domains have attributed this to aberrant folding of DeltaF508 NBD1. We report structural and biophysical studies on complete human NBD1 domains, which fail to demonstrate significant changes of in vitro stability or folding kinetics in the presence or absence of the DeltaF508 mutation. Crystal structures show minimal changes in protein conformation but substantial changes in local surface topography at the site of the mutation, which is located in the region of NBD1 believed to interact with the first membrane spanning domain of CFTR. These results raise the possibility that the primary effect of DeltaF508 is a disruption of proper interdomain interactions at this site in CFTR rather than interference with the folding of NBD1. Interestingly, increases in the stability of NBD1 constructs are observed upon introduction of second-site mutations that suppress the trafficking defect caused by the DeltaF508 mutation, suggesting that these suppressors might function indirectly by improving the folding efficiency of NBD1 in the context of the full-length protein. The human NBD1 structures also solidify the understanding of CFTR regulation by showing that its two protein segments that can be phosphorylated both adopt multiple conformations that modulate access to the ATPase active site and functional interdomain interfaces.  相似文献   

11.
Phenylalanine deletion at position 508 of the cystic fibrosis transmembrane conductance regulator (DeltaF508-CFTR), the most common mutation in cystic fibrosis (CF), causes a misfolded protein exhibiting partial chloride conductance and impaired trafficking to the plasma membrane. 4-Phenylbutyrate corrects defective DeltaF508-CFTR trafficking in vitro, but is not clinically efficacious. From a panel of short chain fatty acid derivatives, we showed that 2,2-dimethyl-butyrate (ST20) and alpha-methylhydrocinnamic acid (ST7), exhibiting high oral bioavailability and sustained plasma levels, correct the DeltaF508-CFTR defect. Pre-incubation (>or=6h) of CF IB3-1 airway cells with >or=1mM ST7 or ST20 restored the ability of 100microM forskolin to stimulate an (125)I(-) efflux. This efflux was fully inhibited by NPPB, DPC, or glibenclamide, suggesting mediation through CFTR. Partial inhibition by DIDS suggests possible contribution from an additional Cl(-) channel regulated by CFTR. Thus, ST7 and ST20 offer treatment potential for CF caused by the DeltaF508 mutation.  相似文献   

12.
Cystic fibrosis (CF) is a disease that is caused by mutations within the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most common mutation, DeltaF508, accounts for 70% of all CF alleles and results in a protein that is defective in folding and trafficking to the cell surface. However, DeltaF508-CFTR is functional when properly localized. We report that a single, noncytotoxic dose of the anthracycline doxorubicin (Dox, 0.25 microM) significantly increased total cellular CFTR protein expression, cell surface CFTR protein expression, and CFTR-associated chloride secretion in cultured T84 epithelial cells. Dox treatment also increased DeltaF508-CFTR cell surface expression and DeltaF508-CFTR-associated chloride secretion in stably transfected Madin-Darby canine kidney cells. These results suggest that anthracycline analogs may be useful for the clinical treatment of CF.  相似文献   

13.
An imbalance of chloride and sodium ion transport in several epithelia is a feature of cystic fibrosis (CF), an inherited disease that is a consequence of mutations in the cftr gene. The cftr gene codes for a Cl(-) channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Some mutations in this gene cause the balance between Cl(-) secretion and Na(+) absorption to be disturbed in the airways; Cl(-) secretion is impaired, whereas Na(+) absorption is elevated. Enhanced Na(+) absorption through the epithelial sodium channel (ENaC) is attributed to the failure of mutated CFTR to restrict ENaC-mediated Na(+) transport. The mechanism of this regulation is controversial. Recently, we have found evidence for a close association of wild type (WT) CFTR and WT ENaC, further underscoring the role of ENaC along with CFTR in the pathophysiology of CF airway disease. In this study, we have examined the association of ENaC subunits with mutated ΔF508-CFTR, the most common mutation in CF. Deletion of phenylalanine at position 508 (ΔF508) prevents proper processing and targeting of CFTR to the plasma membrane. When ΔF508-CFTR and ENaC subunits were co-expressed in HEK293T cells, we found that individual ENaC subunits could be co-immunoprecipitated with ΔF508-CFTR, much like WT CFTR. However, when we evaluated the ΔF508-CFTR and ENaC association using fluorescence resonance energy transfer (FRET), FRET efficiencies were not significantly different from negative controls, suggesting that ΔF508-CFTR and ENaC are not in close proximity to each other under basal conditions. However, with partial correction of ΔF508-CFTR misprocessing by low temperature and chemical rescue, leading to surface expression as assessed by total internal reflection fluorescence (TIRF) microscopy, we observed a positive FRET signal. Our findings suggest that the ΔF508 mutation alters the close association of CFTR and ENaC.  相似文献   

14.
The most common mutation in cystic fibrosis, Delta F508, results in a cystic fibrosis transmembrane conductance regulator (CFTR) protein that is retained in the endoplasmic reticulum (ER). Retention is dependent upon chaperone proteins, many of which require Ca(++) for optimal activity. Interfering with chaperone activity by depleting ER Ca(++) stores might allow functional Delta F508-CFTR to reach the cell surface. We exposed several cystic fibrosis cell lines to the ER Ca(++) pump inhibitor thapsigargin and evaluated surface expression of Delta F508-CFTR. Treatment released ER-retained Delta F508-CFTR to the plasma membrane, where it functioned effectively as a Cl(-) channel. Treatment with aerosolized calcium-pump inhibitors reversed the nasal epithelial potential defect observed in a mouse model of Delta F508-CFTR expression. Thus, ER calcium-pump inhibitors represent a potential target for correcting the cystic fibrosis defect.  相似文献   

15.
The most common cystic fibrosis (CF)‐causing mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is deletion of Phe508 (ΔF508) in the first of two nucleotide‐binding domains (NBDs). Nucleotide binding and hydrolysis at the NBDs and phosphorylation of the regulatory (R) region are required for gating of CFTR chloride channel activity. We report NMR studies of wild‐type and ΔF508 murine CFTR NBD1 with the C‐terminal regulatory extension (RE), which contains residues of the R region. Interactions of the wild‐type NBD1 core with the phosphoregulatory regions, the regulatory insertion (RI) and RE, are disrupted upon phosphorylation, exposing a potential binding site for the first coupling helix of the N‐terminal intracellular domain (ICD). Phosphorylation of ΔF508 NBD1 does not as effectively disrupt interactions with the phosphoregulatory regions, which, along with other structural differences, leads to decreased binding of the first coupling helix. These results provide a structural basis by which phosphorylation of CFTR may affect the channel gating of full‐length CFTR and expand our understanding of the molecular basis of the ΔF508 defect.  相似文献   

16.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-activated chloride channel comprising two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs) and a unique regulatory (R) domain. The most frequent cystic fibrosis (CF) mutation, a deletion of Phe508 in NBD1, results in the retention of the DeltaF508 CFTR in the endoplasmic reticulum, as do many other natural or constructed mutations located within the first NBD. In order to further define the role of NBD1 in CFTR folding and to determine whether the higher frequency of mutations in NBD1 with respect to NBD2 results from its position in the molecule or is related to its primary sequence, we constructed and expressed chimeric CFTRs wherein NBD domains were either exchanged or deleted. Synthesis, maturation and activity of the chimeras were assessed by Western blotting and iodide efflux assay after transient or stable expression in COS-1 or CHO cells respectively. The data showed that deletion of NBD1 prevented transport of CFTR to the cytoplasmic membrane whereas deletion of NBD2 did not impair this process but resulted in an inactive chloride channel. On the other hand, substituting or inverting NBDs in the CFTR molecule impaired its processing. In addition, while the NBD1 R555K mutation is known to partially correct the processing of CFTR DeltaF508 and to increase activity of both wild-type and DeltaF508 individual channels, it showed no positive effect when introduced into the double NBD1 chimera. Taken together, these observations suggest that the proper folding process of CFTR results from complex interactions between NBDs and their surrounding domains (MSDs and/or R domain).  相似文献   

17.
Cystic fibrosis commonly occurs as a consequence of the DeltaF508 mutation in the first nucleotide binding fold domain (NBF-1) of CFTR. The mutation causes retention of the mutant CFTR molecule in the endoplasmic reticulum, and this aberrant trafficking event is believed to be due to defective interactions between the mutant NBF-1 domain and other cellular factors in the endoplasmic reticulum. Since the NBF-1 domain has been shown to interact with membranes, we wanted to investigate whether NBF-1 and CFTR interactions with specific phospholipid chaperones might play a role in trafficking. We have found that the recombinant wild-type NBF-1 interacts selectively with phosphatidylserine (PS) rather than phosphatidylcholine (PC). By contrast, NBF-1 carrying the DeltaF508 mutation loses the ability to discriminate between these two phospholipids. In cells expressing DeltaF508-CFTR, replacement of PC by noncharged analogues results in an absolute increase in CFTR expression. In addition, we detected progressive expression of higher molecular weight CFTR forms. Thus, phospholipid chaperones may be important for CFTR trafficking, and contribute to the pathology of cystic fibrosis.  相似文献   

18.
The most common mutation of the cystic fibrosis (CF) gene, the deletion of Phe508, encodes a protein (DeltaF508-CFTR) that fails to fold properly, thus mutated DeltaF508-cystic fibrosis transmembrane conductance regulator (CFTR) is recognized and degraded via the ubiquitin-proteasome endoplasmic reticulum-associated degradation pathway. Chemical and pharmacological chaperones and ligand-induced transport open options for designing specific drugs to control protein (mis)folding or transport. A class of compounds that has been proposed as having potential utility in DeltaF508-CFTR is that which targets the molecular chaperone and proteasome systems. In this study, we have selected deoxyspergualin (DSG) as a reference molecule for this class of compounds and for ease of cross-linking to human serum albumin (HSA) as a protein transporter. Chemical cross-linking of DSG to HSA via a disulfide-based cross-linker and its administration to cells carrying DeltaF508-CFTR resulted in a greater enhancement of DeltaF508-CFTR function than when free DSG was used. Function of the selenium-dependent oxidoreductase system was required to allow intracellular activation of HSA-DSG conjugates. The principle that carrier proteins can deliver pharmacological chaperones to cells leading to correction of defective CFTR functions is therefore proven and warrants further investigations.  相似文献   

19.
The cystic fibrosis transmembrane conductance regulator (CFTR) channel is an ion channel responsible for chloride transport in epithelia and it belongs to the class of ABC transporters. The deletion of phenylalanine 508 (F508del) in CFTR is the most common mutation responsible for cystic fibrosis. Little is known about the effect of the mutation in the isolated nucleotide binding domains (NBDs), on dimer dynamics, ATP hydrolysis and even on nucleotide binding. Using molecular dynamics simulations of the human CFTR NBD dimer, we showed that F508del increases, in the prehydrolysis state, the inter-motif distance in both ATP binding sites (ABP) when ATP is bound. Additionally, a decrease in the number of catalytically competent conformations was observed in the presence of F508del. We used the subtraction technique to study the first 300 ps after ATP hydrolysis in the catalytic competent site and found that the F508del dimer evidences lower conformational changes than the wild type. Using longer simulation times, the magnitude of the conformational changes in both forms increases. Nonetheless, the F508del dimer shows lower C-α RMS values in comparison to the wild-type, on the F508del loop, on the residues surrounding the catalytic site and the portion of NBD2 adjacent to ABP1. These results provide evidence that F508del interferes with the NBD dynamics before and after ATP hydrolysis. These findings shed a new light on the effect of F508del on NBD dynamics and reveal a novel mechanism for the influence of F508del on CFTR.  相似文献   

20.
Secreted proteins that fail to achieve their native conformations, such as cystic fibrosis transmembrane conductance regulator (CFTR) and particularly the DeltaF508-CFTR variant can be selected for endoplasmic reticulum (ER)-associated degradation (ERAD) by molecular chaperones. Because the message corresponding to HSP26, which encodes a small heat-shock protein (sHsp) in yeast was up-regulated in response to CFTR expression, we examined the impact of sHsps on ERAD. First, we observed that CFTR was completely stabilized in cells lacking two partially redundant sHsps, Hsp26p and Hsp42p. Interestingly, the ERAD of a soluble and a related integral membrane protein were unaffected in yeast deleted for the genes encoding these sHsps, and CFTR polyubiquitination was also unaltered, suggesting that Hsp26p/Hsp42p are not essential for polyubiquitination. Next, we discovered that DeltaF508-CFTR degradation was enhanced when a mammalian sHsp, alphaA-crystallin, was overexpressed in human embryonic kidney 293 cells, but wild-type CFTR biogenesis was unchanged. Because alphaA-crystallin interacted preferentially with DeltaF508-CFTR and because purified alphaA-crystallin suppressed the aggregation of the first nucleotide-binding domain of CFTR, we suggest that sHsps maintain the solubility of DeltaF508-CFTR during the ERAD of this polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号