首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Foodborne viruses   总被引:7,自引:0,他引:7  
Foodborne and waterborne viral infections are increasingly recognized as causes of illness in humans. This increase is partly explained by changes in food processing and consumption patterns that lead to the worldwide availability of high-risk food. As a result, vast outbreaks may occur due to contamination of food by a single foodhandler or at a single source. Although there are numerous fecal-orally transmitted viruses, most reports of foodborne transmission describe infections with Norwalk-like caliciviruses (NLV) and hepatitis A virus (HAV), suggesting that these viruses are associated with the greatest risk of foodborne transmission. NLV and HAV can be transmitted from person to person, or indirectly via food, water, or fomites contaminated with virus-containing feces or vomit. People can be infected without showing symptoms. The high frequency of secondary cases of NLV illness and - to a lesser extent - of hepatitis A following a foodborne outbreak results in amplification of the problem. The burden of illness is highest in the elderly, and therefore is likely to increase due to the aging population. For HAV, the burden of illness may increase following hygienic control measures, due to a decreasing population of naturally immune individuals and a concurrent increase in the population at risk. Recent advances in the research of NLV and HAV have led to the development of molecular methods which can be used for molecular tracing of virus strains. These methods can be and have been used for the detection of common source outbreaks. While traditionally certain foods have been implicated in virus outbreaks, it is clear that almost any food item can be involved, provided it has been handled by an infected person. There are no established methods for detection of viruses in foods other than shellfish. Little information is available on disinfection and preventive measures specifically for these viruses. Studies addressing this issue are hampered by the lack of culture systems. As currently available routine monitoring systems exclusively focus on bacterial pathogens, efforts should be made to combine epidemiological and virological information for a combined laboratory-based rapid detection system for foodborne viruses. With better surveillance, including typing information, outbreaks of foodborne infections could be reported faster to prevent further spread.  相似文献   

2.
The ability of public health agencies to identify, through enhanced epidemiologic and surveillance techniques, raw fruits, vegetables, and unpasteurized juices as probable sources of infectious microorganisms, has undoubtedly resulted in increased numbers of documented outbreaks. Changes in agronomic, harvesting, distribution, processing, and consumption patterns and practices have also likely contributed to this increase. The risk of illness associated with raw produce and unpasteurized produce products can be reduced by controlling or preventing contamination, or by removing or killing pathogenic microorganisms by washing or treating them with sanitizers. However, the hydrophobic cutin, diverse surface morphologies, and abrasions in the epidermis of fruits and vegetables limit the efficacy of these treatments. Journal of Industrial Microbiology & Biotechnology (2000) 25, 281–287. Received 23 June 2000/ Accepted in revised form 17 October 2000  相似文献   

3.
Viral enteropathogens are one of the leading causative agents of foodborne illnesses in both the United States and the European Union. While human noroviruses and hepatitis A virus cause the vast majority of outbreaks and illnesses, there are handful of human enteric viruses that contribute to sporadic outbreaks worldwide including astrovirus, sapovirus, rotavirus, enterovirus and Aichi virus. In addition, hepatitis E virus is increasingly being recognized as an emerging zoonotic threat within the food supply. This review aims to briefly describe the primary human enteric viruses of concern with respect to foodborne transmission. Next, we focus on the contamination and persistence of these viruses within three high-risk food commodities—leafy greens, soft red fruits and bivalve mollusks. As opposed to detailing the specific routes by which these foods can be contaminated with enteric viruses, we have chosen to focus on their persistence and specific interactions within the food itself. Therefore, the processes of attachment and internalization of the viruses in foods have been emphasized. Looking forward, the implications of these specific interactions of human enteric viruses with leafy greens, soft red fruits and bivalve mollusks are briefly considered within the context of future prevention and control strategies.  相似文献   

4.
The ability of public health agencies to identify, through enhanced epidemiologic and surveillance techniques, raw fruits, vegetables, and unpasteurized juices as probable sources of infectious microorganisms, has undoubtedly resulted in increased numbers of documented outbreaks. Changes in agronomic, harvesting, distribution, processing, and consumption patterns and practices have also likely contributed to this increase. The risk of illness associated with raw produce and unpasteurized produce products can be reduced by controlling or preventing contamination, or by removing or killing pathogenic microorganisms by washing or treating them with sanitizers. However, the hydrophobic cutin, diverse surface morphologies, and abrasions in the epidermis of fruits and vegetables limit the efficacy of these treatments. Journal of Industrial Microbiology & Biotechnology (2001) 27, 104–110. Received 23 June 2000/ Accepted in revised form 17 October 2000  相似文献   

5.
We reported previously that the dominant receptors of influenza A and B viruses, and human and murine respiroviruses, were sialylglycoproteins and gangliosides containing monosialo-lactosamine type I-and II-residues, such as sialic acid-α2-3(6)-Galβ1-3(4)-GlcNAcβ1-. In addition, the Siaα2-3Gal linkage was predominantly recognized by avian and horse influenza viruses, and human parainfluenza virus type 1 (hPIV-1), whereas the Siaα2-6Gal linkage was mainly recognized by human influenza viruses (Paulson JC in “The Receptors' [Conn M Ed] 2, 131–219 (1985); Suzuki Y, Prog Lipid Res 33, 429–57 (1994); Ito T, J Virol 73, 6743–51 (2000); Suzuki Y, J Virol 74, 11825–31 (2000); Suzuki T, J. Virol 75, 4604–4613 (2001); Suzuki Y, Biol. Pharm. Bull. 28, 399–408 (2005)). To clarify the distribution of influenza virus receptors on the human bronchial epithelium cell surface, we investigated a primary culture of normal human bronchial epithelial (NHBE) cells using two types of lectin (MAA and SNA), which recognize sialyl linkages (α2-3 and α2-6), using fluorescence-activated cell-sorting analysis. The results showed that both α2-3- and α2-6-linked Sias were expressed on the surface of primary human bronchial epithelial cells. The cells infected by hPIV-1 bound to MAA, confirming that cells targeted by hPIV-1 have α2-3-linked oligosaccharides. We also compared the ability of hPIV-1 and human influenza A virus to infect primary human bronchial epithelial cells pre-treated with Siaα2-3Gal-specific sialidase from Salmonella typhimurium. No difference was observed in the number of sialidase pre-treated and non-treated cells infected with human influenza A virus, which binds to Siaα2-6Gal-linked oligosaccharides. By contrast, the number of cells infected with hPIV-1 decreased significantly upon sialidase treatment. Thus, cultured NHBE cells showed both α2-3-linked Sias recognized by hPIV-1 and avian influenza virus receptors, and α2-6-linked Sias recognized by human influenza virus receptors.  相似文献   

6.
Survival of human enteric viruses in the environment and food   总被引:13,自引:0,他引:13  
Human enteric pathogenic viruses can enter the environment through discharge of waste materials from infected persons, and be transmitted back to susceptible persons to continue the cycle of disease. Contamination of food with viruses may also promote disease outbreaks. A number of studies have investigated the survival characteristics of several enteric viruses in various environments and foodstuffs, to help explain the transmissibility of these pathogens. This review deals with published work on enteric virus survival on fomites, and in waters, soil, and foods; the results of these studies have illustrated the robust survival of viruses in these environments. Much information is lacking, however, especially for foodstuffs and soils, and no detailed information is available concerning the survival of noroviruses, the most significant foodborne type.  相似文献   

7.
Much research into food‐borne human pathogens has focused on transmission from foods of animal origin. However, recent investigations have identified fruits and vegetables are the source of many disease outbreaks. Now believed to be a much larger contributor to produce‐associated outbreaks than previously reported, norovirus outbreaks are commonly caused by contamination of foods from hands of infected workers. Although infections with Shiga toxin‐producing E. coli O157 have been linked to beef more often than to any other food product, severe outbreaks have been traced to consumption of contaminated radish sprouts and pre‐packaged spinach. Similarly, while infections with Salmonella have mainly been linked to consumption of foods of animal origin, many outbreaks have been traced to contaminated fresh produce. E. coli O157 binds to lettuce leaves by alternative mechanisms involving the filamentous type III secretions system, flagella and the pilus curli. Association of Salmonella with fresh produce appears to be serovar‐specific involving flagella, curli, cellulose, and O antigen capsule. A better understanding of plant, microbiological, environmental, processing and food handling factors that facilitate contamination will allow development of evidence‐based policies, procedures and technologies aimed at reducing the risk of contamination of fresh produce.  相似文献   

8.
Over the past 10 years, there is an increasing demand for leafy green vegetables and their ready-to-eat (RTE) salads since people changed their eating habits because of healthier lifestyle interest. Nevertheless fresh leafy green vegetables and their RTE salads are recognized as a source of food poisoning outbreaks in many parts of the world. However, this increased proportion of outbreaks cannot be completely explained by increased consumption and enhanced surveillance of them. Both in Europe and in the USA, recent foodborne illness outbreaks have revealed links between some pathogens and some leafy green vegetables such as mostly lettuces and spinaches and their RTE salads since fresh leafy green vegetables carry the potential risk of microbiological contamination due to the usage of untreated irrigation water, inappropriate organic fertilizers, wildlife or other sources that can occur anywhere from the farm to the fork such as failure during harvesting, handling, processing and packaging. Among a wide range of pathogens causing foodborne illnesses, Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes are the most common pathogens that contaminate leafy green vegetables. Children, the elderly, pregnant women and immunocompromised people are the most at risk for developing complications from foodborne illness as a result of eating contaminated leafy greens or their RTE salads. These outbreaks are mostly restaurant associated or they sometimes spread across several countries by international trade routes. This review summarizes current observations concerning the contaminated leafy green vegetables and their RTE salads as important vehicles for the transmission of some foodborne pathogens to humans.  相似文献   

9.
Aims: A prospective study was performed to characterize the main human enteric viruses able to persist in sewage samples and in shellfish tissues, and to establish the correlation between environmental strains and viral infantile diarrhoea observed in the same area during the same period. Methods and Results: A total of 250 sewage (raw and treated) and 60 shellfish samples were collected between January 2003 and April 2007 in Monastir region, Tunisia. Group A rotavirus (RVA) was detected in 80 (32%) sewage samples, norovirus (NoV) in 11 (4·4%) and enteric adenovirus (AdV) in 1 (0·4%). Among 60 shellfish samples collected near sewage effluents, one was contaminated by NoV (1·6%). Conclusion: Our data represent the first documentation in Tunisia, combining gastroenteritis viruses circulating in the environment and in clinical isolates. We observed a correlation between environmental strains and those found in children suffering from gastroenteritis during the same period study. This suggests the existence of a relationship between water contamination and paediatric diarrhoea. Significance and Impact of the Study: Our results address the potential health risks associated with transmission of human enteric viruses through water‐related environmental routes. The research findings will aid in elucidating the molecular epidemiology and circulation of enteric viruses in Tunisia and in Africa, where data are rare.  相似文献   

10.
Recreational waters contaminated with human fecal pollution are a public health concern, and ensuring the safety of recreational waters for public use is a priority of both the Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC). Current recreational water standards rely on fecal indicator bacteria (FIB) levels as indicators of human disease risk. However present evidence indicates that levels of FIB do not always correspond to the presence of other potentially harmful organisms, such as viruses. Thus, enteric viruses are currently tested as water quality indicators, but have yet to be successfully implemented in routine monitoring of water quality. This study utilized enteric viruses as possible alternative indicators of water quality to examine 18 different fresh and offshore recreational waters on O‘ahu, Hawai‘i, by using newly established laboratory techniques including highly optimized PCR, real time PCR, and viral infectivity assays. All sample sites were detected positive for human enteric viruses by PCR including enterovirus, norovirus genogroups I and II, and male specific FRNA coliphage. A six time-point seasonal study of enteric virus presence indicated significant variation in virus detection between the rainy and dry seasons. Quantitative PCR detected the presence of norovirus genogroup II at levels at which disease risk may occur, and there was no correlation found between enteric virus presence and FIB counts. Under the present laboratory conditions, no infectious viruses were detected from the samples PCR-positive for enteric viruses. These data emphasize both the need for additional indicators for improved monitoring of water quality, and the feasibility of using enteric viruses as these indicators. Electronic Supplementary MaterialSupplementary material is available for this article at 10.1007/s12250-015-3644-x and is accessible for authorized users.  相似文献   

11.
Summary In Morocco, shellfish sanitary quality analysis does not currently include enteric virus detection. Enteroviruses are classically detected by cell culture, but molecular methods such as RT-PCR are now broadly used alone or associated to cell culture. RT-PCR has the advantage of requiring less time and budget than cell culture. Bivalve mussels, being filter-feeders tend to accumulate viruses in contaminated seawater. In order to assess mussel contamination by enteroviruses, we screened samples of two origins, an aquaculture system and an area where wild mussels grow. Domestic sewage samples from an outlet near the above wild mussels growing area were also analysed. Viruses were concentrated from mussel meat by direct glycine elution and PEG 8000 precipitation. Total RNA was then extracted from the PEG precipitate by the guanidine thiocyanate method and used in RT-PCR. Enterovirus genomes were detected in 10% of wild shellfish samples, whilst none was present in the aquaculture samples. Since organisms harvested in both growing areas are used for human consumption, the enterovirus contamination observed in this study may highlight a potential public health risk and illustrate the importance of including routine virological analysis of shellfish in Morocco.  相似文献   

12.
13.
14.
Aims: To investigate the presence of enteric viruses [hepatitis A (HAV) and norovirus (NoV)] in shellfish harvested from the deltaic area of the Po river in relation to environmental factors. Methods and Results: Fortnightly sampling of shellfish was carried out in two lagoon areas (category B production areas) and one sea area (category A). Environmental parameters in the lagoon and hydrometric level of the tributary river were monitored throughout the sampling period. Samples (n = 120) were analysed for bacterial (E. coli and Salmonella) and viral (HAV and NoV) contamination; samples from category B areas were analysed before and after purification treatment. All the samples were negative for HAV whereas 10 samples (8·3%), all harvested in the lagoon areas, were positive for NoV. Sequencing identified the strains as genotypes II.4 and II.b. None of the samples was found to be contaminated after depuration. Conclusions: The monitoring showed a low frequency of NoV presence; viral contamination, detected exclusively in shellfish collected from the deltaic area (category B), could be influenced by the flow of the tributary river. Significance and Impact of the Study: The data collected are useful for the design of targeted prevention strategies and for the modulation of control plans after meteorological events.  相似文献   

15.
In recent years the importance of prepared salads as potential vehicles of gastrointestinal infection has been highlighted by several large outbreaks both nationally and across international boundaries. Between 1992 and 2006, 2274 foodborne general outbreaks of infectious intestinal disease were reported in England and Wales, of which 4% were associated with the consumption of prepared salads. In total, 3434 people were affected, with 66 hospitalizations and one death reported. The attribution of prepared salad types and pathogens among prepared salad associated outbreaks are presented and discussed. Findings from UK studies on salad vegetables, fruit and mixed salads from 1995 to 2007 (21 247 samples) indicate that most bacteria of concern with regard to human health are relatively rare in these products (98.6% of satisfactory quality); however, outbreaks of salmonellosis were uncovered associated with bagged salad leaves and fresh herbs during two such studies. Although it is known that fresh salad vegetables, herbs or fruit may become contaminated from environmental sources, only in recent years has the association of foods of nonanimal origin, such as salad vegetables, with foodborne illness become evident and recurrent, demonstrating that major health problems can arise from consumption of contaminated prepared salads if hygiene practices breakdown.  相似文献   

16.
Foot-and-mouth disease (FMD) virus causes an acute vesicular disease of domesticated and wild ruminants and pigs. Identifying sources of FMD outbreaks is often confounded by incomplete epidemiological evidence and the numerous routes by which virus can spread (movements of infected animals or their products, contaminated persons, objects, and aerosols). Here, we show that the outbreaks of FMD in the United Kingdom in August 2007 were caused by a derivative of FMDV O(1) BFS 1860, a virus strain handled at two FMD laboratories located on a single site at Pirbright in Surrey. Genetic analysis of complete viral genomes generated in real-time reveals a probable chain of transmission events, predicting undisclosed infected premises, and connecting the second cluster of outbreaks in September to those in August. Complete genome sequence analysis of FMD viruses conducted in real-time have identified the initial and intermediate sources of these outbreaks and demonstrate the value of such techniques in providing information useful to contemporary disease control programmes.  相似文献   

17.
18.
Foodborne disease outbreaks of recent years demonstrate that due to increasingly interconnected supply chains these type of crisis situations have the potential to affect thousands of people, leading to significant healthcare costs, loss of revenue for food companies, and—in the worst cases—death. When a disease outbreak is detected, identifying the contaminated food quickly is vital to minimize suffering and limit economic losses. Here we present a likelihood-based approach that has the potential to accelerate the time needed to identify possibly contaminated food products, which is based on exploitation of food products sales data and the distribution of foodborne illness case reports. Using a real world food sales data set and artificially generated outbreak scenarios, we show that this method performs very well for contamination scenarios originating from a single “guilty” food product. As it is neither always possible nor necessary to identify the single offending product, the method has been extended such that it can be used as a binary classifier. With this extension it is possible to generate a set of potentially “guilty” products that contains the real outbreak source with very high accuracy. Furthermore we explore the patterns of food distributions that lead to “hard-to-identify” foods, the possibility of identifying these food groups a priori, and the extent to which the likelihood-based method can be used to quantify uncertainty. We find that high spatial correlation of sales data between products may be a useful indicator for “hard-to-identify” products.  相似文献   

19.
贝类中人源诺如病毒污染净化技术研究进展   总被引:1,自引:0,他引:1  
人源诺如病毒是全球引起人急性胃肠炎的食源性病原体之一。牡蛎、贻贝等贝类消化腺组织中含有诺如病毒受体类似物,可从污染水体中富集高浓度病毒,因此,生食或食用加工不当的受污染贝类极易造成诺如病毒感染。污染贝类的净化处理技术已成为诺如病毒防控领域中的研究热点,例如消杀试剂、臭氧处理工艺、新型非热消杀技术以及最近报道的具有抗病毒作用的益生菌等。诺如病毒活性检测对确定贝类中的病毒污染水平和评价消杀技术效果有重要作用,只有完整和具有感染力的病毒才会对人体健康造成威胁。因此,本文在前期工作基础上,进一步对诺如病毒活性鉴定方法、贝类产品消杀技术以及贝类养殖净化工艺等研究进展进行综述,以期为完善食源性病毒防控技术提供参考。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号