共查询到20条相似文献,搜索用时 0 毫秒
1.
Many pathogenic gram-negative bacteria employ type III secretion systems to transport proteins into the host cell membrane and cytoplasm to subvert normal cellular functions. The type III secretion apparatus consists of a basal body spanning the inner and outer bacterial membranes and a needle which extends away from the bacterium. Recent work has found that a special class of proteins localizes to the tip of the needle to control secretion of effector proteins. Five of these tip proteins are IpaD (Shigella flexneri), BipD (Burkholderia pseudomallei), SipD (Salmonella spp.), LcrV (Yersinia spp.), and PcrV (Pseudomonas aeruginosa). In this study, the conformational stability of these proteins was characterized as a function of pH and temperature. Understanding the stability of the proteins in different pH environments is particularly important since they are expected to encounter different pH environments in their passage through the gastrointestinal tract and are exposed to low pH microenvironments near the surface of target cell membranes. Secondary and tertiary structural changes were monitored using the spectroscopic techniques of far-UV circular dichroism, Trp fluorescence, ANS fluorescence, and ultraviolet absorption spectroscopy. Optical density and right angle scattering measurements were also used to evaluate protein association/dissociation. Empirical phase diagrams were then applied to mathematically combine data from the various spectroscopic techniques to provide a global picture of the proteins' structural behavior in solution. The responses of the proteins to changes in temperature and pH conditions reveal two distinct subfamilies in terms of stability. The first is that of IpaD, BipD, and SipD whose corresponding phase diagrams show conformational differences at pH 5-6. The conserved pH dependence in this subfamily suggests possible common mechanistic function. In the second subfamily (LcrV and PcrV), conformational stability is directly related to pH, also indicating mechanistic similarities. 相似文献
2.
The type III secretion system (T3SS) is essential for the pathogenesis of many bacteria including Salmonella and Shigella, which together are responsible for millions of deaths worldwide each year. The structural component of the T3SS consists of the needle apparatus, which is assembled in part by the protein–protein interaction between the tip and the translocon. The atomic detail of the interaction between the tip and the translocon proteins is currently unknown. Here, we used NMR methods to identify that the N‐terminal domain of the Salmonella SipB translocon protein interacts with the SipD tip protein at a surface at the distal region of the tip formed by the mixed α/β domain and a portion of its coiled‐coil domain. Likewise, the Shigella IpaB translocon protein and the IpaD tip protein interact with each other using similar surfaces identified for the Salmonella homologs. Furthermore, removal of the extreme N‐terminal residues of the translocon protein, previously thought to be important for the interaction, had little change on the binding surface. Finally, mutations at the binding surface of SipD reduced invasion of Salmonella into human intestinal epithelial cells. Together, these results reveal the binding surfaces involved in the tip‐translocon protein–protein interaction and advance our understanding of the assembly of the T3SS needle apparatus. Proteins 2016; 84:1097–1107. © 2016 Wiley Periodicals, Inc. 相似文献
3.
Sukanya Chaudhury Kevin P. Battaile Scott Lovell Gregory V. Plano Roberto N. De Guzman 《Acta Crystallographica. Section F, Structural Biology Communications》2013,69(5):477-481
The human pathogen Yersinia pestis requires the assembly of the type III secretion system (T3SS) for virulence. The structural component of the T3SS contains an external needle and a tip complex, which is formed by LcrV in Y. pestis. The structure of an LcrV triple mutant (K40A/D41A/K42A) in a C273S background has previously been reported to 2.2 Å resolution. Here, the crystal structure of LcrV without the triple mutation in a C273S background is reported at a higher resolution of 1.65 Å. Overall the two structures are similar, but there are also notable differences, particularly near the site of the triple mutation. The refined structure revealed a slight shift in the backbone positions of residues Gly28–Asn43 and displayed electron density in the loop region consisting of residues Ile46–Val63, which was disordered in the original structure. In addition, the helical turn region spanning residues Tyr77–Gln95 adopts a different orientation. 相似文献
4.
《Microbes and infection / Institut Pasteur》2014,16(7):532-539
Infection of colonic epithelial cells by Shigella is associated with the type III secretion system, which serves as a molecular syringe to inject effectors into host cells. This system includes an extracellular needle used as a conduit for secreted proteins. Two of these proteins, IpaB and IpaD, dock at the needle tip to control secretion and are also involved in the insertion of a translocation pore into host cell membrane allowing effector delivery. To better understand the function of IpaD, we substituted thirteen residues conserved among homologous proteins in other bacterial species. Generated variants were tested for their ability to surface expose IpaB and IpaD, to control secretion, to insert the translocation pore, and to invade host cells. In addition to a first group of seven ipaD variants that behaved similarly to the wild-type strain, we identified a second group with mutations V314D and I319D that deregulated secretion of all effectors, but remained fully invasive. Moreover, we identified a third group with mutations Y153A, T161D, Q165L and Y276A, that exhibited increased levels of translocators secretion, pore formation, and cell entry. Altogether, our results offer a better understanding of the role of IpaD in the control of Shigella virulence. 相似文献
5.
Supratim Dey Amritangshu Chakravarty Pallavi Guha Biswas Roberto N. De Guzman 《Protein science : a publication of the Protein Society》2019,28(9):1582-1593
Many Gram‐negative bacteria pathogenic to plants and animals deploy the type III secretion system (T3SS) to inject virulence factors into their hosts. All bacteria that rely on the T3SS to cause infectious diseases in humans have developed antibiotic resistance. The T3SS is an attractive target for developing new antibiotics because it is essential in virulence, and part of its structural component is exposed on the bacterial surface. The structural component of the T3SS is the needle apparatus, which is assembled from over 20 different proteins and consists of a base, an extracellular needle, a tip, and a translocon. This review summarizes the current knowledge on the structure and assembly of the needle, tip, and translocon. 相似文献
6.
Thenmalarchelvi Rathinavelan Chun Tang Roberto N. De Guzman 《The Journal of biological chemistry》2011,286(6):4922-4930
Many Gram-negative bacteria that cause major diseases and mortality worldwide require the type III secretion system (T3SS) to inject virulence proteins into their hosts and cause infections. A structural component of the T3SS is the needle apparatus, which consists of a base, an external needle, and a tip complex. In Salmonella typhimurium, the external needle is assembled by the polymerization of the needle protein PrgI. On top of this needle sits a tip complex, which is partly formed by the tip protein SipD. How SipD interacts with PrgI during the assembly of the T3SS needle apparatus remains unknown. The central region of PrgI forms an α-helical hairpin, whereas SipD has a long central coiled-coil, which is a defining structural feature of other T3SS tip proteins as well. Using NMR paramagnetic relaxation enhancement, we have identified a specific region on the SipD coiled-coil that interacts directly with PrgI. We present a model of how SipD might dock at the tip of the needle based on our paramagnetic relaxation enhancement results, thus offering new insight about the mechanism of assembly of the T3SS needle apparatus. 相似文献
7.
Pseudomonas cichorii secretes effectors that suppress defense mechanisms in host plants. However, the function of these effectors, including avirulence protein E1 (AvrE1), in the pathogenicity of P. cichorii, remains unexplored. In this study, to investigate the function of avrE1 in P. cichorii JBC1 (PcJBC1), we created an avrE1-deficient mutant (JBC1ΔavrE1) using CRISPR/Cas9. The disease severity caused by JBC1ΔavrE1 in tomato plants significantly decreased by reducing water soaking during early infection stage, as evidenced by the electrolyte leakage in infected leaves. The disease symptoms caused by JBC1ΔavrE1 in the cabbage midrib were light-brown spots compared to the dark-colored ones caused by PcJBC1, which indicates the role of AvrE1 in cell lysis. The avrE1-deficient mutant failed to elicit cell death in non-host tobacco plants. Disease severity and cell death caused by JBC1ΔavrE1 in host and non-host plants were restored through heterologous complementation with avrE1 from Pseudomonas syringae pv. tomato DC3000 (PstDC3000). Overall, our results indicate that avrE1 contributes to cell death during early infection, which consequently increases disease development in host plants. The roles of PcJBC1 AvrE1 in host cells remain to be elucidated. 相似文献
8.
Aims: To differentiate pathogenic and nonpathogenic Edwardsiella tarda strains based on the detection of type III secretion system (T3SS) gene using polymerase chain reaction (PCR). Methods and Results: Primers were designed to amplify Edw. tarda T3SS component gene esaV, catalase gene katB, haemolysin gene hlyA and 16S rRNA gene as an internal positive control. Genomic DNAs were extracted using a commercial isolation kit from 36 Edw. tarda strains consisting of 18 pathogenic and 18 nonpathogenic strains, and 50 ng of each DNA was used as the template for PCR amplification. PCR was performed with a thermocycler (TaKaRa TP600) in a 25‐μl volume. Products of esaV were detected in all pathogenic strains, but not in nonpathogenic strains; katB was detected in all pathogenic strains and one of nonpathogenic strains; hlyA was not detected in any strains. Conclusions: The detection of esaV gene can be used for the assessment of pathogenic Edw. tarda strains. Significance and Impact of the Study: The strategy using T3SS gene as the virulence indicator provides a useful tool for the clinical assessment of pathogenic Edw. tarda strains and prediction of edwardsiellosis risk in fish culture environments. 相似文献
9.
致病菌借助分泌系统将特异蛋白直接注入宿主细胞内,破坏宿主细胞内的多种信号通路,是导致细菌定殖和感染的有效途径。作为一种重要的食源性致病菌,副溶血性弧菌(Vibrio parahaemolyticus)的Ⅲ型分泌系统(Type Ⅲ secretion system,T3SS)和Ⅵ型分泌系统(Type Ⅵ secretion system,T6SS)是其对宿主细胞产生致病性的重要因素。本文综述了副溶血性弧菌T3SS和T6SS效应物在致病力中的具体作用,以及相关调控机理,为进一步了解由副溶血性弧菌导致的病症,研究其致病机理以及寻找致病性靶标提供参考。 相似文献
10.
目的 了解副溶血性弧菌食物中毒和临床腹泻株III型分泌系统的分布以及耐药特征。方法 对食物中毒和临床腹泻分离到的共21株副溶血性弧菌进行毒力基因tdh、trh、T3SS1、T3SS2α、T3SS2β和toxR检测,并用VITEK 2 compact全自动微生物鉴定系统进行了耐药性分析。结果 21株菌株中tdh+/trh-占90.48%(19/21), tdh-/trh+和tdh-/trh-分别占4.76%、4.76%,未检测到tdh+/trh+菌株。T3SS1广泛存在于所有菌株中。T3SS2α存在于tdh+/trh-菌株,T3SS2β存在于tdh-/trh+菌株。1株食物中毒菌株毒力基因携带情况为tdh-/trh-/T3SS2α-/T3SS2β-。21株副溶血性弧菌对阿莫西林、头孢吡肟、抗菌素B、庆大霉素、环丙沙星和复方新诺明敏感,对氨苄西林完全耐药。结论 食物中毒和临床腹泻分离到的菌株大多携带tdh基因,T3SS2α与tdh相关,而T3SS2β则存在于trh+菌株。未携带tdh和trh基因的食物中毒分离株表明副溶血性弧菌不仅仅依赖TDH和TRH发挥毒力作用,其致病机制具有多样性和复杂性。 相似文献
11.
The conserved ATPase of type III secretion systems is critical to the export of substrates through the apparatus. We present a characterization of the native T3SS ATPase, Spa47, from the cytoplasm of Shigella flexneri, demonstrating it to be in two distinct high-molecular-weight complexes with Spa33: MxiN and MxiK. 相似文献
12.
Yi‐Chiao Huang Yuan‐Chuen Lin Chia‐Fong Wei Wen‐Ling Deng Hsiou‐Chen Huang 《Molecular Plant Pathology》2016,17(7):1080-1094
To ensure the optimal infectivity on contact with host cells, pathogenic Pseudomonas syringae has evolved a complex mechanism to control the expression and construction of the functional type III secretion system (T3SS) that serves as a dominant pathogenicity factor. In this study, we showed that the hrpF gene of P. syringae pv. averrhoi, which is located upstream of hrpG, encodes a T3SS‐dependent secreted/translocated protein. Mutation of hrpF leads to the loss of bacterial ability on elicitation of disease symptoms in the host and a hypersensitive response in non‐host plants, and the secretion or translocation of the tested T3SS substrates into the bacterial milieu or plant cells. Moreover, overexpression of hrpF in the wild‐type results in delayed HR and reduced t3ss expression. The results of protein–protein interactions demonstrate that HrpF interacts directly with HrpG and HrpA in vitro and in vivo, and protein stability assays reveal that HrpF assists HrpA stability in the bacterial cytoplasm, which is reduced by a single amino acid substitution at the 67th lysine residue of HrpF with alanine. Taken together, the data presented here suggest that HrpF has two roles in the assembly of a functional T3SS: one by acting as a negative regulator, possibly involved in the HrpSVG regulation circuit via binding to HrpG, and the other by stabilizing HrpA in the bacterial cytoplasm via HrpF–HrpA interaction prior to the secretion and formation of Hrp pilus on the bacterial surface. 相似文献
13.
【目的】探究两套Ⅲ型分泌系统T3SS1和T3SS2影响副溶血弧菌生物学特性及细胞致病性的差异和相关性。【方法】以T3SS1和T3SS2主要结构基因vcrD1和vcrD2为研究对象,利用同源重组技术分别构建单基因和双基因缺失株ΔvcrD1、ΔvcrD2、ΔvcrD1-vcrD2,以及互补株CΔvcrD1和CΔvcrD2;分析各菌株的生长特性、生物被膜形成能力、运动性的差异;比较各菌株对细胞毒性以及对细胞炎性因子转录水平的影响。【结果】与野生株相比,各缺失株的生长速度无显著差异。缺失株ΔvcrD1生物被膜形成能力、运动性和细胞毒性均极显著下降;缺失株ΔvcrD2主要表现为细胞炎性因子IL-1β和IL-6转录水平的显著上调,同时对细胞毒性作用下降。双基因缺失株ΔvcrD1-vcrD2在缺失株ΔvcrD1的基础上,生物被膜形成能力、运动性、细胞毒性均进一步显著下降,但在细胞炎性因子的转录水平上,则与ΔvcrD1一致,与野生株相比均无显著差异。【结论】T3SS1和T3SS2对副溶血弧菌生物学特性和细胞致病性的影响存在差异。T3SS1主要影响细菌的生物被膜形成、运动性及细胞毒性作用;T3SS2不影响生物被膜形成、运动性等生物学特性,参与细菌对细胞炎性反应中的负调控作用,同时具有一定的细胞毒性作用。T3SS1有助于副溶血弧菌在环境中的生存,而T3SS2可有利于细菌在宿主体内免疫逃避的过程。T3SS1和T3SS2对副溶血弧菌生物学特性和细胞致病性的影响可能存在一定的相关作用,具体机制有待进一步研究。 相似文献
14.
Purvi M. Rakhashiya Pooja P. Patel Bhavisha P. Sheth Jigna G. Tank 《Archives Of Phytopathology And Plant Protection》2016,49(1-4):64-73
Plant pathogenic organisms are known to infect host cell using various range of secretory proteins. Amongst all other secretion systems, type III secretion system (T3SS) is a key mechanism for bacterial pathogenesis for establishing and maintaining infection into the host. Expression levels of seven genes viz. avrXacE1, avrXacE2, hpaA and hrpG along with bacterial endogenous control lrp (leucine-responsive protein) were studied. The pathogenic organisms selected for the present study includes Enterobacter cloacae, Enterobacter spp., Pantoea ananatis, Xanthomonas campestris pv. Citri, Pantoea agglomerans, Ochrobactrum anthropi and Erwinia chrysanthemi. P. agglomerans and Enterobacter spp. gave high expression of above-mentioned virulence genes compared to Xanthomonas, while E. cloacae and P. ananatis showed similar expression with that of Xanthomonas. The detailed relationship of the expression profiles with respect to the selected organisms is discussed. 相似文献
15.
Huaqin Ruan Meijuan Hu Jingyu Chen Xue Li Ting Li Yongxiu Lai En Tao Wang Jun Gu 《Systematic and applied microbiology》2018,41(5):437-443
The distribution of rhcRST and rhcJ-C1 fragments located in different loci of the type III secretion system (T3SS) gene cluster in the peanut-nodulating bradyrhizobia isolated from Guangdong Province, China was investigated by PCR-based sequencing. T3SS was detected in approximately one-third of the peanut bradyrhizobial strains and the T3SS-harboring strains belonging to different Bradyrhizobium genomic species. Diverse T3SS groups corresponding to different symbiotic gene types were defined among the 23 T3SS-harboring strains. The same or similar T3SS genes were detected in different genospecies, indicating that interspecies horizontal transfer of symbiotic genes had occurred in the Bradyrhizobium genus. 相似文献
16.
17.
Chatterjee S Zhong D Nordhues BA Battaile KP Lovell S De Guzman RN 《Protein science : a publication of the Protein Society》2011,20(1):75-86
The type III secretion system (T3SS) is a protein injection nanomachinery required for virulence by many human pathogenic bacteria including Salmonella and Shigella. An essential component of the T3SS is the tip protein and the Salmonella SipD and the Shigella IpaD tip proteins interact with bile salts, which serve as environmental sensors for these enteric pathogens. SipD and IpaD have long central coiled coils and their N-terminal regions form α-helical hairpins and a short helix α3 that pack against the coiled coil. Using AutoDock, others have predicted that the bile salt deoxycholate binds IpaD in a cleft formed by the α-helical hairpin and its long central coiled coil. NMR chemical shift mapping, however, indicated that the SipD residues most affected by bile salts are located in a disordered region near helix α3. Thus, how bile salts interact with SipD and IpaD is unclear. Here, we report the crystal structures of SipD in complex with the bile salts deoxycholate and chenodeoxycholate. Bile salts bind SipD in a region different from what was predicted for IpaD. In SipD, bile salts bind part of helix α3 and the C-terminus of the long central coiled coil, towards the C-terminus of the protein. We discuss the biological implication of the differences in how bile salts interact with SipD and IpaD. 相似文献
18.
19.
《Journal of molecular biology》2021,433(13):166985
Secretion of bacterial effector proteins into host cells plays a key role in bacterial virulence. Yet, the dynamics of the secretion systems activity remains poorly understood, especially when machineries deal with the export of numerous effectors. We address the question of multi-effector secretion by focusing on the Legionella pneumophila Icm/Dot T4SS that translocates a record number of 300 effectors. We set up a kinetic translocation assay, based on the β-lactamase translocation reporter system combined with the effect of the protonophore CCCP. When used for translocation analysis of Icm/Dot substrates constitutively produced by L. pneumophila, this assay allows a fine monitoring of the secretion activity of the T4SS, independently of the expression control of the effectors. We observed that effectors are translocated with a specific timing, suggesting a control of their docking/translocation by the T4SS. Their delivery is accurately organized to allow effective manipulation of the host cell, as exemplified by the sequential translocation of effectors targeting Rab1, namely SidM/DrrA, LidA, LepB. Remarkably, the timed delivery of effectors does not depend only on their interaction with chaperone proteins but implies cyclic-di-GMP signaling, as the diguanylate cyclase Lpl0780/Lpp0809, contributes to the timing of translocation. 相似文献
20.
Julien Stathopulos Christian Cambillau Eric Cascales Alain Roussel Philippe Leone 《Acta Crystallographica. Section F, Structural Biology Communications》2015,71(1):71-74
PorM is a membrane protein involved in the assembly of the type IX secretion system (T9SS) from Porphyromonas gingivalis, a major bacterial pathogen responsible for periodontal disease in humans. The periplasmic domain of PorM was overexpressed in Escherichia coli and purified. A fragment of the purified protein was obtained by limited proteolysis. Crystals of this fragment belonged to the tetragonal space group P43212. Native and MAD data sets were recorded to 2.85 and 3.1 Å resolution, respectively, using synchrotron radiation. 相似文献