首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative methods for analyzing whole genome sequence (WGS) data enable us to assess the genetic information available for reconstructing the evolutionary history of pathogens. We used the comparative approach to determine diagnostic genes for Salmonella enterica subspecies I. S. enterica subsp. I strains are known to infect warm-blooded organisms regularly while its close relatives tend to infect only cold-blooded organisms. We found 71 genes gained by the common ancestor of Salmonella enterica subspecies I and not subsequently lost by any member of this subspecies sequenced to date. These genes included many putative functional phenotypes. Twenty-seven of these genes are found only in Salmonella enterica subspecies I; we designed primers to test these genes for use as diagnostic sequence targets and data mined the NCBI Sequence Read Archive (SRA) database for draft genomes which carried these genes. We found that the sequence specificity and variability of these amplicons can be used to detect and discriminate among 317 different serovars and strains of Salmonella enterica subspecies I.  相似文献   

2.
The Salmonella enterica serovars Enteritidis, Dublin, and Gallinarum are closely related but differ in virulence and host range. To identify the genetic elements responsible for these differences and to better understand how these serovars are evolving, we sequenced the genomes of Enteritidis strain LK5 and Dublin strain SARB12 and compared these genomes to the publicly available Enteritidis P125109, Dublin CT 02021853 and Dublin SD3246 genome sequences. We also compared the publicly available Gallinarum genome sequences from biotype Gallinarum 287/91 and Pullorum RKS5078. Using bioinformatic approaches, we identified single nucleotide polymorphisms, insertions, deletions, and differences in prophage and pseudogene content between strains belonging to the same serovar. Through our analysis we also identified several prophage cargo genes and pseudogenes that affect virulence and may contribute to a host-specific, systemic lifestyle. These results strongly argue that the Enteritidis, Dublin and Gallinarum serovars of Salmonella enterica evolve by acquiring new genes through horizontal gene transfer, followed by the formation of pseudogenes. The loss of genes necessary for a gastrointestinal lifestyle ultimately leads to a systemic lifestyle and niche exclusion in the host-specific serovars.  相似文献   

3.

Background  

Public databases now contain multitude of complete bacterial genomes, including several genomes of the same species. The available data offers new opportunities to address questions about bacterial genome evolution, a task that requires reliable fine comparison data of closely related genomes. Recent analyses have shown, using pairwise whole genome alignments, that it is possible to segment bacterial genomes into a common conserved backbone and strain-specific sequences called loops.  相似文献   

4.
We describe EnteriX, a suite of three web-based visualization tools for graphically portraying alignment information from comparisons among several fixed and user-supplied sequences from related enterobacterial species, anchored on a reference genome (http://bio.cse.psu.edu/). The first visualization, Enteric, displays stacked pairwise alignments between a reference genome and each of the related bacteria, represented schematically as PIPs (Percent Identity Plots). Encoded in the views are large-scale genomic rearrangement events and functional landmarks. The second visualization, Menteric, computes and displays 1 Kb views of nucleotide-level multiple alignments of the sequences, together with annotations of genes, regulatory sites and conserved regions. The third, a Java-based tool named Maj, displays alignment information in two formats, corresponding roughly to the Enteric and Menteric views, and adds zoom-in capabilities. The uses of such tools are diverse, from examining the multiple sequence alignment to infer conserved sites with potential regulatory roles, to scrutinizing the commonalities and differences between the genomes for pathogenicity or phylogenetic studies. The EnteriX suite currently includes >15 enterobacterial genomes, generates views centered on four different anchor genomes and provides support for including user sequences in the alignments.  相似文献   

5.
Genes of Salmonella enterica serovar Typhimurium LT2 expected to be specifically present in Salmonella were selected using the Basic Local Alignment Search Tool (BLAST) program. The 152 selected genes were compared with 11 genomic sequences of Salmonella serovars, including Salmonella enterica subsp. I and IIIb and Salmonella bongori (V), and were clustered into 17 groups by their comparison patterns. A total of 38 primer pairs were constructed to represent each of the 17 groups, and PCR was performed with various Salmonella subspecies including Salmonella enterica subsp. I, II, IIIa, IIIb, IV, VI, and V to evaluate a comprehensive DNA-based scheme for identification of Salmonella subspecies and the major disease-causing Salmonella serovars. Analysis of PCR results showed that Salmonella enterica subsp. I was critically divided from other subspecies, and Salmonella strains belonging to S. enterica subsp. I were clustered based on their serovars. In addition, genotypic relationships within S. enterica subsp. I by PCR results were investigated. Also, Salmonella signature genes, Salmonella enterica serovar Typhimurium signature genes, and Salmonella enterica subsp. I signature genes were demonstrated based on their PCR results. The described PCR method suggests a rapid and convenient method for identification of Salmonella serovars that can be used by nonspecialized laboratories. Genome sequence comparison can be a useful tool in epidemiologic and taxonomic studies of Salmonella.  相似文献   

6.
Current commercial PCRs tests for identifying Salmonella target genes unique to this genus. However, there are two species, six subspecies, and over 2,500 different Salmonella serovars, and not all are equal in their significance to public health. For example, finding S. enterica subspecies IIIa Arizona on a table egg layer farm is insignificant compared to the isolation of S. enterica subspecies I serovar Enteritidis, the leading cause of salmonellosis linked to the consumption of table eggs. Serovars are identified based on antigenic differences in lipopolysaccharide (LPS)(O antigen) and flagellin (H1 and H2 antigens). These antigenic differences are the outward appearance of the diversity of genes and gene alleles associated with this phenotype.We have developed an allelotyping, multiplex PCR that keys on genetic differences between four major S. enterica subspecies I serovars found in poultry and associated with significant human disease in the US. The PCR primer pairs were targeted to key genes or sequences unique to a specific Salmonella serovar and designed to produce an amplicon with size specific for that gene or allele. Salmonella serovar is assigned to an isolate based on the combination of PCR test results for specific LPS and flagellin gene alleles. The multiplex PCRs described in this article are specific for the detection of S. enterica subspecies I serovars Enteritidis, Hadar, Heidelberg, and Typhimurium.Here we demonstrate how to use the multiplex PCRs to identify serovar for a Salmonella isolate.  相似文献   

7.
The Escherichia coli K-12 genome (ECO) was compared with the sampled genomes of the sibling species Salmonella enterica serovars Typhimurium, Typhi and Paratyphi A (collectively referred to as SAL) and the genome of the close outgroup Klebsiella pneumoniae (KPN). There are at least 160 locations where sequences of >400 bp are absent from ECO but present in the genomes of all three SAL and 394 locations where sequences are present in ECO but close homologs are absent in all SAL genomes. The 394 sequences in ECO that do not occur in SAL contain 1350 (30.6%) of the 4405 ECO genes. Of these, 1165 are missing from both SAL and KPN. Most of the 1165 genes are concentrated within 28 regions of 10–40 kb, which consist almost exclusively of such genes. Among these regions were six that included previously identified cryptic phage. A hypothetical ancestral state of genomic regions that differ between ECO and SAL can be inferred in some cases by reference to the genome structure in KPN and the more distant relative Yersinia pestis. However, many changes between ECO and SAL are concentrated in regions where all four genera have a different structure. The rate of gene insertion and deletion is sufficiently high in these regions that the ancestral state of the ECO/SAL lineage cannot be inferred from the present data. The sequencing of other closely related genomes, such as S.bongori or Citrobacter, may help in this regard.  相似文献   

8.

Background

Multiple genome alignment remains a challenging problem. Effects of recombination including rearrangement, segmental duplication, gain, and loss can create a mosaic pattern of homology even among closely related organisms.

Methodology/Principal Findings

We describe a new method to align two or more genomes that have undergone rearrangements due to recombination and substantial amounts of segmental gain and loss (flux). We demonstrate that the new method can accurately align regions conserved in some, but not all, of the genomes, an important case not handled by our previous work. The method uses a novel alignment objective score called a sum-of-pairs breakpoint score, which facilitates accurate detection of rearrangement breakpoints when genomes have unequal gene content. We also apply a probabilistic alignment filtering method to remove erroneous alignments of unrelated sequences, which are commonly observed in other genome alignment methods. We describe new metrics for quantifying genome alignment accuracy which measure the quality of rearrangement breakpoint predictions and indel predictions. The new genome alignment algorithm demonstrates high accuracy in situations where genomes have undergone biologically feasible amounts of genome rearrangement, segmental gain and loss. We apply the new algorithm to a set of 23 genomes from the genera Escherichia, Shigella, and Salmonella. Analysis of whole-genome multiple alignments allows us to extend the previously defined concepts of core- and pan-genomes to include not only annotated genes, but also non-coding regions with potential regulatory roles. The 23 enterobacteria have an estimated core-genome of 2.46Mbp conserved among all taxa and a pan-genome of 15.2Mbp. We document substantial population-level variability among these organisms driven by segmental gain and loss. Interestingly, much variability lies in intergenic regions, suggesting that the Enterobacteriacae may exhibit regulatory divergence.

Conclusions

The multiple genome alignments generated by our software provide a platform for comparative genomic and population genomic studies. Free, open-source software implementing the described genome alignment approach is available from http://gel.ahabs.wisc.edu/mauve.  相似文献   

9.
Salmonella enterica subsp. enterica comprises a number of serovars, many of which pose an epidemiological threat to humans and are a worldwide cause of morbidity and mortality. Most reported food infection outbreaks involve the serovars Salmonella Enteritidis and Salmonella Typhimurium. Rapid identification to determine the primary sources of the bacterial contamination is important to the improvement of public health. In recent years, many DNA-based techniques have been applied to genotype Salmonella. Herein, we report the use of a manual TRS-PCR approach for the differentiation of the Salmonella enterica subspecies enterica serovars in a single-tube assay. One hundred seventy Salmonella strains were examined in this work. These consisted of serovars S. Enteritidis, S. Typhimurium, S. Infantis, S. Virchow, S. Hadar, S. Newport and S. Anatum. Five of the TRS-primers, N6(GTG)4, N6(CAC)4, N6(CGG)4, N6(CCG)4 and N6(CTG)4, perfectly distinguished the S. Enteritidis and S. Typhimurium serovars, and the N6(GTG)4 primer additionally grouped the other five frequently isolated serovars. In our opinion, the TRS-PCR methodology could be recommended for a quick and simple DNA-based test for inter-serovar discrimination of Salmonella strains.  相似文献   

10.
The aim of the study was to elucidate the association between the zoonotic pathogen Salmonella and a population of land iguana, Colonophus subcristatus, endemic to Galápagos Islands in Ecuador. We assessed the presence of Salmonella subspecies and serovars and estimated the prevalence of the pathogen in that population. Additionally, we investigated the genetic relatedness among isolates and serovars utilising pulsed field gel electrophoresis (PFGE) on XbaI-digested DNA and determined the antimicrobial susceptibility to a panel of antimicrobials. The study was carried out by sampling cloacal swabs from animals (n = 63) in their natural environment on in the island of Santa Cruz. A high prevalence (62/63, 98.4%) was observed with heterogeneity of Salmonella subspecies and serovars, all known to be associated with reptiles and with reptile-associated salomonellosis in humans. Serotyping revealed 14 different serovars among four Salmonella enterica subspecies: S. enterica subsp. enterica (n = 48), S. enterica subsp. salamae (n = 2), S. enterica subsp. diarizonae (n = 1), and S. enterica subsp. houtenae (n = 7). Four serovars were predominant: S. Poona (n = 18), S. Pomona (n = 10), S. Abaetetuba (n = 8), and S.Newport (n = 5). The S. Poona isolates revealed nine unique XbaI PFGE patterns, with 15 isolates showing a similarity of 70%. Nine S. Pomona isolates had a similarity of 84%. One main cluster with seven (88%) indistinguishable isolates of S. Abaetetuba was observed. All the Salmonella isolates were pan-susceptible to antimicrobials representative of the most relevant therapeutic classes. The high prevalence and absence of clinical signs suggest a natural interaction of the different Salmonella serovars with the host species. The interaction may have been established before any possible exposure of the iguanas and the biocenosis to direct or indirect environmental factors influenced by the use of antimicrobials in agriculture, in human medicine or in veterinary medicine.  相似文献   

11.
Salmonella enterica is divided into four subspecies containing a large number of different serovars, several of which are important zoonotic pathogens and some show a high degree of host specificity or host preference. We compare 45 sequenced S. enterica genomes that are publicly available (22 complete and 23 draft genome sequences). Of these, 35 were found to be of sufficiently good quality to allow a detailed analysis, along with two Escherichia coli strains (K-12 substr. DH10B and the avian pathogenic E. coli (APEC O1) strain). All genomes were subjected to standardized gene finding, and the core and pan-genome of Salmonella were estimated to be around 2,800 and 10,000 gene families, respectively. The constructed pan-genomic dendrograms suggest that gene content is often, but not uniformly correlated to serotype. Any given Salmonella strain has a large stable core, whilst there is an abundance of accessory genes, including the Salmonella pathogenicity islands (SPIs), transposable elements, phages, and plasmid DNA. We visualize conservation in the genomes in relation to chromosomal location and DNA structural features and find that variation in gene content is localized in a selection of variable genomic regions or islands. These include the SPIs but also encompass phage insertion sites and transposable elements. The islands were typically well conserved in several, but not all, isolates—a difference which may have implications in, e.g., host specificity.  相似文献   

12.
13.
Salmonella enterica infections result in diverse clinical manifestations. Typhoid fever, caused by S. enterica serovar Typhi (S. Typhi) and S. Paratyphi A, is a bacteremic illness but whose clinical features differ from other Gram-negative bacteremias. Non-typhoidal Salmonella (NTS) serovars cause self-limiting diarrhea with occasional secondary bacteremia. Primary NTS bacteremia can occur in the immunocompromised host and infants in sub-Saharan Africa. Recent studies on host–pathogen interactions in Salmonellosis using genome sequencing, murine models, and patient studies have provided new insights. The full genome sequences of numerous S. enterica serovars have been determined. The S. Typhi genome, compared to that of S. Typhimurium, harbors many inactivated or disrupted genes. This can partly explain the different immune responses both serovars induce upon entering their host. Similar genome degradation is also observed in the ST313 S. Typhimurium strain implicated in invasive infection in sub-Saharan Africa. Virulence factors, most notably, type III secretion systems, Vi antigen, lipopolysaccharide and other surface polysaccharides, flagella, and various factors essential for the intracellular life cycle of S. enterica have been characterized. Genes for these factors are commonly carried on Salmonella Pathogenicity Islands (SPIs). Plasmids also carry putative virulence-associated genes as well as those responsible for antimicrobial resistance. The interaction of Salmonella pathogen-associated molecular patterns (PAMPs) with Toll-like receptors (TLRs) and NOD-like receptors (NLRs) leads to inflammasome formation, activation, and recruitment of neutrophils and macrophages and the production of pro-inflammatory cytokines, most notably interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, and interferon-gamma (IFN)-γ. The gut microbiome may be an important modulator of this immune response. S. Typhimurium usually causes a local intestinal immune response, whereas S. Typhi, by preventing neutrophil attraction resulting from activation of TLRs, evades the local response and causes systemic infection. Potential new therapeutic strategies may lead from an increased understanding of infection pathogenesis.  相似文献   

14.
Non-typhoidal Salmonella enterica is a common cause of diarrhoeal disease; in humans, consumption of contaminated poultry meat is believed to be a major source. Brazil is the world’s largest exporter of chicken meat globally, and previous studies have indicated the introduction of Salmonella serovars through imported food products from Brazil. Here we provide an in-depth genomic characterisation and evolutionary analysis to investigate the most prevalent serovars and antimicrobial resistance (AMR) in Brazilian chickens and assess the impact to public health of products contaminated with S. enterica imported into the United Kingdom from Brazil. To do so, we examine 183 Salmonella genomes from chickens in Brazil and 357 genomes from humans, domestic poultry and imported Brazilian poultry products isolated in the United Kingdom. S. enterica serovars Heidelberg and Minnesota were the most prevalent serovars in Brazil and in meat products imported from Brazil into the UK. We extended our analysis to include 1,259 publicly available Salmonella Heidelberg and Salmonella Minnesota genomes for context. The Brazil genomes form clades distinct from global isolates, with temporal analysis suggesting emergence of these Salmonella Heidelberg and Salmonella Minnesota clades in the early 2000s, around the time of the 2003 introduction of the Enteritidis vaccine in Brazilian poultry. Analysis showed genomes within the Salmonella Heidelberg and Salmonella Minnesota clades shared resistance to sulphonamides, tetracyclines and beta-lactams conferred by sul2, tetA and blaCMY-2 genes, not widely observed in other co-circulating serovars despite similar selection pressures. The sul2 and tetA genes were concomitantly carried on IncC plasmids, whereas blaCMY-2 was either co-located with the sul2 and tetA genes on IncC plasmids or independently on IncI1 plasmids. Long-term surveillance data collected in the UK showed no increase in the incidence of Salmonella Heidelberg or Salmonella Minnesota in human cases of clinical disease in the UK following the increase of these two serovars in Brazilian poultry. In addition, almost all of the small number of UK-derived genomes which cluster with the Brazilian poultry-derived sequences could either be attributed to human cases with a recent history of foreign travel or were from imported Brazilian food products. These findings indicate that even should Salmonella from imported Brazilian poultry products reach UK consumers, they are very unlikely to be causing disease. No evidence of the Brazilian strains of Salmonella Heidelberg or Salmonella Minnesota were observed in UK domestic chickens. These findings suggest that introduction of the Salmonella Enteritidis vaccine, in addition to increasing antimicrobial use, could have resulted in replacement of salmonellae in Brazilian poultry flocks with serovars that are more drug resistant, but less associated with disease in humans in the UK. The plasmids conferring resistance to beta-lactams, sulphonamides and tetracyclines likely conferred a competitive advantage to the Salmonella Minnesota and Salmonella Heidelberg serovars in this setting of high antimicrobial use, but the apparent lack of transfer to other serovars present in the same setting suggests barriers to horizontal gene transfer that could be exploited in intervention strategies to reduce AMR. The insights obtained reinforce the importance of One Health genomic surveillance.  相似文献   

15.
Adequate identification of Salmonella enterica serovars is a prerequisite for any epidemiological investigation. This is traditionally obtained via a combination of biochemical and serological typing. However, primary strain isolation and traditional serotyping is time‐consuming and faster methods would be desirable. A microarray, based on two housekeeping and two virulence marker genes (atpD, gyrB, fliC and fljB), has been developed for the detection and identification of the two species of Salmonella (S. enterica and S. bongori), the five subspecies of S. enterica (II, IIIa, IIIb, IV, VI) and 43 S. enterica ssp. enterica serovars (covering the most prevalent ones in Austria and the UK). A comprehensive set of probes (n = 240), forming 119 probe units, was developed based on the corresponding sequences of 148 Salmonella strains, successfully validated with 57 Salmonella strains and subsequently evaluated with 35 blind samples including isolated serotypes and mixtures of different serotypes. Results demonstrated a strong discriminatory ability of the microarray among Salmonella serovars. Threshold for detection was 1 colony forming unit per 25 g of food sample following overnight (14 h) enrichment.  相似文献   

16.
Salmonella enterica is one of the most important bacterial enteric pathogens worldwide. However, little is known about its distribution and diversity in the environment. The present study explored the diversity of 104 strains of Salmonella enterica isolated over 2 years from 12 coastal waterways in central California. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing were used to probe species diversity. Seventy-four PFGE patterns and 38 sequence types (STs) were found, including 18 newly described STs. Nineteen of 25 PFGE patterns were indistinguishable from those of clinical isolates in PulseNet. The most common ST was consistent with S. enterica serovar Typhimurium, and other frequently detected STs were associated with the serovars Heidelberg and Enteritidis; all of these serovars are important etiologies of salmonellosis. An investigation into S. enterica biogeography was conducted at the level of ST and subspecies. At the ST and subspecies level, we found a taxon-time relationship but no taxon-area or taxon-environmental distance relationships. STs collected during wet versus dry conditions tended to be more similar; however, STs collected from waterways adjacent to watersheds with similar land covers did not tend to be similar. The results suggest that the lack of dispersal limitation may be an important factor affecting the diversity of S. enterica in the region.  相似文献   

17.
Clustered regularly interspaced short palindromic repeats (CRISPRs) are a genetic locus of prokaryotes and contain highly conserved direct repeats, spacers, and CRISPR-associated genes. Spacers in CRISPRs are known as adaptive immune markers and reveal what types of phage or foreign DNA have been introduced in the past. The primary objective of this study was to analyze spacer sequences in CRISPR arrays of 15 Salmonella enterica subspecies and to determine if Salmonella CRISPRs are indeed involved in resistance to foreign DNAs. Using a bioinformatics algorithm, the CRISPR arrays of 15 subspecies of S. enterica were predicted. The transformation efficiencies of the wild-type and mutant strains lacking a space were determined using the plasmid harboring the same sequences with the space. Analysis of the CRISPR arrays indicated that S. Typhimurium encoded three possible CRISPR regions in the genome. Notably, 48 or 55 spacers were predicted in the genomes of S. Typhimurium 14028 and LT2 strains, respectively, and 39 were precisely identical. To confirm this prediction, the predicted CRISPR regions of S. Typhimurium 14028 were sequenced using the specific primers. Interestingly, a homology search of individual spacers found that the 2nd spacer of CRISPR 2 was nearly identical to a partial genome region of phage FSL SP-016. The mutant strain showed two to threefold increased transformation efficiency compared to that of the wild-type strain. These results demonstrate that the spacer sequence is dependent on genetic relations, especially for adaptive immunity against phage or foreign DNAs.  相似文献   

18.
19.

Background

Francisella tularensis subspecies tularensis and holarctica are pathogenic to humans, whereas the two other subspecies, novicida and mediasiatica, rarely cause disease. To uncover the factors that allow subspecies tularensis and holarctica to be pathogenic to humans, we compared their genome sequences with the genome sequence of Francisella tularensis subspecies novicida U112, which is nonpathogenic to humans.

Results

Comparison of the genomes of human pathogenic Francisella strains with the genome of U112 identifies genes specific to the human pathogenic strains and reveals pseudogenes that previously were unidentified. In addition, this analysis provides a coarse chronology of the evolutionary events that took place during the emergence of the human pathogenic strains. Genomic rearrangements at the level of insertion sequences (IS elements), point mutations, and small indels took place in the human pathogenic strains during and after differentiation from the nonpathogenic strain, resulting in gene inactivation.

Conclusion

The chronology of events suggests a substantial role for genetic drift in the formation of pseudogenes in Francisella genomes. Mutations that occurred early in the evolution, however, might have been fixed in the population either because of evolutionary bottlenecks or because they were pathoadaptive (beneficial in the context of infection). Because the structure of Francisella genomes is similar to that of the genomes of other emerging or highly pathogenic bacteria, this evolutionary scenario may be shared by pathogens from other species.  相似文献   

20.
《Genomics》2020,112(6):4863-4874
The G-quadruplex structure is a highly conserved drug target for preventing infection of several human pathogens. We tried to explore G-quadruplex forming motifs as promising drug targets in the genome of Salmonella enterica that causes enteric fever in humans. Herein, we report three highly conserved G-quadruplex motifs (SE-PGQ-1, 2, and 3) in the genome of Salmonella enterica. Bioinformatics analysis inferred the presence of SE-PGQ-1 in the regulatory region of mgtA, SE-PGQ-2 in ORF of entA, and SE-PGQ-3 in the promoter region of malE and malK genes. The G-quadruplex forming sequences were confirmed by biophysical and biomolecular techniques. Cellular studies affirm the inhibitory effect of G-quadruplex specific ligands on Salmonella enterica growth. Further, PCR inhibition, reporter based assay, and RT-qPCR assays emphasize the biological relevance of G-quadruplexes in these genes. Thus, this study confirmed the presence of G-quadruplex motifs in Salmonella enterica and characterized them as a promising drug target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号